JPS609210B2 - Incinerator side wall structure - Google Patents
Incinerator side wall structureInfo
- Publication number
- JPS609210B2 JPS609210B2 JP8176680A JP8176680A JPS609210B2 JP S609210 B2 JPS609210 B2 JP S609210B2 JP 8176680 A JP8176680 A JP 8176680A JP 8176680 A JP8176680 A JP 8176680A JP S609210 B2 JPS609210 B2 JP S609210B2
- Authority
- JP
- Japan
- Prior art keywords
- furnace
- bricks
- brick
- corner
- side wall
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Furnace Housings, Linings, Walls, And Ceilings (AREA)
Description
【発明の詳細な説明】 本発明は焼却炉側壁構造に関するものである。[Detailed description of the invention] The present invention relates to an incinerator side wall structure.
焼却炉の炉内燃暁室を形成するレンガ側壁、特にこのレ
ンガ側壁における炉内燃糠城帯に面する部分は非常に苛
酸な条件で使用されるため、高級な炭化桂素質レンガ(
SICレンガ)が使用される。このSICレンガは、耐
摩耗性、耐浸食性、耐スポール性及び熱間強度等の点で
他のレンガに比較すれば数多くの利点を有しているが、
高温度のガス雰囲気で酸化膨脹し、それに伴ないしンガ
壁が膨出するという唯一の欠点を有する。SICレンガ
の酸化の原因は、酸素(02)、炭酸ガス(C02)、
水蒸気(日20)の高温度の雰囲気で酸化反応して炭化
珪素(SIC)が石英(Si02)に変化するところに
ある。酸化の物理的現象としてSICがSi02に変化
した場合、重量で1.5倍、容積で約2倍となり、垂直
なしンガ壁が弓状に膨出する。したがってその補修は、
壁全面を取替えて行なうことを要する。SICレンガの
酸化進行率は、このような酸化性雰囲気ガス中であって
も、ガス温度と水分量の影響により異なる。一般にガス
温度800qo程度から酸化が始まるが、その進行は比
較的小さく、激しくなるのは100000以上からであ
る。この頃向は実機プラントにおいても経験済みである
。特に最近では、都市ごみのようにプラスチック類の含
有率の大きいものではカロリーの急激な上昇に伴なつて
ガス温度も上昇し、レンガの酸化傾向が顕著である。本
発明は、レンガが酸化された場合に発生する種々の不都
合を解消するために行なう補修、あるし・は築炉に際し
、特殊な技術を用いることのない部分的な補修あるいは
短期間での葵炉を容易に可能としたものであり、しかも
レンガ温度の過昇に伴なう酸化を防止してその耐久寿命
の飛躍的な向上を計ったものである。The brick side wall that forms the internal combustion chamber of the incinerator, especially the part of this brick side wall facing the internal combustion zone, is used under extremely caustic conditions, so high-grade cinnamon carbide bricks (
SIC bricks) are used. This SIC brick has many advantages compared to other bricks in terms of wear resistance, erosion resistance, spall resistance, hot strength, etc.
The only drawback is that it oxidizes and expands in a high-temperature gas atmosphere, resulting in bulging of the ring walls. The causes of oxidation of SIC bricks are oxygen (02), carbon dioxide gas (C02),
Silicon carbide (SIC) is transformed into quartz (Si02) through an oxidation reaction in a high-temperature atmosphere of water vapor (20th June). As a physical phenomenon of oxidation, when SIC changes to Si02, the weight increases by 1.5 times, the volume approximately doubles, and the vertical ridge wall bulges into an arched shape. Therefore, the repair is
The entire wall will need to be replaced. Even in such an oxidizing atmosphere gas, the oxidation progress rate of SIC bricks varies depending on the gas temperature and moisture content. Generally, oxidation begins at a gas temperature of about 800 qo, but its progress is relatively slow and becomes more severe at a gas temperature of 100,000 qo or higher. This trend has already been experienced in actual plants. Particularly recently, in the case of municipal waste, which contains a large proportion of plastics, the gas temperature has also increased as the calorie content has increased rapidly, and the tendency of bricks to oxidize has become noticeable. The present invention is a method for repairing to eliminate various inconveniences that occur when bricks are oxidized, or for partial repairs or short-term repairs that do not require special techniques when building a furnace. This makes it easy to use a furnace, and also prevents oxidation caused by excessive rise in brick temperature, dramatically improving the durability of the bricks.
