JPS6077485A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS6077485A
JPS6077485A JP18642483A JP18642483A JPS6077485A JP S6077485 A JPS6077485 A JP S6077485A JP 18642483 A JP18642483 A JP 18642483A JP 18642483 A JP18642483 A JP 18642483A JP S6077485 A JPS6077485 A JP S6077485A
Authority
JP
Japan
Prior art keywords
current blocking
blocking layer
impurity
current
laser device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18642483A
Other languages
Japanese (ja)
Inventor
Yutaka Mihashi
三橋 豊
Shoichi Kakimoto
柿本 昇一
Misao Hironaka
美佐夫 廣中
Takashi Murakami
隆志 村上
Toshio Sogo
十河 敏雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP18642483A priority Critical patent/JPS6077485A/en
Publication of JPS6077485A publication Critical patent/JPS6077485A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2206Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on III-V materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2232Buried stripe structure with inner confining structure between the active layer and the lower electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • H01S5/3068Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure deep levels

Abstract

PURPOSE:To enable to stably oscillate with a low threshold value current by doping an impurity having deep impurity level in a current blocking layer to shorten the lifetime of the minority carrier. CONSTITUTION:A P type GaAs current blocking layer 2a dopes the prescribed density of impurity having deep impurity level to shorten the lifetime of the minority carrier. Electrons in the section corresponding to the layer 2a are collected once to the deep impurity level Ed, and the electrons and the holes are recombined. Therefore, they are recombined in a very short time as compared with the recombination of the electrons of direct transmission band and the holes of valency electron band. Accordingly, the lifetime of the minority carrier can be remarkably shortened by doping the impurity having the deep impurity level. Thus, the current blocking capacity is increased to reliably perform a current constriction operation, and stable oscillation can be performed with low threshold value current.

Description

【発明の詳細な説明】 〔発明の技術〕 この発明は半導体レーザ装置に係り、特に内部電流狭窄
形半導体レーザ装置の電流阻止層の電流阻止効果を向上
させる改良に関1°るものである。
DETAILED DESCRIPTION OF THE INVENTION [Technology of the Invention] The present invention relates to a semiconductor laser device, and more particularly to an improvement for improving the current blocking effect of a current blocking layer of an internal current confinement type semiconductor laser device.

〔従来技術〕[Prior art]

半導体レーザ装置において、安定した横モードで、かつ
低しきい値で発振するためには活性層に何らかの屈折率
ガイド機構を有するとともに、充分に狭い、例えは5μ
m程度以下の幅のストライプ状領域に電流が集中して流
れるようなIDJらかの電流狭窄構造が必要である。こ
のような電流狭窄構造として、結晶外部から亜鉛(Zn
)等を拡散することによって電流を集中させる方法と、
結晶内部に電流阻止層を内蔵し、その阻止層にストライ
プ状開口部を設けることによって電流を集中させる方法
との2つの方法がある。
In a semiconductor laser device, in order to oscillate in a stable transverse mode and at a low threshold, the active layer must have some sort of refractive index guide mechanism and a sufficiently narrow, for example 5μ
A current confinement structure from the IDJ is required so that the current flows in a concentrated manner in a striped region having a width of about m or less. As such a current confinement structure, zinc (Zn) is injected from outside the crystal.
), etc., to concentrate the current by diffusing the
There are two methods: a method in which a current blocking layer is built inside the crystal and a method in which the current is concentrated by providing striped openings in the blocking layer.

第1図はこの後者の方法による電流狭窄構造を内蔵した
、いわゆる内部ストライプ形の従来の半導体レーザ装置
の構造を示す斜視図である。図1において、(1)はシ
リコン(Sl)などをドーピング゛した第1導電形であ
るn形のガリウム・ヒ素(GaAsAZxG a H−
xA 8 )クラッド層、(4)はn形AtyGa 、
−yp、ts活性層、 −−−(51Gまp)杉Atx
Ga AsクラッドhI7、(6)はp形GaAeコン
タクト(1−× 電極取付用) Ii’i 1(71ki p側電極、(
81はn側電極、(9)はp形電流阻止層(2)に設け
られた狭しAストライプ状の開口部である。そして、n
形りラツ)’ WJ(31はこの開口部(5月を介して
基板illに接してしする。
FIG. 1 is a perspective view showing the structure of a conventional internal stripe type semiconductor laser device incorporating a current confinement structure based on the latter method. In FIG. 1, (1) is n-type gallium arsenide (GaAsAZxGaH-) which is the first conductivity type and is doped with silicon (Sl).
xA 8 ) cladding layer, (4) is n-type AtyGa,
-yp, ts active layer, --- (51G map) Cedar Atx
GaAs clad hI7, (6) is p-type GaAe contact (1-x electrode mounting) Ii'i 1 (71ki p-side electrode, (
81 is an n-side electrode, and (9) is a narrow A-striped opening provided in the p-type current blocking layer (2). And n
The WJ (31 is in contact with the substrate ill through this opening).

