JPS609139A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPS609139A
JPS609139A JP11583483A JP11583483A JPS609139A JP S609139 A JPS609139 A JP S609139A JP 11583483 A JP11583483 A JP 11583483A JP 11583483 A JP11583483 A JP 11583483A JP S609139 A JPS609139 A JP S609139A
Authority
JP
Japan
Prior art keywords
silicon
oxide film
substrate
film
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11583483A
Other languages
Japanese (ja)
Inventor
Katsutada Horiuchi
勝忠 堀内
Yoichi Tamaoki
玉置 洋一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11583483A priority Critical patent/JPS609139A/en
Publication of JPS609139A publication Critical patent/JPS609139A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/763Polycrystalline semiconductor regions

Abstract

PURPOSE:To enable to prevent generation of undesirable continuity between adjoining transistors without having a narrow channel effect by a method wherein a polycrystalline silicon thin film is brought into a low resistance state, and an electrode wherein a voltage can be applied from outside is formed in an element isolation region. CONSTITUTION:A silicon substrate 1 is oxidized by heat, a silicon oxide film 8 is formed on the surface, the part whereon an element isolation region will be formed is removed, and the surface of the substrate 1 is exposed. Boron is ion- implanted, an activating heat treatment is performed on the implanted ions, the silicon oxide film is removed, and a silicon nitride film 9 is coated on the whole surface. Subsequently, a silicon thin film 10 is selectively grown at the recessed part only of the substrate, phosphorus is diffused on the whole surface, and the above is brought into a sufficiently low resistance state. Then, the silicon thin film 10 is oxidized by heat, and a silicon oxide film 11 is formed. The silicon nitride film and the silicon oxide film are removed. Subsequently, a silicon thermal oxide film 4 is formed on the substrate 1, and a source diffusion layer and a drain diffusion layer are formed using a gate electrode 5 and another gate electrode as an ion-implantation mask.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体集積回路装置に係シ、特に狭チャネル効
果を有しない超微細MO8型電界効果トランジスタで構
成される半導体集積回路装置の素子分離技術に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a semiconductor integrated circuit device, and in particular to element isolation technology for a semiconductor integrated circuit device composed of ultra-fine MO8 type field effect transistors that do not have a narrow channel effect. Regarding.

〔発明の背景〕[Background of the invention]

従来のMO8型電界効果トランジスタで構成される半導
体集積回路装置(以降ICと略記する。)においては、
上記MO8型電界効果トランジスタ(以降単にトランジ
スタと略記する。)の微細化に伴い狭チャネル効果が生
ずることが知られている。上記現象はソース・ドレイン
方向と直角方向のチャネル幅の縮小化に伴い、トランジ
スタの閾電圧値、V?%、値が上昇する現象であシIC
設計上極めて厄介な問題である。上記現象はシリコン窒
16膜を用いた選択酸化法に基づ←LOCO8と称され
ている従来絶縁分離方式の限界によるものである。すな
わち、従来のLOOO8構造はソース・ドレイン方向と
垂直な方向に関し、チャネル領域で第1図に示すごとき
断面構造を有している。1はP導電型半導体基板、2は
フィルド酸化膜3と自己整合的に構成され、半導体基板
1よシ高不純物濃度を有するP1領域、4はゲート酸化
膜、5はゲート電極である。第1図においてチャネル幅
、すなわちフィルド酸化膜3間の間隔が狭くなるにした
がいP0領域がチャネル領域内で占める割合は増加する
。したがって狭チャネルトランジスタにおいては設計値
よりも電流は小さく、VT値はチャネル幅が狭まるなど
で上昇する欠点を有していた。
In a semiconductor integrated circuit device (hereinafter abbreviated as IC) composed of conventional MO8 type field effect transistors,
It is known that a narrow channel effect occurs as the MO8 field effect transistor (hereinafter simply referred to as a transistor) is miniaturized. The above phenomenon occurs as the channel width in the direction perpendicular to the source-drain direction decreases, resulting in the threshold voltage value of the transistor, V? %, the phenomenon that the value increases is IC
This is an extremely troublesome problem in terms of design. The above phenomenon is due to the limitations of the conventional insulation isolation method called LOCO8, which is based on a selective oxidation method using a silicon nitride 16 film. That is, the conventional LOOO8 structure has a cross-sectional structure in the channel region as shown in FIG. 1 in a direction perpendicular to the source/drain direction. Reference numeral 1 designates a P conductivity type semiconductor substrate, 2 a P1 region which is constructed in self-alignment with a filled oxide film 3 and has a higher impurity concentration than the semiconductor substrate 1, 4 a gate oxide film, and 5 a gate electrode. In FIG. 1, as the channel width, that is, the interval between filled oxide films 3 becomes narrower, the proportion of the P0 region in the channel region increases. Therefore, in a narrow channel transistor, the current is smaller than the designed value, and the VT value increases as the channel width becomes narrower.