本発明は、多数の支持板を格子状に設け、厚み方向中央
部に段部を有しかつ該段部より炉外側部が炉内側部より
小さい相似形であるとともに該炉内側部のコーナ部が炉
外側部のコーナ部より大きく切欠いたレンガを、議しン
ガの炉外側部を前記支持板で囲まれる複数の空間に鉄込
んで縦横に並設し、隣接するレンガの対応切欠部により
形成される透孔に挿通しかつ前記支持板の格子点部に設
けられたナットに螺着したボルトの頭部と前記ナットと
により前記隣接するレンガ同士を前記コーナ部切欠きに
より生じた段部を介して挟持したものである。In the present invention, a large number of support plates are arranged in a lattice shape, and a stepped portion is provided at the center in the thickness direction, and the outer side of the furnace is smaller than the inner side of the furnace than the stepped portion, and the corner portions of the inner side of the furnace are of similar shape. Bricks with a cutout larger than the corner part of the outer side of the furnace are placed in parallel vertically and horizontally in a plurality of spaces surrounded by the support plate on the outer side of the furnace, and are formed by corresponding notches in adjacent bricks. The head of a bolt inserted into the through hole and screwed into a nut provided at the lattice point portion of the support plate and the nut connect the adjacent bricks to each other through the stepped portion created by the corner notch. It is held between the two.
さらに本発明は縦横に並設したレンガ連結体の背部を空
冷室に構成し、該空冷室を炉内に通じる燃焼用空気供給
管に送気管及び排気管を介して運通したものである。Further, in the present invention, the backs of the connected bricks arranged in rows and columns are configured as air-cooled chambers, and the air-cooled chambers are communicated with combustion air supply pipes leading into the furnace via air supply pipes and exhaust pipes.
以下本発明の実施例を第1図〜第7図に基づき説明する
。Embodiments of the present invention will be described below with reference to FIGS. 1 to 7.
第1図に焼却炉が示される。An incinerator is shown in FIG.
焼却炉内部に、乾燥火格子1、燃焼火格子2、後燃焼火
格子3をこの順に階段状に備えており、乾燥火格子1の
上部に廃棄物投入ホッパ4、後燃焼火格子3の下部に水
封コンベア水槽5が設けられる。廃棄物Aはクレーン等
によって投入ホツパ4へ投入された後、乾燥火格子1上
で水分が蒸発せしめられ、燃焼火格子2上で火焔を上げ
て勢いよく高温焼却され、さらに後燃焼火格子3上で最
終的に焼き上り、禾燃部分の少ない灰Bとなって水封コ
ンベア水槽5内へ排出され、そしてここで冷却された後
取出される。炉内で生じた燃焼ガスは炉上部ボィラ6を
通過して煙道7へ導入される。ボィラ−ドラムが符号8
で示される。燃焼炉の側壁10は、そのほとんど全面が
、多数の小さいレンガ11を横方向では同一レベルで、
縦方向では段違い状に並べあるし・は積層して構成され
るが、その一部、すなわち炉内燃燦城帯に面する部分は
その周囲のレンガ11より大きいSICレンガ12Aを
縦横に所要数づつ並設した形態のレンガ連結体12を懐
め込んだ状態に構成される。図示例において炉内燃焼域
帯は、燃焼火格子2の上部と、乾燥火格子1及び後燃焼
火格子3の各一部分の上部とに形成される。なお炉内燃
暁域帯に面していない部分のレンガ11は従釆より側壁
用レンガとして用いられていたものと同質、同形のもの
である。第6図、第7図によく示されるように、レンガ
連結体12を構成している各一枚のSICレンガ12A
は、正面視において矩形状(たとえば500夕×50血
×12仇)をなし、その厚み方向中央部に段部13を有
しかっこの毅部13より炉外側部12aが炉内側部12
bよりも小さい相似形状のものとなり、しかも炉外側部
12a及び炉内側部12bの各コーナ部を享円弧状に切
欠いた状態となるように成形される。The inside of the incinerator is equipped with a drying grate 1, a combustion grate 2, and a post-combustion grate 3 arranged in a stepped manner in this order. A water seal conveyor water tank 5 is provided. After the waste A is put into the input hopper 4 by a crane or the like, the moisture is evaporated on the drying grate 1, the flame is raised on the combustion grate 2, and it is vigorously incinerated at high temperature, and then the after-combustion grate 3 The ash B is finally burned up and discharged into the water seal conveyor water tank 5 as ash B with a small amount of combustible parts, where it is cooled and then taken out. Combustion gas generated in the furnace passes through an upper boiler 6 and is introduced into a flue 7. The boiler drum is number 8
It is indicated by. Almost the whole surface of the side wall 10 of the combustion furnace is made up of a large number of small bricks 11 at the same level in the lateral direction.
