JPS6080243A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS6080243A
JPS6080243A JP18871183A JP18871183A JPS6080243A JP S6080243 A JPS6080243 A JP S6080243A JP 18871183 A JP18871183 A JP 18871183A JP 18871183 A JP18871183 A JP 18871183A JP S6080243 A JPS6080243 A JP S6080243A
Authority
JP
Japan
Prior art keywords
insulating film
substrate
film
layer
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18871183A
Other languages
Japanese (ja)
Inventor
Tetsutada Sakurai
桜井 哲真
Akikazu Oono
晃計 大野
Katsutoshi Izumi
泉 勝俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP18871183A priority Critical patent/JPS6080243A/en
Publication of JPS6080243A publication Critical patent/JPS6080243A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76297Dielectric isolation using EPIC techniques, i.e. epitaxial passivated integrated circuit

Abstract

PURPOSE:To obtain a high resistance voltage semiconductor device which can process a high power and high voltage signal by allowing the bottom surface of island region at the center to be in contact with the substrate through elimination of an insulating film at the time of forming a plurality of island regions on the semiconductor substrate through an insulating film and by providing input/output electrodes thereto. CONSTITUTION:An n<+> type buried layer 2 is formed on an n type Si substrate 1 by the diffusion, a composite mask 31 of which lower layer is Si3N4 while the upper layer is SiO2 is provided at the center of this surface and the SiO2 mask 3 is provided in both sides of such composite mask. A V-shaped groove reaching the substrate 1 is formed by the anisotropic etching and the SiO2 film of the masks 3 and 31 is removed. Thereafter, the SiO2 film 6 is deposited from the wall surface of V-groove to both sides thereof with the remaining Si3N4 film used as the mask, the Si3N4 film is removed, an nn<+> type support Si layer 7 is deposited on the entire part, and thereby a polycrystalline layer 72 is generated on the V-groove and a single crystal layer 71 on the region surrounded by such polycrystalline layer. Thereafter, upper and lower layers are reversed, the substrate 1 is polished until the bottom part of V-groove is exposed and the layer 71 is used as the signal electrode attaching part.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は大電力および高電圧用に適用される半導体装置
およびその製造方法に関するものである0〔従来技術〕 従来この種の半導体装置は、第1図(a)〜(e)に示
すような製造方法によシ形成されていた。すなわち、同
図(a)に示すように例えistからなるn形半導体基
板1の表面にイオン注入法によυ A8を注入してN 
埋込層2を形成した後、この基板1上に例えば熱酸化に
よる5iOzなどのマスク材層3を形成し、フォトリソ
グラフィ技術によシ分1711に必要な溝エッチ窓4を
形成する。次にKOHを含むアルカリエツチング液等を
用いていわゆる異方性エツチングを行なって同図(b)
に示すように基板1に分離溝5を形成する。次にマスク
材層3を除去した後、同図(e)に示すように基板1の
全面に例えば8102膜、5iaN4膜、半絶縁性膜あ
るいはこれらの多層および複合膜(例えばオキシナイト
ライド膜)などの絶縁膜6を形成し、さらにこの絶縁膜
6上に多結晶シリコンを堆積して支持基板材Tを形成す
る。次に同図(d)に示すように基板1の背面を研磨あ
るいはエツチング等によシ基板1の除去を行なって絶縁
膜6を露出させる。これによって基板1の一部であった
半導体領域が絶縁膜6で囲まれた島8が相互に絶縁分離
されて同一基板上に形成される。次にこの島8の中に不
純物添加ヲ行すってベース、エミッタおよびコレクタの
各コンタクト補償領域9.10および11を形成すると
ともに、表面保護絶縁膜12を形成し、また必要に応じ
てコンタクト窓を形成する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor device applied to high power and high voltage applications and a method for manufacturing the same. [Prior Art] Conventionally, this type of semiconductor device has It was formed by a manufacturing method as shown in FIGS. 1(a) to (e). That is, as shown in FIG. 2(a), υ A8 is implanted into the surface of an n-type semiconductor substrate 1 made of, for example, ist by ion implantation.
After forming the buried layer 2, a mask material layer 3 of, for example, 5iOz is formed on the substrate 1 by thermal oxidation, and a groove etching window 4 necessary for the trench 1711 is formed by photolithography. Next, so-called anisotropic etching was performed using an alkaline etching solution containing KOH, as shown in Figure (b).
A separation groove 5 is formed in the substrate 1 as shown in FIG. Next, after removing the mask material layer 3, as shown in FIG. 3(e), the entire surface of the substrate 1 is coated with, for example, an 8102 film, a 5iaN4 film, a semi-insulating film, or a multilayer or composite film thereof (for example, an oxynitride film). An insulating film 6 such as the following is formed, and then polycrystalline silicon is deposited on this insulating film 6 to form a supporting substrate material T. Next, as shown in FIG. 1D, the back surface of the substrate 1 is removed by polishing or etching, and the insulating film 6 is exposed. As a result, islands 8 in which semiconductor regions that were part of the substrate 1 are surrounded by the insulating film 6 are isolated from each other and formed on the same substrate. Next, impurities are doped into this island 8 to form base, emitter, and collector contact compensation regions 9, 10, and 11, a surface protection insulating film 12, and contact windows as necessary. form.