この構造において、p側電極(7)に正、n側電極−(
8)に負となるような極性の電圧を印加すると、上記開
口部(9)以外の領域ではp形電流阻止層(2)とn形
りラッド層(3)との間のpn接合か逆バイアスとなる
ので電流は流れず、電v1jはDil IJ部(9)の
みに集中して流れる。従って、電子及び止孔はこの部分
に対応する活性層(4)の部分に注入され、両者の再結
合によってストライプ状の開口部(9)の近傍の活性層
(4)の部分で再結合発光か生じる。そして、注入レベ
ルを十分増加させれri g u7放出か始1す、やが
てレーザ発掘に至るはずである。
In this structure, the p-side electrode (7) is positive, and the n-side electrode - (
When a negative polarity voltage is applied to 8), a p-n junction between the p-type current blocking layer (2) and the n-type rad layer (3) or the opposite occurs in the region other than the opening (9). Since it becomes a bias, no current flows, and the electric current v1j flows concentrated only in the Dil IJ section (9). Therefore, electrons and holes are injected into the part of the active layer (4) corresponding to this part, and due to their recombination, light is emitted by recombination in the part of the active layer (4) near the striped opening (9). or occur. Then, if the injection level is sufficiently increased and RIG U7 discharge begins, laser excavation should eventually occur.

ところか、このようなp形LJaAs電流阻止層(2)
を用いた構造では、そのp形+]aAθ電流阻止# (
21のエネルギーギャップよりも活性、KY’t +4
1のエネルギーギャップより小さいので、活性層(4)
で発生した光によって、電流阻止B’l12)中に電子
・正孔対が発生ずる。第1図では電子を黒丸、正札を白
丸で示す。そして、少数キャリアである電子が拡散によ
ってn形りラッド層(3)および基板f1)へ移動して
しまって、多数キャリアである正孔かこの電流1壜止層
(2)に蓄積する。その結果、電流阻止fff+2+の
ポテンシャル障壁が低下し、十分な電流阻止効果が得ら
れなくなり、電流がストライプ状開口部(9)の外側で
も電流が流れる、いわゆるターンオン現象が起こる。こ
のように電流の漏れが生じるので余程厚い電流阻止層1
2)を用いない限り、低いしきい値で安定に発振する半
導体レーザ装置を得ることは困難であった。
However, such a p-type LJaAs current blocking layer (2)
In the structure using the p-type +]aAθ current blocking # (
More active than the energy gap of 21, KY't +4
Since the energy gap is smaller than the energy gap of 1, the active layer (4)
Due to the light generated, electron-hole pairs are generated in the current block B'l12). In Figure 1, electrons are shown as black circles, and genuine cards are shown as white circles. Then, electrons, which are minority carriers, move to the n-shaped rad layer (3) and the substrate f1) by diffusion, and holes, which are majority carriers, accumulate in this current stopper layer (2). As a result, the potential barrier of the current blocking fff+2+ is lowered, making it impossible to obtain a sufficient current blocking effect, and a so-called turn-on phenomenon occurs in which current flows even outside the striped opening (9). Because current leakage occurs in this way, the current blocking layer 1 must be too thick.
Unless 2) is used, it is difficult to obtain a semiconductor laser device that stably oscillates at a low threshold value.

〔発明の概要〕[Summary of the invention]

この発明は以上のような点に鑑みてなされたもので、電
流阻止層中に、深い不純物準位をもつ不純物をドーピン
グし、少数キャリアの寿命を短くし、拡散長を短くする
ことによって十分な電流阻止能力をもたぜ、低いしきい
値で安定に発振する半導体レーザ装置を提供するもので
ある。
This invention was made in view of the above points, and by doping an impurity with a deep impurity level into the current blocking layer, shortening the lifetime of minority carriers and shortening the diffusion length, sufficient The present invention provides a semiconductor laser device that has current blocking ability and stably oscillates at a low threshold.

〔発明の実施例〕[Embodiments of the invention]

第2図はこの発明の一実施例の構造を示す斜視図で、図
において、(2a)は深い不純物準位をもつ不純物を所
定嬢度ドーピングして少数キャリアの寿命を短くしたp
形GaAs電流阻止層で、その他の構造は第1図の従来
例と全く同じである。
FIG. 2 is a perspective view showing the structure of one embodiment of the present invention. In the figure, (2a) is a p-type doped with impurities having a deep impurity level to a predetermined degree to shorten the lifetime of minority carriers.
This is a GaAs type current blocking layer, and the other structure is exactly the same as the conventional example shown in FIG.