In the vertical direction, they are arranged in different steps or are stacked, but a part of it, that is, the part facing the in-furnace combustion zone, is made of SIC bricks 12A larger than the surrounding bricks 11 in the required number vertically and horizontally. It is constructed in a state in which brick connected bodies 12 arranged side by side are inserted. In the illustrated example, the in-furnace combustion zone is formed above the combustion grate 2 and above each portion of the drying grate 1 and the post-combustion grate 3. The bricks 11 in the portions not facing the internal combustion zone of the furnace are of the same quality and shape as those used as side wall bricks in the secondary chamber. As clearly shown in FIG. 6 and FIG. 7, each one of the SIC bricks 12A constituting the brick connection body 12
has a rectangular shape (for example, 500 mm x 50 mm x 12 mm) when viewed from the front, and has a stepped portion 13 at the center in the thickness direction, and the furnace outer side 12a is closer to the furnace inner side 12 than the hard part 13 of the bracket.
It has a similar shape smaller than b, and is formed so that each corner of the furnace outer part 12a and the furnace inner part 12b is cut out in a circular arc shape.
この場合炉内側部12bの切欠部14Bは炉外側部12
aの切欠部14Aより大き〈切欠いて形成される。叙上
のレンガ連結体12は、側壁10の外側を覆う炉体外板
15に連結される。In this case, the notch 14B of the inner furnace part 12b is
It is larger than the notch part 14A of a. The brick connection body 12 described above is connected to a furnace body outer plate 15 that covers the outside of the side wall 10.
すなわち第2図〜第5図に示されるように、多数のSI
Cレンガ12Aをその切欠部14同士を突合せて縦横に
並設した場合には、隣接する4個のSICレンガ12A
の各切欠部14により透孔16が形成される。この透孔
16は小軽部16Aと膨径部16Bとからなり、その4
・蚤部16Aにボルト17の軸部17Aが挿通される。
その際ボルト17の頭部17Bはワッシャ18を介して
段部19に受止められる。これに対し、前記外板15に
複数の支持材20が縦方向に固着される。なわち複数の
支持材2川ま、前記SICレンガ12Aの縦方向に延び
る継目ごとに対応するように等ピッチおきに設けられ、
これらの支持材20に多数の支持板21が格子状に配置
固定される。そしてその格子点部、すなわち4枚の支持
板21の端面間にナット22が配置され、このナット2
2が支持材2川こ固着される。すなわち複数のSICレ
ンガ12Aは4枚の支持板21で囲まれる複数空間に、
それぞれその炉外側部12aが鞍込まれ、そして前記ボ
ルト17の先端部がナット22に螺俄され、締付けられ
る。換言すれば、4枚の支持板21で囲まれる複数の空
間にSICレンガ12Aを順次その炉外側部12aを介
して鉄め込むと、複数のSICレンガ12Aがその炉内
側部12b機面を互に接した状態で縦横に並設される。
この状態で透孔16にワッシャ18を介してボルト17
を挿通させ、その先端部をナット22に螺鼓し、縦付け
るのである。なお膨蓬部16B内にはキャスタが装填さ
れる。このようにすれば相隣接する4個のSICレンガ
12Aがボルト頭部17Bとナット22とによって挟持
された状態で連結され、レンガ連結体12が構成される
。このようなしンガ連結体12では、特定のSICレン
ガ12Aのみの取替えを4本のボルト17を取外すこと
で容易に行なうことができる。なお、第1図〜第3図に
示す実施例では火格子の煩斜に沿って少数のレンガ11
を所定の形状に積み重ね、このレンガ11の上方に正面
視において矩形、状SICレンガ1 2Aを配置してい
るが、第8図に示すように、火格子の煩斜に合わせて下
部を整形したSICレンガ12Bを使用し、その上方に
矩形状のSICレンガ12Aを配置する構成であっても
よい。第2図のように、レンガ連結体12と外板15と
の間の空間周囲に囲板23が設けられ、その内部が空冷
室24とされる。That is, as shown in FIGS. 2 to 5, a large number of SI
When the C bricks 12A are arranged vertically and horizontally with their notches 14 butted against each other, four adjacent SIC bricks 12A
A through hole 16 is formed by each notch 14 . This through hole 16 consists of a small light portion 16A and an enlarged diameter portion 16B, and the four