第2図は前述した工程を経た後、電極配線13を形成し
て集積回路装置とした断面構造を示したものである。な
お、14は前述したコンタクト窓である。ここでは、抵
抗15.大軍カド2ンジスタ16.トランジスタ17お
よびダイオード18などの各素子をそれぞれ形成してい
る。一般的にはこれらの素子は複数個製作され、主電流
の通路となる大電力トランジスタ16のオン、オフを行
なって電圧、電流の制御および信号の増幅等を行なう。
FIG. 2 shows a cross-sectional structure of an integrated circuit device obtained by forming electrode wiring 13 after the above-described steps. Note that 14 is the contact window mentioned above. Here, resistance 15. Daigun Kado 2 Injista 16. Elements such as a transistor 17 and a diode 18 are formed respectively. Generally, a plurality of these elements are manufactured, and the high-power transistor 16, which serves as a main current path, is turned on and off to control voltage and current, amplify signals, and the like.

このように構成された半導体装置においては、各素子相
互間が誘電体で分離されているため、高電圧の信号を取
シ扱うことが可能となる。しかしながら、信号の伝達経
路である電極配線13が同一の第1の主面19上に形成
されているため、大電流をオン、オフする大電力トラン
ジスタ16は入力側および出力側にパターン幅の大きい
電極配線13を第1の主面19側に設けなければならず
、したがって集積度を低下させる原因となっていた0ま
た、高電圧を取シ扱う素子はその発熱量が大となること
が常であるが、最も発熱量の大きい大電力トランジスタ
16は熱伝導率の低い絶縁膜6で全体が囲まれているた
め、大電力トランジスタ16内の各接合部で発生する熱
の放散が悪く、素子の取シ扱い得る電力の上限が抑制さ
れるという問題があった。
In a semiconductor device configured in this manner, each element is separated from each other by a dielectric material, so that it is possible to handle high voltage signals. However, since the electrode wiring 13, which is a signal transmission path, is formed on the same first main surface 19, the high power transistor 16 that turns on and off a large current has a large pattern width on the input side and output side. The electrode wiring 13 must be provided on the first main surface 19 side, which causes a reduction in the degree of integration.Furthermore, elements that handle high voltage usually generate a large amount of heat. However, since the high-power transistor 16, which generates the largest amount of heat, is entirely surrounded by the insulating film 6 with low thermal conductivity, the heat generated at each junction within the high-power transistor 16 is poorly dissipated, and the element There has been a problem in that the upper limit of the power that can be handled is restricted.

〔発明の目的および構成〕[Object and structure of the invention]

したがって本発明は、前述した従来の問題に鑑みてなさ
れたものであシ、その目的とするところは、大電力およ
び高電圧の信号を取シ扱い得る高耐圧半導体装置および
その製造方法を提供することにある。
Therefore, the present invention has been made in view of the above-mentioned conventional problems, and its purpose is to provide a high-voltage semiconductor device that can handle high-power and high-voltage signals, and a method for manufacturing the same. There is a particular thing.

