JPS6090895A - Growing method of compound semiconductor single crystal having volatility - Google Patents

Growing method of compound semiconductor single crystal having volatility

Info

Publication number
JPS6090895A
JPS6090895A JP19533883A JP19533883A JPS6090895A JP S6090895 A JPS6090895 A JP S6090895A JP 19533883 A JP19533883 A JP 19533883A JP 19533883 A JP19533883 A JP 19533883A JP S6090895 A JPS6090895 A JP S6090895A
Authority
JP
Japan
Prior art keywords
melt
layer
single crystal
crucible
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19533883A
Other languages
Japanese (ja)
Inventor
Shoichi Ozawa
小沢 章一
Takashi Kijima
木島 孝
Katsumi Azuma
我妻 勝美
Yuzo Kashiyanagi
柏柳 雄三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP19533883A priority Critical patent/JPS6090895A/en
Publication of JPS6090895A publication Critical patent/JPS6090895A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To grow a uniform and high-quality single crystal by covering the upper layer of the melt with a liquid capsuling material layer, and incorporating a specific melt floating layer into the lower layer in pulling up a III-V group compd. semiconductor single crystal from the melt in a crucible and drying. CONSTITUTION:The surface of a GaAs melt layer 23 in a quartz crucible 21 is covered with a liquid capsuling material layer (B2O3)22, and a melt floating material layer (Bi2O3)24 which does not react with the melt 23 and whose specific gravity and specific heat are higher than those of the melt 23 is placed under the layer 22. In addition, a film 25 of the melt floating material is formed on the inner surface of the crucible 21 contacting with the melt 24. Under said conditions, a seed crystal 29 supported by a lifting shaft 28 is passed through the liquid capsuling material layer 22, brought into contact with the melt layer 23, and lifted up while rotating to gradually grow a GaAs single crystal 30. The change of thermal conditions due to the decrease in the amt. of the melt during the growth of the single crystal is prevented by the liquid capsuling material layer 22, and the optimum conditions are maintained. The intrusion of impurities from the crucible 21 is prevented by the melt floating material layers 24 and 25, and the high-quality single crystal 30 can be obtained.

Description

【発明の詳細な説明】 本発明は揮発性を有する砒化ガリウム(GaAS)、燐
化インジウム(TnP)の様な■−v族化合物半導体単
結晶をその融液から引き上げて育成する方法に関し、詳
しくは前記単結晶育成においてルツボ中の該単結晶原料
融液層を液体カブヒル材と溶融浮揚材で覆うこ′とによ
りその熱的環境を改善すると共にルツボからの汚染を防
止した従来より行なわれている融液カプセル結晶引き上
げ法(Liquid Encapsulation C
zochralski・・・・・・略してLEC法)は
第1図に示すような装置を用いて、■−v族化合物半導
体単結晶原料の粒状物を石英ルツボ1の底部に充填し、
その上にカプセル材である酸化硼素([3203>を載
せ両者を加熱溶融して融液層2の上に液体カプセル材層
3を形成させて融液層2を外部の雰囲気から遮断して、
その表面からの元素の揮発を防止しながら、種子結晶4
を付した引き上げ軸5を回転して該融液層2より単結晶
6を引き上げて育成している。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for growing a volatile compound semiconductor single crystal of a group ■-V compound such as gallium arsenide (GaAS) or indium phosphide (TnP) by pulling it out of its melt. Conventionally, during the single crystal growth, the single crystal raw material melt layer in the crucible is covered with a liquid Kabhill material and a melt flotation material to improve the thermal environment and prevent contamination from the crucible. Liquid Encapsulation C
zochralski (abbreviated LEC method) uses an apparatus as shown in FIG.
Boron oxide ([3203>), which is an encapsulant, is placed on top of it, heated and melted to form a liquid encapsulant layer 3 on the melt layer 2, and isolate the melt layer 2 from the outside atmosphere.
Seed crystal 4 while preventing volatilization of elements from its surface.
The single crystal 6 is grown by being pulled up from the melt layer 2 by rotating a pulling shaft 5 marked with .