- The shaft portion 17A of the bolt 17 is inserted into the collar portion 16A.
At this time, the head 17B of the bolt 17 is received by the stepped portion 19 via the washer 18. On the other hand, a plurality of supporting members 20 are fixed to the outer plate 15 in the vertical direction. That is, a plurality of supporting members are provided at equal pitches so as to correspond to each joint extending in the longitudinal direction of the SIC brick 12A,
A large number of support plates 21 are arranged and fixed to these support members 20 in a grid pattern. A nut 22 is arranged between the lattice points, that is, between the end faces of the four support plates 21.
2 is fixed to the supporting material 2. That is, the plurality of SIC bricks 12A are placed in a plurality of spaces surrounded by four support plates 21,
The outer side portions 12a of each furnace are inserted into the saddle, and the tips of the bolts 17 are screwed into the nuts 22 and tightened. In other words, when the SIC bricks 12A are sequentially iron-inserted into a plurality of spaces surrounded by four support plates 21 via their furnace outer parts 12a, the plurality of SIC bricks 12A are arranged so that their furnace inner parts 12b are interchanged. They are arranged vertically and horizontally in contact with the
In this state, insert the bolt 17 into the through hole 16 through the washer 18.
is inserted, and its tip is screwed into the nut 22 to attach it vertically. Incidentally, casters are loaded into the expanded portion 16B. In this way, the four adjacent SIC bricks 12A are connected while being held between the bolt head 17B and the nut 22, thereby forming the brick connected body 12. In such a brick connecting body 12, only a specific SIC brick 12A can be easily replaced by removing the four bolts 17. In addition, in the embodiment shown in FIGS. 1 to 3, a small number of bricks 11 are placed along the slope of the grate.
are stacked in a predetermined shape, and a rectangular-shaped SIC brick 12A is placed above the brick 11 when viewed from the front, but as shown in Fig. 8, the lower part is shaped to match the slope of the fire grate. The configuration may be such that the SIC brick 12B is used and the rectangular SIC brick 12A is arranged above it. As shown in FIG. 2, a surrounding board 23 is provided around the space between the brick connected body 12 and the outer panel 15, and the inside thereof is used as an air cooling room 24.
第2図から明らかなように、この空冷室24に送気管2
5及び排気管26が蓮通運設される。すなわち送気管2
5は、送風ファン27から炉内に通じる燃焼用空気供給
管28から分岐されて空冷室24の下部に至り、そして
その中間部にダンパ29が介在される。また排気管26
は空冷室24の上部から前記燃焼用空気供給管28の終
端部に至る。燃焼用空気供V給管28には、排気管26
及び送気管25の各接続部間にダンパ30が介在される
。以上によれば、炉運転中にダンパ29,30の開度を
調節することによって燃焼用空気の一部を空冷室24を
通してバイパスさせることができる。As is clear from FIG. 2, the air pipe 2 is connected to this air cooling chamber 24.
