JPS6136067B2 - - Google Patents

Info

Publication number
JPS6136067B2
JPS6136067B2 JP11709481A JP11709481A JPS6136067B2 JP S6136067 B2 JPS6136067 B2 JP S6136067B2 JP 11709481 A JP11709481 A JP 11709481A JP 11709481 A JP11709481 A JP 11709481A JP S6136067 B2 JPS6136067 B2 JP S6136067B2
Authority
JP
Japan
Prior art keywords
powder
less
sintering
mesh
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11709481A
Other languages
Japanese (ja)
Other versions
JPS5819406A (en
Inventor
Michio Yamashita
Setsuo Fujimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP11709481A priority Critical patent/JPS5819406A/en
Publication of JPS5819406A publication Critical patent/JPS5819406A/en
Publication of JPS6136067B2 publication Critical patent/JPS6136067B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、高密度、高磁石特性を有するFe
−Cr−Co系焼結磁石合金の製造方法に関する。 Fe−Cr−Co系焼結磁石合金は、アルニコ5磁
石合金に匹敵とするすぐれた磁石特性を有しかつ
熱間並びに冷間における加工が可能な材料として
開発され、今日すでに多方向に利用されている。 この種の磁性材料を工業的に製造する方法とし
ては圧延法、鋳造法、焼結法が考えられる。ま
ず、圧延法は、アルニコ系やフエライト系磁石合
金では不可能な方法であるが、Fe−Cr−Co系の
特有の性質を利用した方法として、多種の改良方
法並びにそれに必要な添加成分の提案がなされて
きた。しかし、圧延法では鍛造、圧延、焼鈍等の
複雑な工程を経て製造するため量産性に欠けコス
ト高となりやすく、一般に板状、線状等の特殊な
形状目的に主として適用されている。さらに製造
工程中の溶解時および熱処理時におけるCrの酸
化、窒化を防止するために各種の添加成分を必要
とする。この圧延法として次の技術が知られてい
る。特公昭53−35536、特開昭50−101217、特公
昭54−20934、特開昭51−38221。 次に、鋳造法は、一般にアルニコ系のように材
質が硬く脆いものに対して適用されている。Fe
−Cr−Co系の場合には延性があり靭性に富むた
め、鋳造法を採用する場合、湯道から鋳物をはず
すのがかえつて困難となるという問題があり、さ
らに砂つき、湯廻り等の鋳造欠陥も避けがたい問
題となつている。また、作業性、能率の点からも
満足のゆくものではなく、さらには溶解時におけ
るCrの化、窒化を防止するために各種添加成分
を使用しなければならないこと等により、経済性
にも問題がある。例えば特開昭52−49925のよう
に特定の添加成分の選定によりすぐれた磁石特性
を示す場合でも上記の問題点を含んでいる。 一方、焼結法は圧延法、鋳造法にみられる上述
のような問題点はなく、工業的に大量のFe−Cr
−Co系磁石を製造するには適している。しか
し、焼結密度と磁石特性に問題があることが知ら
れている。したがつて、例えば特開昭54−
33205、特開昭53−43006に見られるように、B,
Si,C等を添加することが提案されているが、こ
れらの場合密度は向上させることができるが、磁
石特性は(BH)m5.0MGO以下の値を得るのみで
ある。また従来の焼結法においてはCo含有量は
押並べて20%以上で価格も高いものとなつてい
た。 ここに、この発明は、工業的量産に適した低廉
なFe−Cr−Co系焼結磁石合金の製造方法を提案
することを目的とし、さらには、焼結磁石であつ
ても理論密度比97%以上、かつ(BH)m5.0MGO
以上の磁石特性をもつFe−Cr−Co系焼結磁石合
金の製造方法を提案することを目的とする。 かくして、この発明は、Fe−Cr−Co系焼結磁
石合金を粉末冶金法で製造する方法において、重
量%で、Cr20〜35%,Co3〜15%残部Feおよび
不可避的不純物からなり200メツシユ以下の粒度
分と主体とする原料粉を混合し加圧成形したのち
真空中又は非酸化性雰囲気中において、1250℃〜
1450℃で焼結を施し、焼結後800℃〜500℃の間を
冷却速度5℃/min以上にて冷却後直ちに磁場中
等温処理と時効処理とを行うことを特徴とする
Fe−Cr−Co系焼結磁石合金の製造方法である。 合金成分においてCr20〜35%とするのは、20
%未満35%を越える場合のいずれも磁石合金とし
て要求される残留磁束密度と保磁力を得ることが
できないためである。 また、Co3〜15%とするのはCo量が3%未満で
あると磁石合金として必要とされる程度の残留磁
束密度と保磁力が得られないためであり、15%を
越えると高密度化を図ることができず、さらには
価格も勢い高価となり実用的でないからである。
残部はFeであり、この発明方法ではその外に実
質的に何んらの添加成分を必要としない。 この発明において添加成分を必要としない理由
は次の諸点の複合した効果によるものと考えられ
る。 (1) 真空中又は非酸化性雰囲気中で焼結するため
に外部雰囲気の影響をほとんど受けないこと: Fe−Cr−Co系合金はCrを含有するために酸化
や窒化の影響を受けやすく、従来の圧延法や鋳造
法では溶解や熱処理の工程が不可欠であるため酸
化や窒化の悪影響を防止するための添加成分が必
須であつた。しかしこの発明における焼結法では
溶解や溶体化処理は行なわれずしたがつて酸化や
窒化の影響をほとんど受けない。 なお焼結雰囲気は合計で3ppm以下の酸素また
は窒素濃度が好ましく、これは真空中であれば
10-3mmHg以下の真空度であり、H2中または不活
性ガス中であれば−70℃以下の露点に相当し、工
業的にも実験的にも容易に得られる雰囲気であ
る。 (2) 原料粉として200メツシユ以下の粒度分を主
体とする微細な原料粉つまりFe−Cr粉または
Fe−Cr−Co粉を使用すること: 従来通常行われている100メツシユ程度の粒度
の原料粉を使う場合、添加成分なしに高密度の
Fe−Cr−Co系焼結磁石合金を得ることは困難で
あつたが、200メツシユ以下の粒度の原料粉を使
用することによつて容易に高密度が得られる。 一般に原料粉を微細とすることはそれだけ粉末
化のコストが上昇し好ましくないが200メツシユ
以下のFe−CrまたはFe−Cr−Co粉を得ることは
それほど困難ではない。 特にFe−Cr系あるいはFe−Cr−Co系合金で40
〜60%程度の幅広いCr含有量で生成する脆いσ
(シグマ)相を主体とする合金は、容易に微粉砕
が可能であり、200メツシユ以下の粒度の粉末を
得ることも容易である。 (3) 溶体化処理を行う必要がないため熱処理時の
雰囲気の悪影響を受けないこと: これは焼結時に真空中又は非酸化性雰囲気中で
焼結することと複合して酸化や窒化による悪影響
を防止し熱処理を容易にするための添加元素を不
要とする効果がある。 ところで、この発明によれば、焼結体の溶体化
処理が省略できるが、そのためには焼結体の熱処
理に際して、焼結後800〜500℃の間の温度範囲を
平均5℃/min以上で冷却しなければならない。
5℃/min未満のゆつくりした冷却速度で冷却し
た場合、磁石特性が低下してこの発明の目的が達
成されない。一般に、空冷することによつて5
℃/min以上の冷却速度が得られる。 なお、この発明において、原料粉として表面の
活性な粉末を使用することが好ましい。例えば、
原料粉の作成方法として水アトマイズ法は工業的
な大量生産方法として有力な方法であり、これま
でも提案されているが(特公昭56−12300号)、水
アトマイズ法で作成した粉末は表面が酸化されて
いるために焼結密度を向上させるためにはC,B
等の添加元素を必要とし、得られた磁石特性のレ
ベルも低いものであつた。しかしながら、この発
明によれば、水アトマイズ法で作成した粉末でも
粒度が200メツシユ以下である限り、熱処理等に
よつて表面の活性な粉末とすることによつて高密
度、高磁石特性を得ることができる。 また、原料鉄粉としてカーボニル鉄粉を使用す