このような目的を達成するために本発明は、支持基板中
に絶縁膜を介して複数の島を絶縁分離して形成し、この
複数の島の第1の主面上にそれぞれ半導体素子およびこ
れらの素子を相互に電気的−に接続する電極配線をそれ
ぞれ形成してなる半導゛′ 体装置において、前記島の
少なくとも一つに底面に前記絶縁膜が存在しない島を形
成し、仁の島の第2の主面上に前記半導体素子への入出
力信号電極を設けたものである。また、この半導体装置
は半導体基板の第1の主面側に同−導電形高不純物領域
を選択的に形成する工程と、半導体基板の第1の主面側
を部分的に除去し該半導体基板の一部を選択的に残存さ
せる工程と、残存領域の少なくとも一つが第2の主面と
対向する面の少なくとも一部に絶縁膜を形成させず他の
面および他の残存領域に絶縁膜を形成する工程と、第2
の主面側から支持基板材を堆積して形成する工程と、第
1の主面側から少なくとも絶縁膜が露出するまで半導体
基板を除去して残存領域を相互に絶縁分離させた島を形
成する工程と、島の中に半導体素子を形成する工程と、
島の第1の主面上に各半導体素子を電気的に接続する電
極配線を形成するとともに絶縁膜のない島の第2の主面
上に信号を入出力させる電極を形成する工程とを少なく
とも含む方法で製造するものである。
In order to achieve such an object, the present invention forms a plurality of islands insulated and separated through an insulating film in a support substrate, and semiconductor elements and semiconductor elements are respectively formed on the first main surface of the plurality of islands. In a semiconductor device in which electrode wiring is formed to electrically connect elements of the semiconductor device, an island having no insulating film on the bottom surface is formed on at least one of the islands, and an island is formed. Input/output signal electrodes to the semiconductor element are provided on the second main surface of the semiconductor element. This semiconductor device also includes a step of selectively forming a highly impurity region of the same conductivity type on the first main surface side of the semiconductor substrate, and a step of partially removing the first main surface side of the semiconductor substrate. a step of selectively leaving a part of the remaining area, and forming an insulating film on the other surface and other remaining area without forming an insulating film on at least a part of the surface in which at least one of the remaining areas faces the second main surface; forming a second
a process of depositing and forming a support substrate material from the main surface side of the semiconductor substrate, and removing the semiconductor substrate from the first main surface side until at least the insulating film is exposed to form an island in which the remaining regions are mutually insulated and isolated. a step of forming a semiconductor element in the island;
Forming electrode wiring for electrically connecting each semiconductor element on the first main surface of the island, and forming electrodes for inputting and outputting signals on the second main surface of the island without an insulating film. It is manufactured by a method that includes

〔発明の実施例〕[Embodiments of the invention]

以下、図面を用いて本発明の実施例を詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

第3図(a)〜(、)は本発明による半導体装置の製造
方法の一例を示す要部断面工程図であシ、前述の図と同
一部分は同一符号を伺す0同図において、まず、同図(
a)に示すようにStからなるn形基板10表面にAs
をドーズ量lX10 Cyaの割合でイオン注入してシ
ート抵抗50 QJ’g3の埋込層2を形成した後、そ
の表面にSt基板1加工用の第1のマスク材層3および
第2の31をそれぞれ形成し、フォトリソグラフィ技術
により分離に必要な溝エッチ窓4を形成する。この場合
、第1のマスク材層3は例えば膜厚的5000XのS 
iOz膜で形成し、一方第2のマスク材層31は膜厚的
500Xの5102膜、膜厚的1200Xの5iaN4
膜および膜厚的5oooXoc、v、p 5toz 膜
e[tfm L テ形成する複合マスク材層とする。次
にKOH水溶液およびアルコールの混合液からなるアル
カリエツチング液等でいわゆる異方性エツチングを行な
って同図(b)に示すように基板1に分離溝5を形成す
る。次に第1のマスク材層3を除去する。このとき第2
のマスク材層31のC,V、D SiO2膜も併せて除
去される。次にウェット02ガス中で約1100℃、約
5時間の熱酸化を行なって第2のマスク材層31を除く
部位に同図(e)に示すように膜厚的1゜5pmのS 
iOz膜からなる絶縁膜6を形成する。
3(a) to 3(,) are cross-sectional process diagrams of essential parts showing an example of the method for manufacturing a semiconductor device according to the present invention. The same parts as those in the above-mentioned figures have the same reference numerals. , the same figure (
As shown in a), As is deposited on the surface of the n-type substrate 10 made of St.
After forming a buried layer 2 with a sheet resistance of 50 QJ'g3 by ion implantation at a dose of lX10 Cya, a first mask material layer 3 and a second mask material layer 31 for processing the St substrate 1 are formed on the surface thereof. A groove etching window 4 necessary for separation is formed by photolithography. In this case, the first mask material layer 3 is made of S with a film thickness of 5000×, for example.
The second mask material layer 31 is a 5102 film with a thickness of 500X and a 5iaN4 film with a thickness of 1200X.
A composite mask material layer is formed with a film and a film thickness of 5oooXoc, v, p 5toz film e[tfm L Next, so-called anisotropic etching is performed using an alkaline etching solution consisting of a mixture of KOH aqueous solution and alcohol to form separation grooves 5 in the substrate 1, as shown in FIG. 1B. Next, the first mask material layer 3 is removed. At this time, the second
The C, V, and D SiO2 films of the mask material layer 31 are also removed. Next, thermal oxidation is performed in wet 02 gas at about 1100° C. for about 5 hours to form a S film with a thickness of 1°5 pm on the area excluding the second mask material layer 31, as shown in FIG.
An insulating film 6 made of an iOz film is formed.