第3図は第2図における、開口部(9)の設けられてい
ない、X−Y線に沿う部分における、活性層(4)に順
方向バイアスされるように電圧を印加された場合のエネ
ルギーバンド図で、符号i11〜(6)は第エネルギー
ハント端、E、はフェルミし′ベルヲ表わす〇 一般に、クロム(c、) 、コバルト(Co)l鉄(F
Figure 3 shows the energy in the part along the X-Y line where the opening (9) is not provided in Figure 2 when a voltage is applied to forward bias the active layer (4). In the band diagram, the symbols i11 to (6) represent the hunt end of the energy, and E represents the Fermi'bel. In general, chromium (c,), cobalt (Co), iron (F
.

)、ニッケル(N1)等の金属類はGaAs l ”x
GaI−”八日などの結晶のエネルギーキャップE 中
で深い不純物レベルを形成することはよく知られている
。例えば、11形不純物としてよく知られているテルル
(T、)が伝導帯から0.003eV下の非常に浅いレ
ベルに不純物準位をもつのに対して、C,。
), metals such as nickel (N1) are GaAs l ”x
It is well known that impurity levels form deep in the energy cap E of crystals such as GaI-"Yokachi. For example, tellurium (T, ), which is well known as type 11 impurity, is 0.0. Whereas C, has an impurity level at a very shallow level below 0.003 eV.

は価電子帯からO,’70eV上すなわち、Gal+の
バンドギャップ約1.4.eVのほぼ中火の深いレベル
に不純物準位をもつ。このような深い不純物準位上。
is O,'70 eV above the valence band, that is, the bandgap of Gal+ is about 1.4. It has an impurity level at a deep level of approximately medium eV. on such a deep impurity level.

を介して電子と正孔とは速い速成で再結合する。Electrons and holes recombine rapidly through the .

すなわち、第3図の電流阻止Itfj(2a)に対応す
る部分における矢印で示されるように、電子(黒丸で示
す)は一度深い不純物準位E、Hに捕獲され、その1■
子と正札(白丸で示す)とは再結合するので、直接、伝
導帯の電子が価電子帯の正孔と再結合するよりも非常に
短II′1間で再結合する。従って深い不純物準位をも
つ不純物をドーピングすることによって、少数キャリア
の寿命、すなわち、この実施例では電子の寿命を非常に
知〈することができる。そして、電子の寿命τ。を小さ
くずれは、拡it 長”n −r (但し1)nは電子
の拡散定数)も小さくできる。
That is, as shown by the arrow in the part corresponding to the current blocking Itfj (2a) in FIG.
Since the child and the positive plate (indicated by white circles) recombine, the recombination occurs between II'1, which is much shorter than the direct recombination of electrons in the conduction band with holes in the valence band. Therefore, by doping with an impurity having a deep impurity level, the lifetime of minority carriers, that is, the lifetime of electrons in this embodiment, can be greatly determined. And the lifetime τ of the electron. If the deviation is small, the expansion length "n - r (where 1) n is the electron diffusion constant) can also be made small.

従って、この実施例においではn形htyGa1−yA
s活性層(3)で発生した光がp形GaA3 iL電流
阻止層2)に到達して1トゴー正孔対を発生しても、電
流阻止層(2)中での2インタイムτ。が非常に小さい
ので、短時間でI++結合し、−泥阻止層(2)の厚さ
を電子の拡散長JJnよりも厚くしておけは、拡散によ
って電子か1lltl側の半専体J曽に移動することは
ない。
Therefore, in this example, n-type htyGa1-yA
Even if the light generated in the s-active layer (3) reaches the p-type GaA3 iL current blocking layer 2) and generates 1 to-hole pair, the 2-in-time τ in the current blocking layer (2). is very small, so I++ will combine in a short time, and if the thickness of the - mud blocking layer (2) is made thicker than the electron diffusion length JJn, the electrons will become semi-exclusive J on the 1lltl side due to diffusion. It never moves.

従って、正孔が電流阻止層(2)に1柏し、ボテンシャ
ル障壁が低下してターンオン現象が起こり、電流狭窄効
果が低下するという従来の問題点は克服できる。
Therefore, the conventional problem that holes are trapped in the current blocking layer (2), the potential barrier is lowered, a turn-on phenomenon occurs, and the current confinement effect is lowered can be overcome.