7はカーボンサセプター、8は高周波加熱用コイル、9
はルツボサセプター、10は内部観察用窓で、この高圧
容器11内には例えば単結晶原料として砒化ガリウムを
用いる場合には砒素の解離を抑制するためにアルゴン等
の不活性ガス12が5気圧程度で封入されている。
7 is a carbon susceptor, 8 is a high frequency heating coil, 9
10 is a crucible susceptor, and 10 is an internal observation window. In this high-pressure container 11, for example, when gallium arsenide is used as a single crystal raw material, an inert gas 12 such as argon is kept at about 5 atm to suppress dissociation of arsenic. It is enclosed in.

このような従来法では単結晶原料はその溶融前後におい
て直接石英ルツボ内壁に接触するために常にそれからの
汚染を受け融液中にシリコンが導入される。
In such conventional methods, the single crystal raw material comes into direct contact with the inner wall of the quartz crucible before and after melting, and thus is always contaminated by the inner wall of the quartz crucible, thereby introducing silicon into the melt.

又、このような従来法により口径の大きな単結晶育成を
行なう場合、育成が堺むに従って融液量は減少し、結晶
と融液の界面は次第に下がってゆきその熱的環境は大き
く変化する。したがって高品質で均一口径の結晶を育成
するための最適条件は大きくくずれ、又融液量の減少に
伴ないルツボ底部の形状〈椀形)の影響が表われ重量測
定法による結晶径計算、制御が困難となる。
Furthermore, when growing a large-diameter single crystal using such a conventional method, as the growth speeds up, the amount of melt decreases, the interface between the crystal and the melt gradually lowers, and the thermal environment changes significantly. Therefore, the optimal conditions for growing high-quality, uniform-diameter crystals are significantly disrupted, and as the amount of melt decreases, the shape of the bottom of the crucible (bowl-shaped) appears to be affected, and crystal diameter calculation and control using gravimetric methods becomes difficult.

本発明はこのような従来の■−v族化合物半導体単結晶
育成法における欠点を排除すべくなされたものであり、
該単結晶をその融液から引き上げて育成するに際し、単
結晶育成炉9ルツボ中の融液層の表面を液体カプセル材
層で覆うと共に、その下層に該融液と非反応性が比重1
、比熱ともにそれより大なる溶融浮揚材層を、収容し、
かつ該融液層と接するルツボ内側面を該溶融浮揚材で被
覆するか、又は該育成炉のルツボ中に所定の間隔を保っ
て窒化硼素(PvrolytiCBoror+ N1t
ride)製内筒を挿入設置し、その中に融液層及びそ
の上層に液体カプセル材層を収容すると共に、その下層
に該窒化硼素製円筒下部の内外部を埋めるように該溶融
浮揚材層を収容して、その熱的環境を改善すると同時に
ルツボからの汚染を防止するようにした化合物半導体単
結晶育成方法である。
The present invention has been made in order to eliminate the drawbacks of the conventional method for growing single crystals of group ■-v compound semiconductors.
When the single crystal is pulled up from the melt and grown, the surface of the melt layer in the single crystal growth furnace 9 crucible is covered with a liquid encapsulant layer, and the layer below is made of a non-reactive material with a specific gravity of 1.
, accommodates a layer of molten flotation material with a greater specific heat,
The inner surface of the crucible in contact with the melt layer is coated with the melt flotation material, or boron nitride (PvrolytiCBoror+N1t) is coated at a predetermined interval in the crucible of the growth furnace.
An inner cylinder made of boron nitride is inserted and installed, and a melt layer and a liquid encapsulant layer are accommodated therein, and a layer of molten flotation material is placed in the lower layer so as to fill the inside and outside of the lower part of the cylinder made of boron nitride. This is a compound semiconductor single crystal growing method that improves the thermal environment of the crucible and prevents contamination from the crucible.