ることによつて添加成分なしに高密度を得ること
が容易となる。その他、原料鉄粉としてはカーボ
ニル鉄粉以外にアトマイズ鉄粉、電解鉄粉、還元
鉄粉等が使用できる。なお、一般にカーボニル鉄
粉は粒度が微細であり活性度が高いために高密度
の得られることは予想されるが100メツシユ程度
のFe−Cr粉やFe−Cr−Co粉と配合することによ
つては、満足のゆく程度の高密度は得られない。
この発明において焼結温度は高密度、高磁石特性
を得るために1250〜1450℃が好ましい。すなわち
1250℃未満では焼結密度が低く又1450℃をこえる
と変形が起る為である。 以上のように、この発明によつて、添加成分を
必要とせずに、高密度のFe−Cr−Co系焼結磁石
合金が得られたことから、これまでFe−Cr−Co
系磁石合金に添加することによつて有効であると
提案されてきたTi,Si,Mn,Cu,Sn等の添加効
果を検討してみるといずれも特性向上には効果の
ないことが明らかとなつた。 これはこの発明によつて得られる磁石合金が従
来提案されてきた各種の添加成分を必要としてき
たFe−Cr−Co系磁石合金と本質的に異なる点で
ある。 以下にこの発明による実施例を示しその効果を
明らかにする。 実施例 1 Cr48%,Co18%、残部Feよりなるシグマ粉を
機械的粉砕により200メツシユ以下とし、これに
平均粒度5μ以下のカーボニル鉄粉、400メツシ
ユ以下のCo粉とを混合し、Cr25%,Co9.5%、残
部Feの組成に調整した混合粉末を、5000Kg/cm2
の圧力で13mm(直径)×10mm(長さ)の形状に加
圧成形した。次にこれを10-3Torrの真空中にて
1350℃で2時間の焼結を施し、焼結後800〜500℃
の冷却速度を変えて冷却した。得られた焼結体
を、溶体化処理を行なわず次いで、640℃,
3000Oeで1時間の磁場中等温処理し、さらに620
℃より500℃まで3℃/hrの速度で冷却保持し
た。このようにして得られた磁石の特性を調べた
結果を次の第1表に示す。
This invention features Fe with high density and high magnetic properties.
-Regarding a method for producing a Cr-Co based sintered magnet alloy. Fe-Cr-Co-based sintered magnet alloy has been developed as a material that has excellent magnetic properties comparable to Alnico 5 magnet alloy and can be processed in hot and cold processes, and is already used in many directions today. ing. Possible methods for industrially manufacturing this type of magnetic material include rolling, casting, and sintering. First, the rolling method is a method that is not possible with alnico-based or ferrite-based magnetic alloys, but as a method that takes advantage of the unique properties of the Fe-Cr-Co system, we propose various improvement methods and the necessary additive components. has been done. However, since the rolling method involves complicated processes such as forging, rolling, and annealing, it is not suitable for mass production and tends to be expensive, so it is generally applied to special shapes such as plate shapes and wire shapes. Furthermore, various additive components are required to prevent oxidation and nitridation of Cr during melting and heat treatment during the manufacturing process. The following technology is known as this rolling method. Special Publication No. 53-35536, No. 50-101217, No. 54-20934, No. 51-38221. Next, the casting method is generally applied to hard and brittle materials such as alnico-based materials. Fe
-Cr-Co is ductile and has high toughness, so when casting method is used, it becomes difficult to remove the casting from the runner, and there are also problems such as sand build-up and around the molten metal. Casting defects have also become an unavoidable problem. In addition, it is not satisfactory in terms of workability and efficiency, and it is also problematic in terms of economy, as various additive components must be used to prevent Cr from forming and nitriding during melting. There is. For example, even in the case of JP-A-52-49925, which exhibits excellent magnetic properties by selecting specific additive components, the above-mentioned problems still exist. On the other hand, the sintering method does not have the above-mentioned problems found in the rolling method and the casting method, and is industrially applicable to large amounts of Fe-Cr.
- Suitable for producing Co-based magnets. However, it is known that there are problems with sintered density and magnetic properties. Therefore, for example, Japanese Patent Application Laid-open No. 1983-
33205, as seen in JP-A-53-43006, B,
It has been proposed to add Si, C, etc., but in these cases the density can be improved, but the magnetic properties only obtain a value of (BH)m5.0MGO or less. In addition, in conventional sintering methods, the Co content was generally more than 20%, making it expensive. The purpose of this invention is to propose a method for manufacturing an inexpensive Fe-Cr-Co sintered magnet alloy suitable for industrial mass production, and furthermore, even with a sintered magnet, the theoretical density ratio is 97. % or more and (BH) m5.0MGO