5 and an exhaust pipe 26 are installed. That is, air pipe 2
5 is branched from a combustion air supply pipe 28 leading from the blower fan 27 into the furnace to reach the lower part of the air cooling chamber 24, and a damper 29 is interposed in the middle thereof. Also, the exhaust pipe 26
extends from the upper part of the air cooling chamber 24 to the terminal end of the combustion air supply pipe 28. The combustion air supply V supply pipe 28 includes an exhaust pipe 26.
A damper 30 is interposed between each connection portion of the air supply pipe 25. According to the above, a part of the combustion air can be bypassed through the air cooling chamber 24 by adjusting the opening degrees of the dampers 29 and 30 during furnace operation.
バイパスせしめられた常温の燃焼用空気の一部は空冷室
24内においてレンガ連結体12を冷却し、それ自体は
昇温後燃焼用空気として炉内へ供給される。したがって
レンガ連結体12の酸化防止と廃棄物Aの燃焼効率の向
上とが同時に達成される。図示例においてレンガ連結体
12はSICレンガ12Aにより構成されるが、このS
ICレンガは熱伝導率が12.7Kcal/m町℃(1
000℃)であり、普通のシヤモツトレンガにおける1
.2Kcal/mhqC(100ぴ0)に比べ、実に1
2倍の高い熱伝導率を有している。A portion of the bypassed combustion air at room temperature cools the brick joint 12 in the air cooling chamber 24, and is itself supplied into the furnace as combustion air after being heated. Therefore, prevention of oxidation of the brick connected body 12 and improvement of the combustion efficiency of the waste material A are achieved at the same time. In the illustrated example, the brick connection body 12 is composed of SIC bricks 12A, but this S
The thermal conductivity of IC brick is 12.7 Kcal/m°C (1
000°C), and 1
.. Compared to 2Kcal/mhqC (100p0), it is actually 1
It has twice as high thermal conductivity.
そのため前記した燃焼用空気の一部利用による冷却効果
が有効に働き、炉内ガス温度が1000℃以上となって
もSICレンガ1 2A自身の温度を900qo以下に
保持し得る。このような運転状態を維持するための燃焼
用空気のバイパス量は、レンガ連結体12の冷却面1平
方メートル当り25州で′h〜30側め/hという小容
量のもので十分である。発明者は前記したバイパス量に
より約2年間、(1600餌時間)の連続運転を行なっ
た。Therefore, the cooling effect by partially utilizing the combustion air described above works effectively, and even if the gas temperature in the furnace exceeds 1000° C., the temperature of the SIC brick 12A itself can be maintained at 900 qo or less. To maintain such an operating condition, a small bypass amount of combustion air of 25 mm/h to 30 mm/h per square meter of the cooling surface of the connected brick body 12 is sufficient. The inventor conducted continuous operation for about 2 years (1600 feeding hours) using the bypass amount described above.