融液よりも比重、比熱共に大なる溶融浮揚材層をルツボ
内の下層に収容して熱的縁Ili層を形成し、この上に
融液層を浮/vだ状態でイ^持してその上層を液体カプ
セル材層で覆うことにより、単結晶育成中の融液量の減
少に伴なう一熱的環境の変化を防いで育成の最適条件を
維持することができ、全体的に均一な特性を有する高品
質の単結晶を育成することができる。また融液の接する
ルツボ内側面をも溶融浮揚材被膜で被覆するか、又はル
ツボ中に窒化硼素製円筒を挿入設置することにより、融
液とルツボ内側面との接触を完全に遮断するのでルツボ
からの不純物の混入により融液の汚染を防止することが
できる。 、 以下図面に基づいて砒化ガリウム単結晶を育成する場合
の実施例により本発明を説明する。
A layer of molten flotation material, which has a larger specific gravity and specific heat than the melt, is accommodated in the lower layer of the crucible to form a thermal edge Ili layer, and the melt layer is held in a floating state on top of this layer. By covering the upper layer with a liquid encapsulant layer, it is possible to prevent changes in the thermal environment caused by a decrease in the amount of melt during single crystal growth, and maintain optimal conditions for growth, resulting in uniform overall growth. It is possible to grow high-quality single crystals with unique properties. In addition, by coating the inner surface of the crucible that is in contact with the melt with a molten flotation material coating, or by inserting and installing a boron nitride cylinder into the crucible, contact between the melt and the inner surface of the crucible can be completely blocked. It is possible to prevent contamination of the melt due to contamination of impurities from. The present invention will be described below with reference to the drawings and an example in which a gallium arsenide single crystal is grown.

第2図は単結晶育成炉の部分断面図を示すものである。FIG. 2 shows a partial sectional view of the single crystal growth furnace.

この炉において、まず各原料を装填して石英ルツボ21
中の液体カプセル材層(酸化硼素(8203) ) 2
2、砒化ガリウム融液層23及び溶融浮揚材層(酸化ビ
スマス(Bi z Og > )24を図示のような所
定の状態に保持し、かつ融液層23と接するルツボ内側
面に溶融浮揚材被膜25を形成させるのであるが、これ
には各種の方法が考えられる。その例を第3図によって
示すと、砒化ガリウム破砕物23′をルツボ21の形状
に整合するようにルツボ型に成型した浮揚材24′ 中
に充填し、これに板状に成型したカプセル材22′の蓋
をした後、このものをルツボ21に装填し炉内を真空に
引きながらカーボンヒーター26によって加熱し、内容
物を溶融する。前記真空引きは内容物の水分を取り除く
効果をもつ。約460℃に至ってカプセル材22′ は
溶融して液体カプセル材層22を形成し、砒化ガリウム
破砕物23′ の表面を覆うようになる。
In this furnace, each raw material is first loaded into a quartz crucible 21.
Liquid encapsulant layer inside (boron oxide (8203)) 2
2. Hold the gallium arsenide melt layer 23 and the molten buoyant material layer (bismuth oxide (Biz Og > ) 24 in a predetermined state as shown in the figure, and apply a molten buoyant material coating to the inner surface of the crucible in contact with the melt layer 23. Various methods can be considered for this purpose. An example of this is shown in FIG. After filling the capsule material 24' with a lid of the capsule material 22' formed into a plate shape, this material is loaded into the crucible 21 and heated by the carbon heater 26 while the furnace is evacuated to expel the contents. The vacuuming has the effect of removing moisture from the contents.When the temperature reaches approximately 460°C, the encapsulant 22' melts to form a liquid encapsulant layer 22, which covers the surface of the crushed gallium arsenide 23'. become.

その後炉内を不活性ガスで満たして砒化ガリウム破砕物
23′からの砒素の解−1を防ぐJ:うにする。
Thereafter, the inside of the furnace is filled with an inert gas to prevent the decomposition of arsenic from the crushed gallium arsenide 23'.

約820℃に至って浮揚材24′が溶融し始め、ルツボ
内側面を濡らしてそれに被膜25を形成しなからルツボ
21の底部に沿って溶融浮揚初層24となる。
At approximately 820 DEG C., the flotation material 24' begins to melt, wetting the inner surface of the crucible and forming a coating 25 thereon, forming an initial molten flotation layer 24 along the bottom of the crucible 21.