The purpose of this study is to propose a method for producing a Fe-Cr-Co sintered magnetic alloy having the above magnetic properties. Thus, the present invention provides a method for producing a Fe-Cr-Co based sintered magnet alloy by a powder metallurgy method, which is composed of 20 to 35% Cr, 3 to 15% Co, the balance Fe and unavoidable impurities, and has a mesh weight of 200 mesh or less. After mixing the main raw material powder with the particle size of
It is characterized by performing sintering at 1450°C, and immediately after cooling between 800°C and 500°C at a cooling rate of 5°C/min or more, magnetic field isothermal treatment and aging treatment are performed.
This is a method for manufacturing a Fe-Cr-Co based sintered magnet alloy. 20% to 35% Cr in the alloy composition is 20% to 35%.
This is because if it exceeds 35%, the residual magnetic flux density and coercive force required for the magnetic alloy cannot be obtained. In addition, the reason for setting Co3 to 15% is that if the Co content is less than 3%, the residual magnetic flux density and coercive force required for a magnet alloy cannot be obtained, and if it exceeds 15%, high density This is because it is impossible to achieve this goal, and furthermore, the price is too high to be practical.
The remainder is Fe, and the method of this invention does not require substantially any other additional components. The reason why no additional components are required in this invention is considered to be due to the combined effect of the following points. (1) Because it is sintered in a vacuum or in a non-oxidizing atmosphere, it is hardly affected by the external atmosphere: Fe-Cr-Co alloys contain Cr, so they are susceptible to oxidation and nitriding; Since melting and heat treatment steps are essential in conventional rolling and casting methods, additive components are essential to prevent the adverse effects of oxidation and nitriding. However, in the sintering method of the present invention, no melting or solution treatment is performed, so it is hardly affected by oxidation or nitriding. The sintering atmosphere preferably has a total oxygen or nitrogen concentration of 3 ppm or less; this is true if it is in a vacuum.
The degree of vacuum is 10 -3 mmHg or less, which corresponds to a dew point of -70°C or less in H 2 or inert gas, and is an atmosphere that can be easily obtained both industrially and experimentally. (2) As raw material powder, fine raw material powder mainly consisting of particle size of 200 mesh or less, i.e. Fe-Cr powder or
Use of Fe-Cr-Co powder: When using raw material powder with a particle size of about 100 mesh, which has been conventionally used, it is possible to create a high-density powder without any additives.
Although it has been difficult to obtain a Fe-Cr-Co sintered magnet alloy, high density can be easily obtained by using raw material powder with a particle size of 200 mesh or less. In general, making the raw material powder finer increases the cost of powdering, which is undesirable, but it is not so difficult to obtain Fe-Cr or Fe-Cr-Co powder of 200 mesh or less. Especially in Fe-Cr series or Fe-Cr-Co series alloys, 40
Brittle σ that forms over a wide range of Cr content of ~60%
Alloys mainly consisting of (sigma) phase can be easily pulverized, and it is also easy to obtain powder with a particle size of 200 mesh or less. (3) There is no need to perform solution treatment, so there is no adverse effect of the atmosphere during heat treatment: This is because sintering is performed in a vacuum or in a non-oxidizing atmosphere, and the adverse effects of oxidation and nitridation are avoided. This has the effect of eliminating the need for additional elements to prevent this and facilitate heat treatment. By the way, according to the present invention, the solution treatment of the sintered body can be omitted, but in order to do so, when heat treating the sintered body, the temperature range between 800 and 500°C after sintering is heated at an average rate of 5°C/min or more. Must be cooled.