その結果、側壁の膨出事故は全くなく、またSICレン
ガを被断してその酸化進行状況を調査したが、酸化現象
は全く認められなかった。したがってレンガ連結体の耐
用年数は想定がつかず、10羊以上の耐用期間を保持し
ていると思われる。さらに炉内面に付着したクリンカー
(燃焼ガス中の灰が溶融し、レンガ面に付着固化するこ
とにより生成した成形物)が極めて薄く、しかもレンガ
との肌分かれも良好であった。同時に、普通炭素鋼で製
作された支持材、ステンレス鋼(SUS31私)で製作
された支持板及びボルトの熱による焼損状況も調査した
が、これらの金物も冷却されるために全然焼損がなく、
耐用年数も想定し得えない良好な結果が得られた。さら
にまた当初の築炉状況についても調査した。その結果、
レンガ連結体を構成するためにSICレンガを取付ける
ための所要時間が作業員3名で1の固/hとなり、従来
の葵炉効法に比較してその工期が豪〜寿となった上、し
ンガ乾燥費用も不要となった。しかも従来のような高度
かつ複雑な葵炉技術が不要で素手による作業も可能であ
ることがわかった。以上の説明から明らかなように、本
発明によれば、支持板で囲まれる複数の空間にレンガの
炉外側部を鉄込んで、炉内から4個のレンガの対向する
部分をボルトにより固定するので、築炉が容易でかつそ
の工期が短縮されるのみならず、特定のレンガの取替え
も炉内から4本のボルトを取外すことで容易に行なえ、
側壁の部分補修が特殊技術を用いることなく実施できる
ものであり、しかもボルト頭部はしンガの炉内側部のコ
ーナ部切欠き内に位置するため、炉の高温雰囲気に直接
に曝されることがない。さらに燃焼用空気の一部を空冷
室を通じてバイパスさせる場合は、側壁及びボルト等の
酸化焼損に伴なう不都合が完全に解消されるので、その
耐用期間が飛躍的に長くなり、たとえば10王間という
長期に亘る炉の連続運転が可能となる。As a result, there were no side wall bulging accidents, and when the SIC bricks were cut to investigate the progress of oxidation, no oxidation phenomenon was observed. Therefore, it is difficult to estimate the useful life of the connected brick body, and it is thought that it has a useful life of more than 10 years. Furthermore, the clinker (a molded product formed by melting the ash in the combustion gas and adhering to the brick surface) attached to the inner surface of the furnace was extremely thin and had good separation from the brick surface. At the same time, we also investigated the burnout caused by the heat of the support material made of ordinary carbon steel, the support plate and bolts made of stainless steel (SUS31I), but these hardware were also cooled, so there was no burnout at all.
Good results were obtained, with an unexpectedly long service life. Furthermore, we also investigated the initial construction status of the furnace. the result,
The time required to install the SIC bricks to form a brick connection was reduced to 1 hour by 3 workers, and the construction period was longer than the conventional Aoi Furnace method. Shinga drying costs are also no longer necessary. Moreover, it was found that the sophisticated and complicated Aoi Furnace technology used in the past was not required, and the work could be done with bare hands. As is clear from the above description, according to the present invention, the outside parts of the bricks are injected into the plurality of spaces surrounded by the support plates, and the opposing parts of the four bricks are fixed from inside the furnace with bolts. Therefore, not only is the furnace construction easy and the construction period shortened, but also specific bricks can be easily replaced by removing four bolts from inside the furnace.
Partial repair of the side wall can be carried out without using special techniques, and since the bolt head is located in the corner notch on the inside of the Shinga furnace, it is not directly exposed to the high temperature atmosphere of the furnace. There is no. Furthermore, when a part of the combustion air is bypassed through the air cooling chamber, the inconvenience caused by oxidation burnout of the side walls and bolts is completely eliminated, so the service life is dramatically extended. This enables continuous operation of the furnace over a long period of time.