この場合、同図(b)で示す第2のマスク材層31で覆
われた埋込層2の表面には5isN4膜が形成されてお
り、このSi3N4膜が耐酸化性であるため、前述した
5102膜からなる絶縁膜6は形成されない0次にこの
基板1を熱リン酸液中に浸漬して第2のマスク材層31
の513N4膜をエツチング除去し、引き続き希弗酸中
でエツチングを行なって前述した膜厚的15 μntの
5iOz膜からなる絶縁膜6を薄くすることなく、第2
のマスク材層31の膜厚的50OAの5iOz膜を除去
する。ここで、発明者らの実験によれば、4wt%のH
F水溶液で約8分エツチングすれば、第2のマスク材層
31の残存5io2膜が除去されて埋込層2を露出させ
ることができた。この場合、絶縁膜6の膜厚は約1゜4
μntであった。引き続き、この絶縁膜6および露出し
た埋込層2上にsiを約500μ212の厚さに堆積し
て支持基板材Tを形成する。この場合、絶縁膜6が形成
されない埋込層2上には単結晶層71が、絶縁膜6が形
成された面には多結晶層72がそれぞれ形成される。こ
の過程は極めて高い温度と長い時間を必要とするため、
埋込層2の不純物が単結晶層71内に拡散してくること
になるが、これは後述するように本発明の効果を増進さ
せるものであシ、何ら不都合を生じないことに注意すべ
きである。また、厚さ約59Qpmの支持基板材Tの一
部は後述するように素子の電流通路として使用されるた
め、不純物の添加を行なって抵抗値を下げるだめの効果
的な手段である。次に同図(d)に示すように基板1の
背面を研磨あるいはエツチング等により基板1の除去を
行なって絶縁膜6を露出させる。これによって基板1の
一部であった半導体領域が絶縁膜6で囲まれた島8,8
′が形成され、これらの島8,8′は相互に絶縁分離さ
れることになる。この場合、前述した第2のマスク材層
31が形成された領域には絶縁膜6の底的に接続される
コレクタ補償領域11′が形成されることになる。次に
同図(e)に示すようにこの島8゜8′の中に不純物添
加を行なってペースおよびエミッタの各コンタクト補償
領域9および10をそれぞれ形成するとともに11表面
保護膜12を形成する0この場合、必要に応じてコンタ
クト窓14を窓開する。
In this case, a 5isN4 film is formed on the surface of the buried layer 2 covered with the second mask material layer 31 shown in FIG. 5102 film is not formed. Next, this substrate 1 is immersed in a hot phosphoric acid solution to form a second mask material layer 31.
The second 513N4 film was removed by etching, and then etching was performed in dilute hydrofluoric acid to form the second insulating film 6, which was made of a 5iOz film with a film thickness of 15 μnt, without thinning it.
The 5iOz film with a thickness of 50OA of the mask material layer 31 is removed. Here, according to the inventors' experiments, 4 wt% H
By etching with an F aqueous solution for about 8 minutes, the remaining 5io2 film of the second mask material layer 31 was removed and the buried layer 2 could be exposed. In this case, the thickness of the insulating film 6 is approximately 1°4.
It was μnt. Subsequently, Si is deposited on the insulating film 6 and the exposed buried layer 2 to a thickness of about 500 .mu.212 to form a supporting substrate material T. In this case, a single crystal layer 71 is formed on the buried layer 2 where the insulating film 6 is not formed, and a polycrystalline layer 72 is formed on the surface where the insulating film 6 is formed. This process requires extremely high temperatures and long periods of time, so
Although the impurities in the buried layer 2 will diffuse into the single crystal layer 71, it should be noted that this only enhances the effects of the present invention, as will be described later, and does not cause any inconvenience. It is. Further, since a part of the supporting substrate material T having a thickness of about 59 Qpm is used as a current path of the element as described later, adding impurities is an effective means for lowering the resistance value. Next, as shown in FIG. 2D, the back surface of the substrate 1 is removed by polishing or etching to expose the insulating film 6. As a result, the semiconductor region that was part of the substrate 1 is now surrounded by islands 8 and 8 surrounded by the insulating film 6.
' are formed, and these islands 8, 8' are isolated from each other. In this case, a collector compensation region 11' connected to the bottom of the insulating film 6 is formed in the region where the second mask material layer 31 described above is formed. Next, as shown in FIG. 8(e), impurities are doped into this island 8° 8' to form contact compensation regions 9 and 10 for the paste and emitter, respectively, and a surface protective film 12 is formed. In this case, the contact window 14 is opened as necessary.