溶融浮揚材はその粘性が大きいのでルツボ内側面に形成
された前記溶融浮揚材被覆25は長時間にわたってその
状態を雑持してルツボ内壁と融液層23の接触を遮断す
る。ついで約1240℃に至って砒化ガリウム破砕物2
3′ は溶融し、融液層23を形成する。この結果、液
体カプセル材層(8205)22の比重が1.52 (
1000℃)、砒化ガリウム融液層23の比重がs:r
l(1240℃)1、溶融浮揚材層24の比重が8.4
 (1000℃)の関係からして、図に示すように砒化
ガリウム融液層23はその上1;を液体カプセル材層2
2と溶融浮揚材層24によって覆われ、しかもその側面
を溶融浮揚材被膜25によって囲まれて全体としてそれ
らにより包み込まれた状態に保持される。ついで観察用
窓27から児ながら、引き上げ軸28に支持された種子
結晶29を液体hブセル材層22を通して融液層23に
接触してなじませた後、毎分3〜20回転で回転させな
がら毎時1〜100m+の速度で上方に引上げ、砒化ガ
リウム単結晶30を徐々に育成する。31はカーボンサ
セプター、32はサセプターペース、33は高圧容器で
ある。このようにして単結晶30の育成が進むに従って
融液層23の聞は減少してゆ(が、融液層23(定圧比
熱11.0cal/deg mol )より熱容量の大
きい液体カプセル材層22(定圧比熱15.0 cal
/deg mol 、)と溶融浮揚材層24(定圧比熱
27.1 cal/deg mol >ににり上下を覆
われているのでその熱的環境の変化は少なく、結晶育成
の条件がくずれることはない。
Since the molten buoyant material has a high viscosity, the molten buoyant material coating 25 formed on the inner surface of the crucible remains in that state for a long time, blocking contact between the inner wall of the crucible and the melt layer 23. Then, when the temperature reaches about 1240°C, crushed gallium arsenide 2
3' is melted to form a melt layer 23. As a result, the specific gravity of the liquid encapsulant layer (8205) 22 is 1.52 (
1000°C), and the specific gravity of the gallium arsenide melt layer 23 is s:r
l (1240°C) 1, the specific gravity of the molten flotation material layer 24 is 8.4
(1000°C), as shown in the figure, the gallium arsenide melt layer 23 is formed on the liquid encapsulant layer 1;
2 and a molten flotation material layer 24, and its sides are surrounded by a molten flotation material coating 25, so that the entire body is held in a state of being enveloped by them. Next, while looking through the observation window 27, the seed crystal 29 supported by the pulling shaft 28 is brought into contact with the melt layer 23 through the liquid H-bucel material layer 22 to blend it, and then the seed crystal 29 is brought into contact with the melt layer 23 while rotating at 3 to 20 revolutions per minute. The gallium arsenide single crystal 30 is gradually grown by pulling upward at a speed of 1 to 100 m+ per hour. 31 is a carbon susceptor, 32 is a susceptor paste, and 33 is a high pressure vessel. In this way, as the growth of the single crystal 30 progresses, the length of the melt layer 23 decreases. Constant pressure specific heat 15.0 cal
/deg mol,) and the molten flotation material layer 24 (constant pressure specific heat 27.1 cal/deg mol) Since the top and bottom are covered with garlic, there is little change in the thermal environment, and the conditions for crystal growth are not disrupted. .

特に熱容量の大きい溶融浮揚材層24の酸化ビスマスは
砒化ガリウムとは反応せずそれ自身安定であって、13
00℃にても蒸気圧は数am H(l以下であり、融液
層23の熱的環境を保持するための緩衝材の役目を果し
ており、これにより融液層23の温度勾配も緩和されて
いる。又、ルツボ内側面は溶融浮揚材被膜25により被
覆され、融液層23との接触が遮断されるので、ルツボ
21からのシリカの混入により融11123の汚染が防
止できる。これに対し従来法では融液量の減少につれて
サセプターベース32からの熱伝導による熱の逃げが大
きく融液層の熱的環境が変化し、結晶育成の条件が大き
くくずれて引き上シた単結晶の尻部分の特性が不均一と
なるが、本発明では前記したように結晶育成の条件のく
ずれがないので融液層23がなくなるまで高品質で均一
な特性を有する砒化ガリウム単結晶30が得られる。ま
た従来法では熱的環境の変化の他に融液量の減少に伴な
うルツボ底部の形状(逆椀形)の変化が結晶の形状制御
に悪影響を及ぼしていたが、本発明では融液がなくなる
二にで同筒状を保ち、融液又は砒化ガリウム単結晶の重
量変化率による直径自動制御が容易となる。
In particular, the bismuth oxide of the molten flotation material layer 24, which has a large heat capacity, does not react with gallium arsenide and is itself stable.
Even at 00°C, the vapor pressure is less than several amH (l), and it serves as a buffer material to maintain the thermal environment of the melt layer 23, thereby relaxing the temperature gradient of the melt layer 23. In addition, since the inner surface of the crucible is covered with the molten flotation material coating 25 and contact with the melt layer 23 is cut off, contamination of the melt 11123 due to the mixing of silica from the crucible 21 can be prevented. In the conventional method, as the amount of melt decreases, heat escapes through heat conduction from the susceptor base 32, and the thermal environment of the melt layer changes, and the conditions for crystal growth deteriorate significantly, resulting in the bottom part of the single crystal being pulled up. However, in the present invention, as described above, since the conditions for crystal growth are not changed, a gallium arsenide single crystal 30 having high quality and uniform properties can be obtained until the melt layer 23 disappears. In the conventional method, in addition to changes in the thermal environment, changes in the shape of the crucible bottom (inverted bowl shape) due to a decrease in the amount of melt had an adverse effect on crystal shape control, but in the present invention, the melt The diameter is maintained in the same cylindrical shape by the two ends, and the diameter can be easily controlled automatically by the weight change rate of the melt or the gallium arsenide single crystal.