第1図〜第8図は本発明の実施例を示したものであり、
第1図は焼却炉の概略縦断側面図、第2図は第1図にお
ける1−1断面矢視図に相当する拡大断面図、第3図は
第2図におけるD矢視図、第4図は第2図における拡大
したm−m断面矢視図、第5図は第4図におけるW失視
図、第6図はSICレンガ12Aの正面図、第7図は同
側面図、第8図は火格子の傾斜に合わせて下部を整形し
たSICレンガを用いた場合の説明図である。
2・・・・・・燃焼火格子、10・・・・・・側壁、1
1…・・・レンガ、12・・・・・・レンガ連結体、1
2A・…・・SICレンガ、13・・・・・・段部、1
4……切欠部、15・・・・・・炉体外板、16・・・
・・・透孔、17・・・・・・ボルト、17A・・…・
ボルト軸部、17B・・・・・・ボルト頭部、18……
ワッシャ、20……支持材、21……支持板、22・・
・・・・ナット、23・・・・・・圏板、24・・・・
・・空冷室、25・・・・・・送気管、26・・・・・
・排気管、28・・・・・・燃焼用空気供給管、29,
30・・・・・・ダンパ。
第1図第2図
第3図
第4図
第5図
第6図
第7図
第8図1 to 8 show embodiments of the present invention,
Fig. 1 is a schematic vertical side view of the incinerator, Fig. 2 is an enlarged sectional view corresponding to the 1-1 cross-sectional view taken in the direction of the arrow in Fig. 1, Fig. 3 is a view taken in the direction of the D arrow in Fig. 2, and Fig. 4 is an enlarged mm-m cross-sectional arrow view in FIG. 2, FIG. 5 is a view of W loss in FIG. 4, FIG. 6 is a front view of the SIC brick 12A, FIG. 7 is a side view of the same, and FIG. This is an explanatory diagram when using SIC bricks whose lower part has been shaped to match the slope of the fire grate. 2... Combustion grate, 10... Side wall, 1
1...Brick, 12...Brick connected body, 1
2A...SIC brick, 13...Stepped section, 1
4... Notch, 15... Furnace body outer plate, 16...
...Through hole, 17...Bolt, 17A...
Bolt shaft, 17B...Bolt head, 18...
Washer, 20...Support material, 21...Support plate, 22...
... Nut, 23 ... Circle board, 24 ...
...Air cooling room, 25... Air pipe, 26...
・Exhaust pipe, 28... Combustion air supply pipe, 29,
30...Damper. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8
Claims (1)
部を有しかつ該段部より炉外側部が炉内側部より小さい
相似形であるとともに該炉内側部のコーナ部が炉外側部
のコーナ部より大きく切欠いたレンガを、該レンガの炉
外側部を前記支持板で囲まれる複数の空間に嵌込んで縦
横に並設し、隣接するレンガの対応切欠部により形成さ
れる透孔に挿通しかつ前記支持板の格子点部に設けられ
たナツトに螺着したボルトの頭部と前記ナツトとにより
前記隣接するレンガ同士を前記コーナ部切欠きにより生
じた段部を介して挾持したことを特徴とする焼却炉側壁
構造。 2 焼却炉の側壁に沿って縦方向に複数の支持材を設け
、該支持材に多数の支持板を格子状に固定し、厚み方向
中央部に段部を有しかつ該段部より炉外側部が炉内側部
より小さい相似形であるとともに該炉内側部のコーナ部
が炉外側部のコーナ部より大きく切欠いたレンガを、該
レンガの炉外側部を前記支持板で囲まれる複数の空間に
嵌込んで縦横に並設し、隣接するレンガの対応切欠部に
より形成される透孔に挿通しかつ前記支持板の格子点部
で前記支持材に固定されたナツトに螺着したボルトの頭
部と前記ナツトとにより前記隣接するレンガ同士を前記
コーナ部切欠きにより生じた段部を介して挾持し、前記
支持材によって構成される空冷室を炉内に通じる燃焼用
空気供給管に送気管及び排気管を介して連通したことを
特徴とする焼却炉側壁構造。[Scope of Claims] 1. A large number of support plates are provided in a lattice shape, and have a stepped portion at the center in the thickness direction, and have a similar shape in which the outer side of the furnace is smaller than the inner side of the furnace than the stepped portion, and the inner side of the furnace is smaller than the inner side of the furnace. Bricks whose corner portions are cut out larger than the corner portions of the outer side of the furnace are placed side by side vertically and horizontally by fitting the outer side of the bricks into a plurality of spaces surrounded by the support plate, and the corresponding notches of adjacent bricks are placed side by side. The head of a bolt inserted into the through hole formed by the hole and screwed into a nut provided at the lattice point portion of the support plate and the nut connect the adjacent bricks to the step formed by the corner notch. An incinerator side wall structure characterized by being sandwiched between the parts. 