第4図は前述した工程を経た後、第1の主面19および
第2の主面20上に電極配線13を形成し、コレクタの
コンタクト補償領域11′上に電極13′を形成すると
ともに、抵抗15.大電力トランジスタ16.トランジ
スタ17.およびダイオード18をそれぞれ形成して集
積回路装置とした断面構造を示したものである。この場
合、これらの素子は同一基板上に複数個製作される。
FIG. 4 shows that after the above-described steps are performed, electrode wiring 13 is formed on the first main surface 19 and second main surface 20, and an electrode 13' is formed on the contact compensation region 11' of the collector. Resistance 15. High power transistor 16. Transistor 17. This figure shows the cross-sectional structure of an integrated circuit device in which a diode 18 and a diode 18 are respectively formed. In this case, a plurality of these elements are manufactured on the same substrate.

このような構成によれば、大電力トランジスタ16は、
大電流の入出力側となる電極13′を第1の主面19と
は異なる第2の主面20側に配設することが可能となる
ので、大電力トランジスタ16は大面積を必要とする電
極配線の占有面積を半減させることが可能となる。また
、第2の主面20を集積回路装置のいわゆる実装パッケ
ージに接着するに肖ってこの部分を熱伝導率の良好な金
nと接触させることが可能とな如、大幅な放熱効果の改
善が実現できる。さらに従来構造においては、大電力ト
ランジスタ16の底面は熱伝導率の低い絶縁膜6で覆わ
れていたが、前述した実施例の構成によれば、この絶縁
膜6がなく、基板1と同一材質となるため、これによる
熱放散の改咎も併せて達成することができる。ちなみに
絶縁膜6を5lo2.基板1をSlとした場合、その熱
伝導率の比は、Qst/ Qsioz = (1,5W
/em−deg)/(0,014W/傭・deg )で
あり、その効果は極めて大きなものとなる。
According to such a configuration, the high power transistor 16 is
Since it is possible to arrange the electrode 13', which is the input/output side of large current, on the second main surface 20 side different from the first main surface 19, the large power transistor 16 requires a large area. It becomes possible to halve the area occupied by the electrode wiring. Further, when the second main surface 20 is bonded to the so-called mounting package of the integrated circuit device, this part can be brought into contact with gold having good thermal conductivity, which greatly improves the heat dissipation effect. can be realized. Furthermore, in the conventional structure, the bottom surface of the high-power transistor 16 is covered with an insulating film 6 having low thermal conductivity, but in the structure of the embodiment described above, this insulating film 6 is not provided, and the bottom surface of the high-power transistor 16 is made of the same material as the substrate 1. Therefore, it is also possible to improve heat dissipation. By the way, the insulation film 6 is 5lo2. When the substrate 1 is made of Sl, the ratio of its thermal conductivity is Qst/Qsioz = (1,5W
/em-deg)/(0,014W/em-deg), and the effect is extremely large.