次に本発明の他の実施例について述べる。Next, other embodiments of the present invention will be described.

第4図は外部の高圧容器を省略した中結晶育成炉の部分
断面図を示すもので、石英ルツボ41中にはその内壁面
及び底面に対して所定の間隔を保って窒化硼素製円筒4
2が挿入設冒されており、該円筒42はカーボン断熱1
,143に支1.1.\れたカーボンプレート44に止
め具45で固定されている。この巾に各原料を装填して
加熱溶融して液体カプセル材層(Bz 03 ) 46
、砒化ガリウム融液層47、溶融浮揚材層(Bi z 
Og >48を図示のような状態に保持するのであるが
、これは例えばまず所定最の浮揚材ついで多結晶砒化ガ
リウム、最後に円板状に成形したカプセル材の順序で装
填し、前記実施例におけるように炉内を真空に引きなが
らカーボンヒーター49により加熱し溶融させる。なお
、多結晶砒化ガリウムはガリウムと砒素を装填して直接
合成によることもできる。内容物は前記実施例における
と同様にまずカプセル材が溶融して液体カプセル材層4
6を形成して多結晶砒化ガリウムを覆い、ついで浮揚材
が溶融してルツボ41の底部及び窒化硼素製円筒42下
部の内外部を埋めて溶融浮揚材層48となり、最後に中
間の多結晶砒化ガリウムが溶融し、融液層47を形成す
る。この結果、図に示すように砒化ガリウム融液I47
はその上下を液体カプセル材層46と溶融浮揚材層48
によって覆われ、その側面は窒化硼素製円筒42の内側
面に接した状態に保持される。ついで前記実施例と同様
に引き上げ軸50に支持された種子結晶51を液体カプ
セル材層46を通し融液層47に接触してなじませた後
、回転させながら所定の速度でL方に引トげ、砒化ガリ
ウム単結晶52を徐々に育成16o53はカーボンサセ
プター、54はサセプターペース、55はルツボ下軸で
ある。このようにして単結晶52の育成が進むに従って
融液層47の引は減少してゆくが熱容量の大きい液体カ
プセル材層46と溶融浮揚材層48により上下を覆われ
ているので・での熱的環境の変化を少なく、結晶育成の
条件がくずれることはない。
FIG. 4 shows a partial cross-sectional view of a medium-sized crystal growth furnace with the external high-pressure vessel omitted. Inside the quartz crucible 41, a boron nitride cylinder 4 is placed at a predetermined distance from the inner wall and bottom surface of the quartz crucible 41.
2 is inserted, and the cylinder 42 has carbon insulation 1
, 143 supporting 1.1. It is fixed to the bent carbon plate 44 with a stopper 45. Each raw material is loaded into this width and heated and melted to form a liquid encapsulant layer (Bz 03) 46
, gallium arsenide melt layer 47, melt flotation material layer (Biz
Og>48 is maintained in the state shown in the figure, for example, by first loading a predetermined floatation material, followed by polycrystalline gallium arsenide, and finally a capsule material formed into a disc shape, and then loading the above-mentioned example. As shown in FIG. 2, the carbon is heated and melted by the carbon heater 49 while the inside of the furnace is evacuated. Note that polycrystalline gallium arsenide can also be directly synthesized by loading gallium and arsenic. As in the previous embodiment, the contents are prepared by first melting the capsule material and forming a liquid capsule layer 4.
6 to cover the polycrystalline gallium arsenide, then the flotation material melts and fills the bottom of the crucible 41 and the lower part of the boron nitride cylinder 42 to form a molten flotation material layer 48, and finally the intermediate polycrystalline arsenide The gallium melts and forms a melt layer 47. As a result, as shown in the figure, gallium arsenide melt I47
has a liquid encapsulant layer 46 and a molten flotation material layer 48 above and below.
The side surface is held in contact with the inner surface of the boron nitride cylinder 42. Next, as in the previous embodiment, the seed crystal 51 supported by the pulling shaft 50 is passed through the liquid encapsulant layer 46 and brought into contact with the melt layer 47, and then pulled in the L direction at a predetermined speed while rotating. 16 o 53 is a carbon susceptor, 54 is a susceptor pace, and 55 is a crucible lower shaft. In this way, as the growth of the single crystal 52 progresses, the pull of the melt layer 47 decreases; Changes in the physical environment are minimized, and the conditions for crystal growth are not disrupted.