2. A plurality of supporting members are provided in the vertical direction along the side wall of the incinerator, and a number of supporting plates are fixed to the supporting members in a lattice pattern, and a stepped portion is provided at the center in the thickness direction, and from the stepped portion to the outside of the furnace. A brick having a similar shape with a smaller part than the inside part and a corner part of the inside part being cut out larger than a corner part of the outside part of the furnace is placed in a plurality of spaces surrounded by the supporting plate with the outside part of the brick being cut out. Heads of bolts that are fitted and arranged vertically and horizontally, inserted into through holes formed by corresponding notches in adjacent bricks, and screwed into nuts fixed to the support material at the lattice points of the support plate. and the nut sandwich the adjacent bricks through the step formed by the corner notch, and connect the air cooling chamber formed by the supporting material to the combustion air supply pipe leading into the furnace. An incinerator side wall structure characterized by communication through an exhaust pipe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8176680A JPS609210B2 (en) | 1980-06-16 | 1980-06-16 | Incinerator side wall structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8176680A JPS609210B2 (en) | 1980-06-16 | 1980-06-16 | Incinerator side wall structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5710015A JPS5710015A (en) | 1982-01-19 |
JPS609210B2 true JPS609210B2 (en) | 1985-03-08 |
Family
ID=13755574
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8176680A Expired JPS609210B2 (en) | 1980-06-16 | 1980-06-16 | Incinerator side wall structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS609210B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61166508U (en) * | 1985-04-03 | 1986-10-16 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5878843U (en) * | 1981-11-19 | 1983-05-27 | ユ−ザツク電子工業株式会社 | automatic paper feeder |
JPS61115833U (en) * | 1984-12-26 | 1986-07-22 | ||
JPS63190723U (en) * | 1987-05-27 | 1988-12-08 | ||
JP2018066551A (en) * | 2016-10-22 | 2018-04-26 | 孝 前島 | Heat-resistant block set and assembly incinerator |
-
1980
- 1980-06-16 JP JP8176680A patent/JPS609210B2/en not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61166508U (en) * | 1985-04-03 | 1986-10-16 |
Also Published As
Publication number | Publication date |
---|---|
JPS5710015A (en) | 1982-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6817354B2 (en) | Wood burning furnace | |
US5926933A (en) | Method of lining an animal carcass incinerator | |
JPS609210B2 (en) | Incinerator side wall structure | |
JP2001201271A (en) | Exhaust gas treatment system of vertical blast furnace for copper | |
US6302038B1 (en) | Anti-erosion system of grate in stoker-type incinerator | |
JP3950349B2 (en) | Water-cooled wall structure of stoker-type incinerator | |
JP3247066B2 (en) | Freeboard temperature control method for fluidized bed incinerator. | |
JPS5822818A (en) | Structure of side wall and back surface of incinerator | |
CN1109848C (en) | Method and device for incineration of solid waste | |
JP3635139B2 (en) | Waste treatment furnace | |
RU2234639C2 (en) | Injection type modular burner with diaphragm | |
RU2218525C2 (en) | Chamber-type fire air-heater | |
JPH03260510A (en) | Refuse incinerator | |
KR102553915B1 (en) | water cooling type agitating step installment construction for stoker combustion furnace | |
KR200409442Y1 (en) | fireproof structure of combustion chamber of incinerator | |
JP2539568B2 (en) | Incinerator | |
NO165407B (en) | PROCEDURE FOR DIRECT REDUCTION OF IRON-OX SUSTAINABLE MATERIALS FOR IRON FUNGI IN TURNOVER OVEN. | |
JP2003004217A (en) | Discarded tire burning boiler | |
JPH0617738B2 (en) | Air supply device for dry distillation tower in waste incineration heat recovery facility | |
RU2127848C1 (en) | Set for thermal decontamination of medical waste | |
US3380409A (en) | Air-cooled wall construction for incinerators | |
CN115978559A (en) | Vertical composite cylinder type RTO incinerator | |
KR940004940Y1 (en) | Low temperature dry distillation incinerators | |
RU2267068C2 (en) | Heat generator | |
SU1392308A1 (en) | Furnace for burning up solid domestic waste |