なお、前述した第2の主面20側に形成された支持基板
材Tは、第3図(4りの工程では約500 Pm程度の
厚さとしたが、集積回路装置とした後、いわゆる実装パ
ッケージに搭載する直前には約50μm程度の厚さまで
研削されるが、この支持基板材1の厚みによる放熱効果
の低減は全く考慮する必要がない。また、第3図(a)
の工程で形成されるn+埋込N2は支持基板材1の形成
およびその後の熱処理等によって数1 Open程度の
広が9を生ずるため、コレクタ補償領域11′は第2の
主面20(Illlまでn 埋込N2とすることができ
、大電力トランジスタ16の寄生直列抵抗の増大も全く
ない。
Note that the supporting substrate material T formed on the second main surface 20 side described above was made to have a thickness of about 500 Pm in the step 4 shown in FIG. Although it is ground to a thickness of about 50 μm just before being mounted on the support substrate material 1, there is no need to consider the reduction in the heat dissipation effect due to the thickness of the support substrate material 1. Also, as shown in FIG. 3(a)
Since the n+ buried N2 formed in the process of 1 causes a spread 9 of approximately several 1 Open due to the formation of the support substrate material 1 and the subsequent heat treatment, the collector compensation region 11' extends to the second main surface 20 (Illll). n buried N2, and there is no increase in the parasitic series resistance of the high power transistor 16.

まだ、前述した実施例において、si基板1加工用複合
マスク材層31は、Si基板1上のn+埋込層2側から
膜層約50OAの5iOz膜、膜厚的120OAのSi
3N4膜および膜厚的500OAのC,V、D Sin
;膜を順次積層形成する複合層とした場合について説明
したが、本発明は他のマスク羽層3と選択的に加工が可
能な材質の膜であれば特に限定されるものではない。
However, in the above embodiment, the composite mask material layer 31 for processing the Si substrate 1 is a 5iOz film with a film thickness of about 50OA from the n+ buried layer 2 side on the Si substrate 1, and a Si film with a film thickness of 120OA.
3N4 film and 500OA film thickness C, V, D Sin
Although a case has been described in which a composite layer is formed by sequentially laminating films, the present invention is not particularly limited as long as the film is made of a material that can be selectively processed with other mask layers 3.