又、融液層47の側面は終始窒化硼素製円筒42の内側
面に接していて石英ルツボ41と接触することがないの
で、シリカの混入による汚染を防止J′ることができる
。さらに単結晶育成後石英ルツボ41を下方に押し下げ
て窒化硼素製円筒42を該ルツボ41中の内容物から引
き離すことにより、それら内容物の冷却による固化WI
Hによって該円筒42が破損することを防止することが
でき、繰り返し使用することができる。
Further, since the side surface of the melt layer 47 is in contact with the inner surface of the boron nitride cylinder 42 from beginning to end and does not come into contact with the quartz crucible 41, contamination due to silica can be prevented. Furthermore, after growing the single crystal, the quartz crucible 41 is pushed down and the boron nitride cylinder 42 is separated from the contents in the crucible 41, so that the contents are solidified by cooling.
The cylinder 42 can be prevented from being damaged by H and can be used repeatedly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の融液カプセル結晶引き上げ法の装置の断
面図、第2図は木発晶の実施例に用いた単結晶育成炉の
部分断面図、第3図は実施例における原料装填方法の一
例を示す説明図、゛第4図は本発明の他の実施例に用い
た単結晶育成炉の部分断面図である。 21.24 ・・・ 石英ルツボ 22.46 ・・・ 液体カプセル材層23.47 ・
・・ 砒化ガリウム融液層24.48 ・・・ 溶融浮
揚材層 25 ・・・・・・・・・ 溶融浮揚材被膜26.49
 ・・・ カーボンヒーター27 ・・・・・・・・・
 観察用窓 28.50 ・・・ 引き上げ軸 29.51 ・・・ 種子結晶 30.52 ・・・ 砒化ガリウム単結晶31.53 
・・・ カーボンサセプター32.54 ・・・ サセ
プターペース33 ・・・・・・・・・ 真R”*去4
2 ・・・・・・・・・ 窒化硼素製円筒43 ・・・
・・・・・・ カーボン断熱月44 ・・・・・・・・
・ カーボンプレート45 ・・・・・・・・・ 止め
Figure 1 is a cross-sectional view of a device for a conventional melt capsule crystal pulling method, Figure 2 is a partial cross-sectional view of a single crystal growth furnace used in an example of wood crystallization, and Figure 3 is a method of loading raw materials in an example. FIG. 4 is a partial sectional view of a single crystal growth furnace used in another embodiment of the present invention. 21.24 ... Quartz crucible 22.46 ... Liquid encapsulant layer 23.47 ・
... Gallium arsenide melt layer 24.48 ... Melt flotation material layer 25 ...... Melt flotation material coating 26.49
・・・ Carbon heater 27 ・・・・・・・・・
Observation window 28.50 ... Pulling shaft 29.51 ... Seed crystal 30.52 ... Gallium arsenide single crystal 31.53
・・・Carbon Susceptor 32.54 ・・・Susceptor Pace 33 ・・・・・・・・・True R”*Return 4
2 ...... Boron nitride cylinder 43 ...
・・・・・・ Carbon insulation month 44 ・・・・・・・・・
・ Carbon plate 45 ...... Stopper