第2図は他の公知技術を示す図であり、ICを構成する
各トランジスタは半導体基板l内に埋込まれた堆積酸化
膜3によシ互いに分離されている。
FIG. 2 shows another known technique, in which the transistors constituting the IC are separated from each other by a deposited oxide film 3 embedded in a semiconductor substrate l.

上記の埋込み酸化膜による素子分離技術においては前記
LOCo8構造における狭チャネル効果とは逆の特性を
有する現象が生ずる欠点がある。すなわち、ゲート電極
5にチャネルを形成する向きの電圧を印加した場合、チ
ャネル領域におけるゲート電位は埋込み酸化膜近傍で高
く、チャネル領域の中央部で低くなる事が解析的に知ら
れている。したがって、埋込み酸化膜による素子分離技
術においてはトランジスタのチャネル幅が狭まるに伴っ
てVT値が減少する欠点を有している。
The element isolation technique using the buried oxide film described above has a drawback in that a phenomenon having characteristics opposite to the narrow channel effect in the LOCo8 structure occurs. That is, it is analytically known that when a voltage is applied to the gate electrode 5 in the direction of forming a channel, the gate potential in the channel region is high near the buried oxide film and low at the center of the channel region. Therefore, element isolation technology using a buried oxide film has the disadvantage that the VT value decreases as the channel width of the transistor becomes narrower.

第3図は素子分離に関する他の公知技術を示す図である
。ゲート酸化膜4および層間絶縁膜7によシ外部から隔
離された電極7に接地電位、または負の電位を印加する
ことによυ電極7値丁の半導体表面1表面に反転層が形
成されるのを防止し、隣接するトランジスタ間の分離を
行わんとするものであυフィルドプレート法と称されて
いる。上記フィルドプレート法による素子分離法も超微
細トランジスタによシ構成されるI’Cにおいては致命
的な欠点を有している。すなわち、上記ICにおいては
素子分離領域も微細化されねばならないが、素子分離領
域の微細化に伴い、分離すべきトランジスタのドレイン
と隣接するトランジスタのノース間の間隔も短くなる。
FIG. 3 is a diagram showing another known technique regarding element isolation. By applying a ground potential or a negative potential to the electrode 7 isolated from the outside by the gate oxide film 4 and the interlayer insulating film 7, an inversion layer is formed on the semiconductor surface 1 of the υ electrode 7-level electrode. This method is called the υ filled plate method, which attempts to prevent this and isolate adjacent transistors. The device isolation method using the filled plate method described above also has a fatal drawback in I'Cs constructed using ultrafine transistors. That is, in the above IC, the element isolation region must also be miniaturized, but as the element isolation region is miniaturized, the distance between the drain of the transistor to be isolated and the north of the adjacent transistor also becomes shorter.

したがって電極6直下の半導体基板1表面に反転層が形
成されていなくとも上記ドレインへの電圧印加によシパ
ンチスルー(punch −through)まタハ雪
崩降服現象によシ隣接するトランジスタ間が導通する危
険がある。したがって上記フィルドプレート法は微細ト
ランジスタで構成されるICには不適である。フィルド
プレート法の他の欠点は半導体基板1表面に電極6に基
づく凹凸が生じることであシ、ゲート電極5の微細化加
工を阻害し、最悪の場合は電極配線の断線不良を生じさ
せる。
Therefore, even if an inversion layer is not formed on the surface of the semiconductor substrate 1 directly under the electrode 6, there is a risk of conduction between adjacent transistors due to punch-through or avalanche phenomenon when voltage is applied to the drain. There is. Therefore, the above-mentioned filled plate method is not suitable for ICs composed of fine transistors. Another drawback of the filled plate method is that unevenness occurs on the surface of the semiconductor substrate 1 due to the electrode 6, which impedes the miniaturization of the gate electrode 5 and, in the worst case, causes disconnection of the electrode wiring.