また、前述した実施例においてはコレクタのコンタクト
補償領域11′上に形成される電極13′は金属層を堆
積加工した場合について説明したが、Au−8i の共
晶層を用いることも可能であることは勿論である。また
、この電極13′は、コンタクト補償領域11上が主な
熱および信号の通路となるので、コンタクト補償領域1
1上近傍に限定し、他の領域は実装上の余地として保留
させても良いOまた、前述した実施例においては、本発
明を大電力、高電圧用のトランジスタに適用した場合に
ついて説明したが、PNPN素子、接合電界効果トラン
ジスタあるいは静電銹導トランジスタなどに適用できる
ことは言うまでもない0 〔発明の効果〕 以上説明したように本発明によれば、電極配線面積の低
減による素子占有面積の低減および熱放散の向上による
素子の制御電流、電圧の増大が可能となるので、この種
の半導体装置の大電力および高電圧の信号を取)扱い得
る高面1圧化が可能となシ、性能を大幅に向上させるこ
とができる。特に従来、熱放散が悪く、バイポーラトラ
ンジスタのいわゆる熱暴走によって動作可能な周囲温度
あるいは制御可能な電力、電圧の上限が抑えられていた
この種の半導体装置の特性を著しく改善するとJ−充′
1′I各スジbら響めイ優れた勿I要カく得られる。
Further, in the above embodiment, the electrode 13' formed on the contact compensation region 11' of the collector is formed by depositing a metal layer, but it is also possible to use an Au-8i eutectic layer. Of course. In addition, since the main path for heat and signals is on the contact compensation region 11, this electrode 13'
1, and other areas may be reserved for mounting reasons.Also, in the above-mentioned embodiments, the case where the present invention is applied to a high-power, high-voltage transistor has been explained. It goes without saying that it can be applied to , PNPN elements, junction field effect transistors, electrostatic conduction transistors, etc. [Effects of the Invention] As explained above, according to the present invention, the area occupied by the element can be reduced by reducing the electrode wiring area. Improved heat dissipation makes it possible to increase the control current and voltage of the element, making it possible to create a high-surface single-voltage device that can handle high power and high voltage signals for this type of semiconductor device, and improve performance. can be significantly improved. In particular, it is possible to significantly improve the characteristics of this type of semiconductor device, which has traditionally had poor heat dissipation and the so-called thermal runaway of bipolar transistors, which limits the operating ambient temperature and controllable power and voltage.
1'Each streak can be heard with excellent results.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(e)および第2図は従来の半導体装置
の製造方法の一例を示す要部断面構成図、第3図(&)
〜(−3および第4図は本発明に係わる半導体装置の製
造方法の一例を示す要部断面tR構成図ある。 1・書・・半導体基板、2・@e@埋込層、3@−1拳
マスク材層、31・φ・・複合マスク材層、4・・や−
解エッチ窓、5・・−・分離溝、6慟@−・絶縁膜、7
・・・拳支持基板材、11@囃・9単結晶層、72@・
・・多結晶層、8゜13 ’11 @・争島、9・Φ・
拳ベースコンタクト補イ賞領域、10−・・・エミッタ
ネtR(P領域、11′φ・・・コレクタ補4)’を領
域、12・・・・表面保護絶縁膜、13@・′・・電極
配線、13′・・・・電極、14−−−−コンタクト窓
、15・・・・抵抗、16・鳴拳・大電力トランジスタ
、17−・・参トランジスタ、1BII・・・ダイオー
ド、19・・Φ・@1の主面、20・・#@第2の主面
。 特許出願人 日本電信電話公社 代理人 山 川 政 樹
Figures 1 (a) to (e) and 2 are cross-sectional configuration diagrams of essential parts showing an example of a conventional method for manufacturing a semiconductor device, and Figure 3 (&)
〜(-3 and FIG. 4 are main part cross-sectional tR configuration diagrams showing an example of a method for manufacturing a semiconductor device according to the present invention. 1. Semiconductor substrate, 2. @e@buried layer, 3@- 1 fist mask material layer, 31 φ...composite mask material layer, 4...ya-
Etched window, 5... Separation groove, 6 Insulating film, 7
...Fist support substrate material, 11@Yaku・9 single crystal layer, 72@・
・Polycrystalline layer, 8゜13 '11 @・Raijima, 9・Φ・
Fist base contact supplementary area, 10-...Emitter net tR (P region, 11'φ...Collector supplementary 4)' region, 12...Surface protection insulating film, 13@...'...Electrode Wiring, 13'...electrode, 14--contact window, 15...resistor, 16-meiken/high power transistor, 17--3 transistor, 1BII...diode, 19... Φ・@1 principal surface, 20...#@2nd principal surface. Patent applicant: Masaki Yamakawa, agent of Nippon Telegraph and Telephone Public Corporation

Claims (2)

【特許請求の範囲】[Claims] (1)支持基板中に絶縁膜を介して絶縁分離して形成さ
れた複数の第1の島と、前記複数の第1の島の少なくと
も一つの底面に絶縁膜を形成しない第2の島と、前記第
1.第2の島の中に形成された半導体素子と、前記第1
.第2の島の第1の主面上に形成されかつ前記素子を相
互に電気的に接続する電極配線と、前記第2の島の第2
の主面上に形成されかつ当該半導体素子への信号の入出
力を行なう電極とを具備してなる半導体装置。
(1) A plurality of first islands formed in a supporting substrate insulated and separated via an insulating film, and a second island on which an insulating film is not formed on the bottom surface of at least one of the plurality of first islands. , the above-mentioned No. 1. a semiconductor element formed in the second island;
.. an electrode wiring formed on the first main surface of the second island and electrically connecting the elements;
1. A semiconductor device comprising: an electrode formed on a main surface of the semiconductor element for inputting/outputting signals to/from the semiconductor element;
(2)半導体基板の第1の主面側に同−導電形高不純物
領域を選択的に形成する工程と、前記半導体基板の第1
の主面側を部分的に除去し該半導体基板の一部を選択的
に残存させる工程と、前記残存領域の少なくとも一つが
第2の主面と対向する面の少なくとも一部に絶縁膜を形
成させず他の面および他の残存領域に絶縁膜を形成する
工程と、前記第2の主面側から支持基板材を堆積して形
成する工程と、前記第1の主面側から少なくとも前記絶
縁膜が露出するまで半導体基板を除去して前記残存領域
を相互に絶縁分離させた島を形成する工程と、前記島の
中に半導体素子を形成する工程と、前記島の第1の主面
上に前記各半導体素子を電気的に接続する電極配線を形
成するとともに前記絶縁膜のない島の第2の主面上に信
号を入出力させる電極を形成する工程とを少なくとも含
むことを特徴とする半導体装置の製造方法。
(2) selectively forming a highly impurity region of the same conductivity type on the first main surface side of the semiconductor substrate;
selectively leaving a part of the semiconductor substrate by partially removing the main surface side of the semiconductor substrate, and forming an insulating film on at least a part of the surface where at least one of the remaining regions faces the second main surface. a step of forming an insulating film on the other surface and other remaining region without causing the insulating film to form, a step of depositing and forming a support substrate material from the second main surface side, and a step of forming at least the insulating film from the first main surface side. forming an island in which the remaining region is mutually insulated and isolated by removing the semiconductor substrate until a film is exposed; forming a semiconductor element in the island; and forming an island on a first main surface of the island. The method is characterized in that it includes at least the step of forming electrode wiring for electrically connecting each of the semiconductor elements, and forming electrodes for inputting and outputting signals on the second main surface of the island having no insulating film. A method for manufacturing a semiconductor device.
JP18871183A 1983-10-08 1983-10-08 Semiconductor device and manufacture thereof Pending JPS6080243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18871183A JPS6080243A (en) 1983-10-08 1983-10-08 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18871183A JPS6080243A (en) 1983-10-08 1983-10-08 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS6080243A true JPS6080243A (en) 1985-05-08