If cooling is performed at a slow cooling rate of less than 5° C./min, the magnetic properties will deteriorate and the object of the invention will not be achieved. Generally, by air cooling, 5
A cooling rate of ℃/min or higher can be obtained. In this invention, it is preferable to use a surface-active powder as the raw material powder. for example,
The water atomization method is a powerful industrial mass production method for producing raw material powder, and has been proposed in the past (Special Publication No. 12300/1983), but the powder produced by the water atomization method has a surface that is Because it is oxidized, C and B are required to improve the sintered density.
The magnetic properties obtained were of a low level. However, according to the present invention, as long as the particle size is 200 mesh or less even for powder made by water atomization, high density and high magnetic properties can be obtained by making the powder active on the surface through heat treatment etc. I can do it. Further, by using carbonyl iron powder as the raw material iron powder, it becomes easy to obtain high density without using any additional components. In addition to carbonyl iron powder, atomized iron powder, electrolytic iron powder, reduced iron powder, etc. can be used as the raw material iron powder. In general, carbonyl iron powder has a fine particle size and high activity, so it is expected that high density can be obtained, but it is possible to obtain high density by blending it with about 100 mesh Fe-Cr powder or Fe-Cr-Co powder. In this case, a satisfactory degree of high density cannot be obtained.
In this invention, the sintering temperature is preferably 1250 to 1450°C in order to obtain high density and high magnetic properties. i.e.
This is because the sintered density is low below 1250°C, and deformation occurs when the temperature exceeds 1450°C. As described above, according to the present invention, a high-density Fe-Cr-Co-based sintered magnet alloy was obtained without the need for additive components.
When we examine the effects of adding Ti, Si, Mn, Cu, Sn, etc., which have been proposed to be effective when added to magnet alloys, it is clear that none of them have any effect on improving properties. Summer. This is a point in which the magnetic alloy obtained by the present invention is essentially different from conventionally proposed Fe--Cr--Co based magnetic alloys which required various additive components. Examples according to the present invention will be shown below to clarify its effects. Example 1 Sigma powder consisting of 48% Cr, 18% Co, and the balance Fe was mechanically crushed to a size of 200 mesh or less, and this was mixed with carbonyl iron powder with an average particle size of 5 μ or less and Co powder of 400 mesh or less to obtain 25% Cr, A mixed powder adjusted to a composition of 9.5% Co and the balance Fe was 5000Kg/cm 2
It was pressure molded into a shape of 13 mm (diameter) x 10 mm (length) at a pressure of Next, this is placed in a vacuum of 10 -3 Torr.
Sintered at 1350℃ for 2 hours, then heated to 800-500℃ after sintering.
was cooled by changing the cooling rate. The obtained sintered body was then heated at 640℃ without solution treatment.
After 1 hour of magnetic field isothermal treatment at 3000Oe, further 620Oe
It was cooled and maintained at a rate of 3°C/hr from 500°C to 500°C. The results of examining the characteristics of the magnet thus obtained are shown in Table 1 below.