〔発明の目的〕[Purpose of the invention]

本発明の目的は上述した従来技術の欠点を解消し、狭チ
ャネル効果を有せず、かつ隣接するトランジスタ間の好
ましくない導通を阻止し得る半導体集積回路の素子分離
技術を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an element isolation technique for semiconductor integrated circuits that eliminates the above-mentioned drawbacks of the prior art, does not have a narrow channel effect, and can prevent undesirable conduction between adjacent transistors.

本発明の他の目的断線や微細加工の阻害の恐れのない平
坦な素子分離技術を提供することにある。
Another object of the present invention is to provide a flat device isolation technique that does not cause wire breakage or hinder microfabrication.

〔発明の概要〕[Summary of the invention]

本発明は第2図に示した埋込み絶縁膜による素子分離技
術の一変形である特開昭58−9333号に示された技
術に着目し、上記特許を超微細絶縁ゲート型電界効果ト
ランジスタにおける狭チャネル効果の解消の観点から改
善したものである。上記公開特許は第2図における埋込
み絶縁膜3を絶縁膜で外部から隔離された多結晶シリコ
ン薄膜で置換えた構造に関するものである。上記公開特
許は元来、バイポーラトランジスタで構成されるICの
素子分離に関するものであシ、上記多結晶シリコン薄膜
も1μm以上の深さを有する素子分離領域の形成によ9
半導体基板1内に残留されるひずみを緩和し、欠陥の発
生を阻止するために採用されたものであった。したがっ
て上記、多結晶シリコン薄膜には不純物拡散による低抵
抗化はまったく無意味なものであシ、意図的な不純物拡
散を行なわず、かつ外部から完全に隔離されて浮遊状態
に保たれていた。上記構成は第2図に示した埋込み絶縁
膜による素子分離技術の一変形であり、素子分離領域で
囲まれた超微細トランジスタはチャネル幅の減少に伴っ
てVT値も減少する狭チャネル特性を示す。
The present invention focuses on the technology disclosed in Japanese Patent Application Laid-Open No. 58-9333, which is a variation of the element isolation technology using a buried insulating film shown in FIG. This is an improvement from the perspective of eliminating channel effects. The above-mentioned published patent relates to a structure in which the buried insulating film 3 in FIG. 2 is replaced with a polycrystalline silicon thin film isolated from the outside by an insulating film. The above-mentioned published patent was originally related to element isolation of an IC composed of bipolar transistors.
This was adopted to alleviate the strain remaining in the semiconductor substrate 1 and to prevent the occurrence of defects. Therefore, it is completely meaningless to lower the resistance of the polycrystalline silicon thin film by diffusing impurities, and the polycrystalline silicon thin film is completely isolated from the outside and kept in a floating state without any intentional diffusion of impurities. The above configuration is a variation of the device isolation technology using a buried insulating film shown in Figure 2, and the ultrafine transistor surrounded by the device isolation region exhibits narrow channel characteristics in which the VT value decreases as the channel width decreases. .