Family

ID=16228453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18871183A Pending JPS6080243A (en) 1983-10-08 1983-10-08 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6080243A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62256452A (en) * 1986-04-28 1987-11-09 Nec Corp Substrate for semiconductor integrated circuit
JPS644058A (en) * 1987-06-26 1989-01-09 Hitachi Ltd Semiconductor integrated circuit device
JPH0287548A (en) * 1988-09-24 1990-03-28 Matsushita Electric Works Ltd Manufacture of insulating layer isolated substrate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5563840A (en) * 1978-11-08 1980-05-14 Hitachi Ltd Semiconductor integrated device
JPS5969944A (en) * 1982-10-14 1984-04-20 Sanken Electric Co Ltd Manufacture of integrated circuit from which bottom insulator is isolated

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5563840A (en) * 1978-11-08 1980-05-14 Hitachi Ltd Semiconductor integrated device
JPS5969944A (en) * 1982-10-14 1984-04-20 Sanken Electric Co Ltd Manufacture of integrated circuit from which bottom insulator is isolated

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62256452A (en) * 1986-04-28 1987-11-09 Nec Corp Substrate for semiconductor integrated circuit
JPS644058A (en) * 1987-06-26 1989-01-09 Hitachi Ltd Semiconductor integrated circuit device
JPH0287548A (en) * 1988-09-24 1990-03-28 Matsushita Electric Works Ltd Manufacture of insulating layer isolated substrate

Similar Documents

Publication Publication Date Title
US4497106A (en) Semiconductor device and a method of manufacturing the same
JPH0671043B2 (en) Method for manufacturing silicon crystal structure
JPS6159852A (en) Manufacture of semiconductor device
JP3006425B2 (en) Semiconductor device and manufacturing method thereof
JPS6080243A (en) Semiconductor device and manufacture thereof
JPH05102291A (en) Semiconductor device and manufacture thereof
JP3196229B2 (en) Semiconductor device
JP3340177B2 (en) Field-effect transistor
JPS63246841A (en) Dielectric isolating method of silicon crystal body
JPH01259546A (en) Manufacture of semiconductor device
JP3483671B2 (en) Semiconductor device and manufacturing method thereof
JPS60250645A (en) Semiconductor device
JP3116609B2 (en) Method for manufacturing semiconductor device
JPH0530075B2 (en)
JPS6089957A (en) Complementary semiconductor device
JPS63199454A (en) Semiconductor device
JPS60144972A (en) Semiconductor device
JPS6124245A (en) Semiconductor device
JPS61127157A (en) Semiconductor device
JPS59138363A (en) Semiconductor device and manufacture thereof
JPS58155739A (en) Semiconductor device
JP3194286B2 (en) Manufacturing method of bipolar transistor
JPS5825245A (en) Semiconductor integrated circuit and manufacture thereof
JPH02207534A (en) Semiconductor device
JP2816107B2 (en) Manufacturing method of bipolar transistor