【表】 実施例 2 実施例1と同様にして作成した混合粉末に350
メツシユ以下のTiH2(Ti96%)粉末、250メツシ
ユ以下のFe−Si合金(Si76.7%、残Fe)250メツ
シユ以下のFe−Mn合金(Mn77.3%、残りFe)
粉末、同じく250メツシユ以下の電解銅粉末、200
メツシユ以下のSn粉末をそれぞれについて0.5,
1.0,2.0wt%づつ添加し、Cr25%,Co9.5%、残
部添加元素およびFeの組成調整した混合粉末を
実施例1と同様の方法で加圧成形した。次に、こ
れを10-3Torrの真空中にて1300℃または1350℃
で4時間の焼結を施し、焼結後800〜500℃間の冷
却速度が20℃/minとなるように冷却した。 得られた焼結体のうち1300℃で焼結したものは
溶体化処理を行なわず、1350℃で焼結したものは
1250℃,20分間の溶体化処理を施し、次いで640
℃または645℃,3000Oeで1時間の磁場中等温処
理し、さらに620℃に1時間保持してから620℃よ
り500℃まで3℃/Hrの速度で冷却した。このよ
うにして得られた磁石の特性を調べた結果を添付
図面にグラフで示す。 添付図面のグラフには添加元素及び添加量と磁
石特性との関係を上記焼結温度及び磁場中等温処
理温度との違いで示しており、図中の〇(白丸)
および△(白三角)は焼結温度1300℃で溶体化処
理なしの場合、●(黒丸)および▲(黒三角)は
焼結温度1350℃で溶体化処理を施した場合を示し
ている。また磁場中等温処理温度の違いは〇(白
丸)および●(黒丸)は640℃の場合、△(白三
角)および▲(黒三角)は645℃で処理した場合
を示している。 図面に示すグラフより明らかなようにTi,Si,
Mn,Cu,Snのいずれの添加元素の場合も添加量
の増加に従つて磁石特性は低下しており全く添加
しない場合が最もすぐれた磁石特性を示してい
る。 以上、この発明を詳述してきたが、この発明に
よれば、例えば第1表に示す結果からわかるよう
に、焼結体を冷却するに際して800℃から500℃の
間に冷却速度が5℃/min以上であれば良好な磁
石特性、特に最大エネルギー積が得られ、したが
つて、従来必要とされてきた焼結後の溶体化処理
が省略できる。また添加図面に示す結果からも分
かるように、溶体化処理を行わないこの発明にお
いては、種々の添加元素を加えることによつてか
えつて理論密度比並びに磁気特性、特に磁気エネ
ルギー積、保磁力さらには磁束密度のいずれもが
低下してしまう。
[Table] Example 2 Add 350 to the mixed powder prepared in the same manner as Example 1.
TiH 2 (Ti96%) powder with less than 250 meshes, Fe-Si alloy with less than 250 meshes (Si76.7%, remaining Fe), Fe-Mn alloy with less than 250 meshes (77.3% Mn, remaining Fe)
Powder, also less than 250 mesh electrolytic copper powder, 200
0.5 for each Sn powder of mesh size or less,
A mixed powder with an adjusted composition of 25% Cr, 9.5% Co, and the rest of the added elements and Fe was press-molded in the same manner as in Example 1, adding 1.0 and 2.0 wt%. Next, this is heated to 1300℃ or 1350℃ in a vacuum of 10 -3 Torr.
After sintering, the material was sintered for 4 hours, and after sintering, it was cooled at a cooling rate of 20°C/min between 800 and 500°C. Among the obtained sintered bodies, those sintered at 1300℃ were not subjected to solution treatment, and those sintered at 1350℃ were
Solution treatment at 1250℃ for 20 minutes, followed by 640℃
C. or 645.degree. C. and 3000 Oe for 1 hour in a magnetic field, and then held at 620.degree. C. for 1 hour, and then cooled from 620.degree. C. to 500.degree. C. at a rate of 3.degree. C./Hr. The results of examining the characteristics of the magnet thus obtained are shown in graphs in the accompanying drawings. The graph in the attached drawing shows the relationship between the additive elements and their amounts and the magnetic properties by comparing them with the above-mentioned sintering temperature and magnetic field isothermal treatment temperature.
and △ (open triangles) indicate the case where the sintering temperature was 1300°C without solution treatment, and ● (black circle) and ▲ (black triangle) indicate the case where the solution treatment was performed at the sintering temperature of 1350°C. Furthermore, the differences in magnetic field isothermal treatment temperature are as follows: 〇 (white circles) and ● (black circles) indicate the case of 640°C, and △ (open triangle) and ▲ (closed triangle) indicate the case of treatment at 645°C. As is clear from the graph shown in the drawing, Ti, Si,
In the case of any of the additive elements Mn, Cu, and Sn, the magnetic properties decrease as the amount added increases, and the best magnetic properties are obtained when no additive is added at all. The present invention has been described in detail above. According to the present invention, for example, as can be seen from the results shown in Table 1, when cooling a sintered body, the cooling rate is 5°C/5°C between 800°C and 500°C. If it is more than min, good magnetic properties, especially maximum energy product, can be obtained, and therefore, the solution treatment after sintering, which has been conventionally required, can be omitted. Furthermore, as can be seen from the results shown in the addition drawings, in this invention, which does not involve solution treatment, by adding various additive elements, the theoretical density ratio and magnetic properties, especially the magnetic energy product, coercive force, and Both magnetic flux densities decrease.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面はTi,Si,Mn,Cu,Snのそれぞれの
添加量と磁石特性の関係を示す線図である。
The attached drawing is a diagram showing the relationship between the amounts of Ti, Si, Mn, Cu, and Sn added and the magnetic properties.