本発明は従来解決されていなかった超微細絶縁ゲート型
電界効果トランジスタの狭チャネル効果を上述した多結
晶シリコン薄膜を有する埋込み絶縁膜方式による素子分
離技術の改良により解決するものである。すなわち、不
純物拡散、または高融点金属膜、あるいはそのシリサイ
ド膜による一部置換え等によシ上記多結晶シリコン薄膜
を低抵抗化し、外部よシミ圧を印加し得る電極を素子分
離領域内に構成する。上記領域はICが構成される半導
体基板内に全面的に網目状に配置されており、したがっ
て上記電極の少なくとも一箇所に接地電位、または負電
圧を印加すれば素子分離領域近傍の半導体表面電位をゲ
ート電位によらず低く制御することができる。上記の制
御によシチャネル幅が極めて狭いトランジスタのVT値
が設定値にくらべて低下する狭チャネル効果を抑止する
ことができる。
The present invention solves the conventionally unsolved narrow channel effect of ultrafine insulated gate field effect transistors by improving the element isolation technology using the buried insulating film method having a polycrystalline silicon thin film as described above. That is, the resistance of the polycrystalline silicon thin film is lowered by impurity diffusion or partial replacement with a high melting point metal film or a silicide film, and an electrode capable of applying stain pressure from the outside is formed in the element isolation region. . The above region is arranged in a mesh pattern over the entire surface of the semiconductor substrate on which the IC is constructed. Therefore, by applying a ground potential or a negative voltage to at least one part of the above electrode, the semiconductor surface potential near the element isolation region can be reduced. It can be controlled to be low regardless of the gate potential. The above control makes it possible to suppress the narrow channel effect in which the VT value of a transistor with an extremely narrow channel width decreases compared to a set value.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例によってさらに詳細に説明する。 Hereinafter, the present invention will be explained in more detail with reference to Examples.

説明の都合上、図面をもって説明するが要部が拡大して
示されているので注意を要する。
For convenience of explanation, the explanation will be made using drawings, but please note that important parts are shown enlarged.

実施例1 第4図乃至第5図は本発明による半導体集積回路装置の
一実施例を示した図で、P導電型比抵抗1Ω−副のシリ
コン基板1を熱酸化し、シリコン基板1表面に約0.1
μmのシリコン酸化膜を形成する。素子分離領域を形成
すべき部分の上記シリコン酸化膜を写真蝕刻法によシ除
去し、シリコン基板1表面を露出した後、反応性スパッ
タ法で露出された部分のシリコン基板1を約0.5μm
の深さで除去する。ついで5 X 10 ”cm−”の
ドーズ量、加速エネルギー30KVの条件でボロンこの
イオン打込みと打込みイオンの活性化熱処理をおこなっ
た。上記条件では上記のシリコン酸化膜直下にはイオン
打込みがされず、選択除去されたシリコン基板1の溝の
底部にだけイオン打込みがなされる。なお上記イオン打
込みと活性化熱処理は省略してもさしつかえない。次に
、上記シリコン酸化膜を除去し、20μmのシリコン熱
酸化膜8と化学気相反応によシ堆積した100μm厚の
シリコン窒化膜9を露出された半導体基板1全面に被着
させた。その後、特願昭54−4302号に記載された
方法にしたがってシリコン基板の凹部にのみシリコン薄
膜10を選択的に成長させた。しかる後、公知の熱酸法
によシ燐(P)をシリコン薄膜l。
Embodiment 1 FIGS. 4 and 5 are diagrams showing an embodiment of a semiconductor integrated circuit device according to the present invention, in which a P conductivity type resistivity 1Ω sub-silicon substrate 1 is thermally oxidized, and the surface of the silicon substrate 1 is Approximately 0.1
A silicon oxide film of μm thickness is formed. The silicon oxide film in the portion where the element isolation region is to be formed is removed by photolithography to expose the surface of the silicon substrate 1, and then the exposed portion of the silicon substrate 1 is coated with a thickness of approximately 0.5 μm by reactive sputtering.
Remove at a depth of . Next, boron ion implantation and activation heat treatment of the implanted ions were performed under the conditions of a dose of 5.times.10 "cm" and an acceleration energy of 30 KV. Under the above conditions, ions are not implanted directly under the silicon oxide film, but are implanted only into the bottom of the groove of the silicon substrate 1 that has been selectively removed. Note that the ion implantation and activation heat treatment described above may be omitted. Next, the silicon oxide film was removed, and a 20 μm silicon thermal oxide film 8 and a 100 μm thick silicon nitride film 9 deposited by chemical vapor phase reaction were deposited on the exposed entire surface of the semiconductor substrate 1. Thereafter, a silicon thin film 10 was selectively grown only in the recessed portions of the silicon substrate according to the method described in Japanese Patent Application No. 54-4302. Thereafter, phosphorus (P) was formed into a silicon thin film by a known thermal acid method.