Claims (7)

【特許請求の範囲】[Claims] (1)単結晶育成炉において■−v族化合物半導体単結
晶をその融液から引上げて育成するに際し、該育成炉の
ルツボ中の融液層の表面を液体カプセル材層で覆うと共
に、その下層に該融液と非反応性で比重、比熱と返それ
より大なる一溶融浮揚材層を収容し、かつ該融液層と接
するルツボ内側面を該溶融浮揚材で被覆してその熱的環
境を改善すると同時にルツボからの汚染を防止したこと
を特徴とする化合物半導体単結晶育成方法。
(1) When growing a ■-V group compound semiconductor single crystal from its melt in a single crystal growth furnace, the surface of the melt layer in the crucible of the growth furnace is covered with a liquid encapsulant layer, and the underlying layer is contains a layer of molten flotation material that is non-reactive with the melt and has a specific gravity and specific heat return, and the inner surface of the crucible in contact with the melt layer is coated with the melt flotation material to maintain its thermal environment. A method for growing a compound semiconductor single crystal, characterized in that it improves the properties of the compound semiconductor and simultaneously prevents contamination from the crucible.
(2)夫々所定量の、ルツボ型に成型した浮揚材に■−
v族化合物半導体単結晶原料破砕物を充填し、その上部
に板状に成型したカプセル材の蓋をしたものを、単結晶
育成炉のルツボ中に装ml−所宝濡釘に加熱して前記単
結晶原料の融液層の表面を液体カプセル材層で留うと共
に、その下層に溶融浮揚材層を収容し、かつ該融液層と
接するルツボ内側面を該溶融浮揚材で被覆した特許請求
の範囲(1)項記載の化合物半導体単結晶育成方法。
(2) A predetermined amount of flotation material molded into a crucible shape.
A crushed V-group compound semiconductor single crystal raw material is filled, and a cap of capsule material molded into a plate is placed on top of the crushed material, which is placed in a crucible of a single crystal growth furnace and heated to form a wet nail. A patent claim in which the surface of the melt layer of the single-crystal raw material is covered with a liquid encapsulant layer, a melt flotation material layer is accommodated in the lower layer thereof, and the inner surface of the crucible in contact with the melt layer is coated with the melt flotation material. The method for growing compound semiconductor single crystals according to scope (1).
(3)III−V族化合物半導体が砒化ガリウム及び燐
化インジウムのうちのいずれかである特許請求の範囲(
1)項又は(2)項記載の化合物半導体単結晶育成方法
(3) Claims in which the III-V compound semiconductor is either gallium arsenide or indium phosphide (
The compound semiconductor single crystal growth method described in item 1) or item (2).
(4)カプセル材が酸化硼素(Bz 03 )で浮揚材
が酸化ビスマス(8i z 03 )である特許請求の
範囲(1)項から(3)項までのいずれか1項記載の化
合物半導体単結晶育成方法。。
(4) The compound semiconductor single crystal according to any one of claims (1) to (3), wherein the encapsulant is boron oxide (Bz 03 ) and the buoyant material is bismuth oxide (8iz 03 ). Cultivation method. .
(5)単結晶育成炉において■−v族化合物半導体単結
晶をその融液から引上げて育成するに際し、゛該育成炉
のルツボ中に所定の間隔を保って窒化硼素製円筒を挿入
設冒し、ぞの中に融液層及びその上層に液体カプセル材
層を収容すると共に、その下層に該窒化硼素製円筒下部
の内外部を埋めるように該融液と非反応性で比重、比熱
ともそれより大なる溶融浮揚材層を収容してその熱的環
境を改善すると同時にルツボからの汚染を防止したこと
を特徴とする化合物半導体単結晶育成方法。
(5) When pulling up and growing a ■-V group compound semiconductor single crystal from its melt in a single crystal growth furnace, ``a cylinder made of boron nitride is inserted at a predetermined interval into the crucible of the growth furnace; A melt layer and a liquid encapsulant layer are accommodated in the upper layer, and the lower layer is filled with a material that is non-reactive with the melt and has a higher specific gravity and specific heat. A compound semiconductor single crystal growth method characterized by accommodating a large molten floating material layer to improve its thermal environment and at the same time preventing contamination from the crucible.
(6)I[I−V族化合物半導体が砒化ガリウム及び燐
化インジウムのうちのいずれかである特許請求の範囲(
5)項記載の化合物半導体単結晶育成方法。
(6) I [Claims in which the IV group compound semiconductor is either gallium arsenide or indium phosphide (
5) Compound semiconductor single crystal growth method described in section 5).
(7)カプセル材が酸化硼素(BZ 03 )で浮揚材
が酸化ビスマス(BizO3’)である特許請求の範囲
〈5)項又は(6)項記載の化合物半導体単結晶育成方
法。
(7) The method for growing a compound semiconductor single crystal according to claim 5 or 6, wherein the encapsulant is boron oxide (BZ 03 ) and the buoyant material is bismuth oxide (BizO3').
JP19533883A 1983-10-20 1983-10-20 Growing method of compound semiconductor single crystal having volatility Pending JPS6090895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19533883A JPS6090895A (en) 1983-10-20 1983-10-20 Growing method of compound semiconductor single crystal having volatility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19533883A JPS6090895A (en) 1983-10-20 1983-10-20 Growing method of compound semiconductor single crystal having volatility