Claims (1)

【特許請求の範囲】[Claims] 1 Fe−Cr−Co系磁石合金を粉末治金法で製造
する方法において、重量%で、Cr20〜35%、Co3
〜15%、残部Feおよび不可避的不純物からなり
200メツシユ以下の粒度分を主体とする原料粉を
混合し加圧成形したのち真空中又は非酸化性雰囲
気中において、1250℃〜1450℃で焼結を施し、焼
結後800℃〜500℃の間を冷却速度5℃/min以上
にて冷却後直ちに磁場中等温処理と時効処理とを
行うことを特徴とするFe−Cr−Co系焼結磁石合
金の製造方法。
1 In a method of manufacturing Fe-Cr-Co based magnet alloy by powder metallurgy, Cr20-35%, Co3
~15%, balance consisting of Fe and unavoidable impurities
After mixing raw material powder mainly having a particle size of 200 mesh or less and press forming, sintering is performed at 1250℃ to 1450℃ in a vacuum or non-oxidizing atmosphere. 1. A method for producing a Fe-Cr-Co based sintered magnet alloy, which comprises performing an isothermal treatment in a magnetic field and an aging treatment immediately after cooling at a cooling rate of 5° C./min or more.
JP11709481A 1981-07-28 1981-07-28 Manufacture of sintered fe-cr-co magnet alloy Granted JPS5819406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11709481A JPS5819406A (en) 1981-07-28 1981-07-28 Manufacture of sintered fe-cr-co magnet alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11709481A JPS5819406A (en) 1981-07-28 1981-07-28 Manufacture of sintered fe-cr-co magnet alloy