内金面に拡散し、上記シリコン薄膜1oを十分に低抵抗
させた。ついで、上記シリコン薄膜1oを熱酸化し、約
0.3μmのシリコン酸化膜11を形成した。上記熱酸
化においてシリコン基板1の凸部にはシリコン窒化膜8
が存在しておシ酸化膜の成長は阻止される。しかる後、
露出しているシリコン窒化膜と上記20μmのシリコン
酸化膜を除去する。この後、再び20μmの清浄なシリ
コン熱酸化膜4をシリコン基板1上に形成し、公知のシ
リコンゲート技術により、ゲート電極5およびゲート−
極をイオン打込みのマスクとしたソース拡散層、とドレ
イン拡散層の形成をおこなった。
It diffused into the inner metal surface and made the silicon thin film 1o sufficiently low in resistance. Next, the silicon thin film 1o was thermally oxidized to form a silicon oxide film 11 with a thickness of about 0.3 μm. In the above thermal oxidation, a silicon nitride film 8 is formed on the convex portion of the silicon substrate 1.
is present, and the growth of the oxide film is inhibited. After that,
The exposed silicon nitride film and the 20 μm thick silicon oxide film are removed. Thereafter, a 20 μm clean silicon thermal oxide film 4 is again formed on the silicon substrate 1, and gate electrodes 5 and gate electrodes are formed using known silicon gate technology.
A source diffusion layer and a drain diffusion layer were formed using the pole as a mask for ion implantation.

第5図はソース・ドレイン方向と直角方向におけるチャ
ネル領域の断面図であり、ソース、およびドレイン拡散
層は図示されていない。ソース・ドレイン拡散層の形成
の後、公知技術にしたがって保護絶縁膜の形成とソース
拡散層、ドレイン拡散層、ゲート電極5、および低抵抗
シリコン薄膜10へのコンタクト孔の形成をおこなう。
FIG. 5 is a cross-sectional view of the channel region in a direction perpendicular to the source/drain direction, and the source and drain diffusion layers are not shown. After the formation of the source/drain diffusion layer, a protective insulating film is formed and contact holes to the source diffusion layer, drain diffusion layer, gate electrode 5, and low resistance silicon thin film 10 are formed according to known techniques.

上記コンタクト孔の形成においてシリコン薄膜は十分に
低抵抗であり、かつ半導体集積回路装置内全面にわたっ
て網目状に配置されているので半導体集積回路内の1箇
所、好ましくは数箇所にコンタクト孔が形成されれば良
い。コンタクト孔の形成の後、所望の回路構成に従って
アルミニウムによる配線を施して半導体集積回路装置を
製造した。上記配線工程においてシリコン薄膜10には
半導体基板1に対して負または零電位が印加されるごと
く構成した。
In forming the contact hole, the silicon thin film has a sufficiently low resistance and is arranged in a mesh pattern over the entire surface of the semiconductor integrated circuit device, so the contact hole can be formed at one location, preferably several locations within the semiconductor integrated circuit. That's fine. After forming the contact holes, aluminum wiring was provided according to the desired circuit configuration to manufacture a semiconductor integrated circuit device. In the wiring process described above, the silicon thin film 10 is configured so that a negative or zero potential is applied to the semiconductor substrate 1.