Publications (1)

Publication Number Publication Date
JPS6090895A true JPS6090895A (en) 1985-05-22

Family

ID=16339508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19533883A Pending JPS6090895A (en) 1983-10-20 1983-10-20 Growing method of compound semiconductor single crystal having volatility

Country Status (1)

Country Link
JP (1) JPS6090895A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE38382E1 (en) 1996-04-04 2004-01-13 Matsushita Electric Industrial Co., Ltd. Heat sink and electronic device employing the same
CN102628180A (en) * 2012-04-23 2012-08-08 南京金美镓业有限公司 Preparation method of high-purity indium phosphide polycrystalline rod
US8665595B2 (en) 2002-06-06 2014-03-04 Ol Security Limited Liability Company Method and apparatus for cooling a circuit component

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE38382E1 (en) 1996-04-04 2004-01-13 Matsushita Electric Industrial Co., Ltd. Heat sink and electronic device employing the same
USRE40369E1 (en) 1996-04-04 2008-06-10 Matsushita Electric Industrial Co., Ltd. Heat sink and electronic device employing the same
US8665595B2 (en) 2002-06-06 2014-03-04 Ol Security Limited Liability Company Method and apparatus for cooling a circuit component
CN102628180A (en) * 2012-04-23 2012-08-08 南京金美镓业有限公司 Preparation method of high-purity indium phosphide polycrystalline rod

Similar Documents

Publication Publication Date Title
US5256381A (en) Apparatus for growing single crystals of III-V compound semiconductors
JPS6090895A (en) Growing method of compound semiconductor single crystal having volatility
US5145550A (en) Process and apparatus for growing single crystals of III-V compound semiconductor
US4750969A (en) Method for growing single crystals of dissociative compound semiconductor
JPH0244798B2 (en)
Blum et al. Growth of large single crystals of gallium phosphide from a stoichiometric melt
JP2690420B2 (en) Single crystal manufacturing equipment
JPH07165488A (en) Apparatus for producing single crystal and method therefor
JPH0561239B2 (en)
JP2010030847A (en) Production method of semiconductor single crystal
JPH07330482A (en) Method and apparatus for growing single crystal
JP3085072B2 (en) Single crystal pulling device
JP2927065B2 (en) Method and apparatus for growing compound semiconductor single crystal
JP2733898B2 (en) Method for manufacturing compound semiconductor single crystal
JP2830306B2 (en) Compound semiconductor crystal manufacturing equipment
JP2010030868A (en) Production method of semiconductor single crystal
JP2539841B2 (en) Crystal manufacturing method
JP2611336B2 (en) High dissociation pressure compound semiconductor processing equipment
JP3627255B2 (en) III-V compound semiconductor single crystal growth method
JPS63274691A (en) Method and device for growing single crystal
JPH05319973A (en) Single crystal production unit
JPH11189499A (en) Production of compound semiconductor single crystal
JPH0764671B2 (en) Method for growing compound semiconductor single crystal
JPS6379792A (en) Device for growing single crystal
JPH0873294A (en) Apparatus for growing single crystal