Publications (2)

Publication Number Publication Date
JPS5819406A JPS5819406A (en) 1983-02-04
JPS6136067B2 true JPS6136067B2 (en) 1986-08-16

Family

ID=14703241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11709481A Granted JPS5819406A (en) 1981-07-28 1981-07-28 Manufacture of sintered fe-cr-co magnet alloy

Country Status (1)

Country Link
JP (1) JPS5819406A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2635332B2 (en) * 1987-09-14 1997-07-30 ファナック 株式会社 Synchronous control method of spindle motor and feed servo motor in machining

Also Published As

Publication number Publication date
JPS5819406A (en) 1983-02-04

Similar Documents

Publication Publication Date Title
KR100360533B1 (en) Method for producing high silicon steel, and silicon steel
JP5308916B2 (en) Soft magnetic powder for dust magnetic body and dust magnetic body using the same
US4093477A (en) Anisotropic permanent magnet alloy and a process for the production thereof
US4695333A (en) Iron-chromium-base spinodal decomposition-type magnetic (hard or semi-hard) alloy
KR920004678B1 (en) METHOD FOR MANUFACTURING Ni-Fe ALLOY SHEET HAVING EXCELLENT DC MAGNETIC PROPERTY AND EXCELLENT AC MAGNETIC PROPERTY
JP3655321B2 (en) Method for producing Fe-based soft magnetic alloy powder
US4601876A (en) Sintered Fe-Cr-Co type magnetic alloy and method for producing article made thereof
KR830001327B1 (en) Method of manufacturing magnetic element made of alloy
US4311537A (en) Low-cobalt Fe-Cr-Co permanent magnet alloy processing
JPS6136067B2 (en)
JPS6318001A (en) Alloy steel powder for powder metallurgy
WO1984004712A1 (en) Tin-containing iron powder and process for its production
JP2704064B2 (en) Iron-based powder for sintering and method for producing the same
US4069043A (en) Wear-resistant shaped magnetic article and process for making the same
JP2905043B2 (en) Manufacturing method of permanent magnet powder material
JPS61208807A (en) Permanent magnet
JPH0142342B2 (en)
JPS61127848A (en) Manufacture of sintered alnico magnet
JPS5823462B2 (en) Fe-Cr-Co spinodal decomposition type sintered magnetic material with high density
JPH04337001A (en) Low-alloy steel powder for powder metallurgy and its sintered molding and tempered molding
KR860001237B1 (en) Permanent magnet
JPS61288047A (en) Manufacture of permanent magnet alloy
JPS59154004A (en) Manufacture of permanent magnet
JPS6152302A (en) Alloy steel powder for powder metallurgy
JPH0213021B2 (en)