上記の製造工程を経て製造された半導体集積回路装置に
おいて、チャネル幅0.5μIn、チャネル長1μmの
超微細トランジスタのVt値はシリコン薄膜10へ電圧
が印加されない浮遊状態においては−0,2■と設計値
よシも−0,3V低い狭チャネル効果を示していたが、
シリコン薄膜10へ一2■なる電圧を与えるごとく構成
した場合Vt値は−1−0,I Vと設計値とまつ/ζ
く一致させることができた。シリコン薄膜10への印加
電圧が一2■なる条件の時ゲート幅1.0μm、のトラ
ンジスタにおけるVT値はシリコン薄膜10への電圧印
加がない場合に比べて+〇、IV上昇したにすき′ず+
0.2■となった。上記の結果はチャネル幅が0.5μ
mの超微細トランジスタの狭チャネル効果によるVT値
変動幅0.3vが0.IVと3倍の改善を示したことを
意味する。
In the semiconductor integrated circuit device manufactured through the above manufacturing process, the Vt value of the ultrafine transistor with a channel width of 0.5 μIn and a channel length of 1 μm is -0.2■ in a floating state where no voltage is applied to the silicon thin film 10. The design value also showed a narrow channel effect that was -0.3V lower.
When configured to apply a voltage of -2 to the silicon thin film 10, the Vt value is -1-0, I V and the design value and M/ζ.
I was able to get a good match. When the voltage applied to the silicon thin film 10 is 12cm, the VT value of a transistor with a gate width of 1.0 μm increases by +〇 IV compared to the case where no voltage is applied to the silicon thin film 10. +
It became 0.2 ■. The above result shows that the channel width is 0.5μ
The VT value variation width of 0.3V due to the narrow channel effect of the ultrafine transistor of m is 0.3V. This means that it showed an improvement of 3 times compared to IV.

本実施例においてはシリコン薄膜10を通常の熱拡散に
より低抵抗化した例を示したが、上記の低抵抗化は不純
物拡散による必要は彦し、シリコン薄膜10上へのシリ
サイド層形成、またはシリコン薄膜10のかわシに高融
点金属膜を用いる等によって実行してもさしつかえない
In this embodiment, an example is shown in which the resistance of the silicon thin film 10 is lowered by normal thermal diffusion, but the above-mentioned resistance reduction does not need to be achieved by impurity diffusion, and a silicide layer is formed on the silicon thin film 10 or silicon It may also be carried out by using a high melting point metal film for the edge of the thin film 10.

本実施例においては説明の都合上、P導電型の半導体基
板1を用いるnチャネル超微細絶縁ゲート型電界効果ト
ランジスタで構成される半導体集積回路装置について示
したがN導電型の半導体基板を用いるpチャネル超微細
絶縁ゲート型電界効果トランジスタで構成される半導体
集積回路装置へも本発明が適用できることは明らかであ
る。
In this embodiment, for convenience of explanation, a semiconductor integrated circuit device constituted by an n-channel ultra-fine insulated gate field effect transistor using a P-conductivity type semiconductor substrate 1 is shown. It is clear that the present invention can also be applied to a semiconductor integrated circuit device configured with an ultra-fine channel insulated gate field effect transistor.

〔発明の効果〕〔Effect of the invention〕

−本発明によれば半導体基板内に埋込まれた電極により
素子分離領域近傍の半導体基板表面の電位を所望によシ
制御できるのでチャネル幅の減少と共に閾電圧値が急激
に減少する狭チャネル効果を補正し、チャネル幅にtl
とんど依存しない超微細絶縁ゲート型電界効界トランジ
スタで半導体集積回路装置を構成することができる。本
発明は半導体基板内に埋込まれた素子分離領域の改善に
関するものであシチャネル幅の減少と共に閾電圧値が増
加する狭チャネル効果とは本質的に無関係である。また
本発明は平坦な素子分離技術に属するものであシ、配線
の断線や微細加工の阻害の恐れも存在しない。
- According to the present invention, the potential on the surface of the semiconductor substrate in the vicinity of the element isolation region can be controlled as desired by the electrode embedded in the semiconductor substrate, resulting in a narrow channel effect in which the threshold voltage value rapidly decreases as the channel width decreases. tl to the channel width.
It is possible to construct a semiconductor integrated circuit device using ultra-fine insulated gate field effect transistors that do not depend on each other. The present invention relates to improvements in device isolation regions buried within a semiconductor substrate and is essentially independent of the narrow channel effect in which the threshold voltage value increases as the channel width decreases. Furthermore, since the present invention belongs to flat element isolation technology, there is no fear of disconnection of wiring or interference with fine processing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図は従来の絶縁ゲート型電界効果トラン
ジスタにおけるソース・ドレイン方向と直角方向のチャ
ネル領域における断面図、第4図、第5図は本発明の実
施例を示す同上の断面図であ■ 1 図 第 Z 口 第 3 図 第 d 図
1 to 3 are cross-sectional views of a channel region in a direction perpendicular to the source/drain direction of a conventional insulated gate field effect transistor, and FIGS. 4 and 5 are cross-sectional views of the same as the above showing an embodiment of the present invention. 1 Figure Z Port 3 Figure d

Claims (1)

【特許請求の範囲】[Claims] 1、半導体集積回路装置を構成する絶縁ゲート型電界効
果トランジスタを互いに絶縁分離する半導体基板内の領
域が絶縁膜と、上記絶縁膜によシ外部から隔離された半
導体、または導体によシ構成された半導体集積回路装置
において、上記半導体または導体の上記絶縁分離領域に
隣接する部分が少なくとも低抵抗化され、かつ上記半導
体、または導体に上記絶縁ゲート型電界効果トランジス
タの導通を抑止する向きの電圧を印加することを特徴と
する半導体集積回路装置。
1. A region in a semiconductor substrate that insulates and separates insulated gate field effect transistors constituting a semiconductor integrated circuit device from each other is composed of an insulating film and a semiconductor or conductor isolated from the outside by the insulating film. In the semiconductor integrated circuit device, at least a portion of the semiconductor or conductor adjacent to the insulating isolation region has a low resistance, and a voltage that inhibits conduction of the insulated gate field effect transistor is applied to the semiconductor or conductor. A semiconductor integrated circuit device characterized in that a voltage is applied.
JP11583483A 1983-06-29 1983-06-29 Semiconductor integrated circuit device Pending JPS609139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11583483A JPS609139A (en) 1983-06-29 1983-06-29 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11583483A JPS609139A (en) 1983-06-29 1983-06-29 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS609139A true JPS609139A (en) 1985-01-18

Family

ID=14672269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11583483A Pending JPS609139A (en) 1983-06-29 1983-06-29 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS609139A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980060538A (en) * 1996-12-31 1998-10-07 김영환 Manufacturing method of semiconductor device
US5969393A (en) * 1995-09-14 1999-10-19 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacture of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5969393A (en) * 1995-09-14 1999-10-19 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacture of the same
KR19980060538A (en) * 1996-12-31 1998-10-07 김영환 Manufacturing method of semiconductor device

Similar Documents

Publication Publication Date Title
JP3844535B2 (en) Power MOSFET edge termination method and structure
US7408234B2 (en) Semiconductor device and method for manufacturing the same
SE458243B (en) PROCEDURE MAKES THE MANUFACTURE OF A SEMICONDUCTOR DEVICE WITH A SEMICONDUCTOR BODY OF SILICONE
US6821858B2 (en) Semiconductor devices and methods for manufacturing the same
JP3293871B2 (en) High voltage semiconductor device
JPH0586663B2 (en)
US20030155613A1 (en) Semiconductor device and method of manufacturing the same
US5786265A (en) Methods of forming integrated semiconductor devices having improved channel-stop regions therein, and devices formed thereby
US5238857A (en) Method of fabricating a metal-oxide-semiconductor device having a semiconductor on insulator (SOI) structure
US4517731A (en) Double polysilicon process for fabricating CMOS integrated circuits
JP2729422B2 (en) Semiconductor device
JPS609139A (en) Semiconductor integrated circuit device
JPH02178965A (en) Insulated isolation type field-effect semiconductor device
JPH10335660A (en) Semiconductor device and manufacture thereof
JPS6251216A (en) Manufacture of semiconductor device
KR20040081048A (en) Semiconductor device and manufacturing method thereof
JPH10163338A (en) Semiconductor device and its manufacturing method
JP2595058B2 (en) Manufacturing method of nonvolatile semiconductor memory device
JPS60170251A (en) Manufacture of semiconductor device
JPS63227059A (en) Semiconductor device and manufacture thereof
JPH10256534A (en) Semiconductor device with dmos structure and its manufacture
JP2508068B2 (en) Semiconductor device
JPH09307102A (en) Semiconductor device
JP2880885B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JPH0244734A (en) Manufacture of mis transistor