なお、p形GaAs電流阻止層(21に添加するC1の
ドービン・グ量は通常の液相成長法を用いた場合、lX
l0 /am 程度の濃度までは比較的容易に実現でき
る。また、電流阻止層(2)のキャリア濃度にもよるが
Crの濃度としてl×1014/Cm3〜1x1017
/Cm3を用いることができる。
Note that the doping amount of C1 added to the p-type GaAs current blocking layer (21) is 1X when a normal liquid phase growth method is used.
A concentration of about 10/am can be achieved relatively easily. Also, although it depends on the carrier concentration of the current blocking layer (2), the concentration of Cr is l×1014/Cm3 to 1×1017
/Cm3 can be used.

上記実施例では第1導電形としてn形、第2導電形とし
てp形のものについて説明したが、p形を第1導電形と
し、n形を第2導電形とする0すなわち上記実施例のp
形とn形とを入れ換えた構造の半導体レーザ装置にもこ
の発明は適用できる。
In the above embodiment, an n-type as the first conductivity type and a p-type as the second conductivity type have been described. p
The present invention can also be applied to a semiconductor laser device having a structure in which the type and n-type are interchanged.

なお、GaAs−A4GaAe系の外に、他の半導体を
用いたものにもこの発明は適用できる。
Note that the present invention can be applied to devices using other semiconductors in addition to the GaAs-A4GaAe system.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明になる内部ストライプ形
半導体レーザ装置では1B、流阻止層に深い不純物準位
をもつ不純物をドーピングして、少数キャリアの寿命を
短くしたので、電流阻止能力は増大し、電流狭窄作用が
確実になり、低いしきい値電流で安定な発振が得られる
As explained above, in the internal stripe type semiconductor laser device according to the present invention, the current blocking ability is increased because the current blocking layer is doped with an impurity having a deep impurity level to shorten the lifetime of minority carriers. , the current confinement effect is ensured, and stable oscillation can be obtained with a low threshold current.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の内部ストライプ形半導体レーザ装置の構
造を示すfl視図、第2図はこの発明の一実施例の構造
を示す斜視図、第3図は第2図のX−Y線に沿う部分に
おけるエネルギーバンド図である。 図において、(1)はg51導電形の半導体基板、(2
)は第2導電形の電流閉止慴、(3)は第1導電形のク
ラッド層、(4)は第1導電形の活性層、(5)は第2
導電形のクラッドI?i 、 (91は開口部である。 なお、図中同一府号は同一または相描部分を示す0 代理人 大岩増雄 第1頁の続き 0発 明 者 十 河 敏 雄 伊丹市瑞原4丁目所内
FIG. 1 is a perspective view showing the structure of a conventional internal stripe type semiconductor laser device, FIG. 2 is a perspective view showing the structure of an embodiment of the present invention, and FIG. 3 is taken along the X-Y line in FIG. FIG. In the figure, (1) is a semiconductor substrate of g51 conductivity type, (2)
) is the current blocking layer of the second conductivity type, (3) is the cladding layer of the first conductivity type, (4) is the active layer of the first conductivity type, and (5) is the second conductivity type.
Conductive type cladding I? i, (91 is the opening. In addition, the same prefecture name in the figure indicates the same or a contrasting part0 Agent Masuo OiwaContinued from page 10 Inventor Toshio Togawa Mizuhara 4-chome, Itami City

Claims (1)

【特許請求の範囲】 ill 第1導電形を有する半導体基板、この半導体基
板上に形成され上記第1導電形とは反対の第及び上記開
口部内に露出した上記半導体基板の上と上記電流阻止層
の上とにわたって積層構成されたダブルへテロ接合構造
の多層半導体層を備えたものにおいて、上記電流阻止層
を構成する半導体結晶中に深い不純物準位を持つ不純物
をドーピングして当該電流阻止層中の少数キャリアの拡
散長を短くしたことを%徴とする半導体レーザ装置。 (2)深い不純物準位をもつ不純物のドーピングによっ
て電流阻止層中の少数キャリアの拡散長を当該電流阻止
層の厚さより短くしたことを特徴とする特許請求の範囲
第1項記載の半導体レーザ装@0 (3) 深い不純物準位をもつ不純物としてクロム。 コバルト、鉄およびニッケルのうちの一つまたはそれ以
上の元素がドーピングされたことを特徴とする特許請求
の範囲第1項または第2項記載の半導体レーザ装置。 (4) 深い不純物準位をもつ不純物のドーピング量が
lXl0”〜1×1017/cm3であることを特徴と
する特許請求の範囲記1項、第2功または第3項記載の
半導体レーザ装置。
[Scope of Claims] ill A semiconductor substrate having a first conductivity type, a first conductivity type formed on the semiconductor substrate and opposite to the first conductivity type, and a top of the semiconductor substrate and the current blocking layer exposed in the opening. In a device comprising a multilayer semiconductor layer with a double heterojunction structure stacked over the top of the current blocking layer, the current blocking layer is doped with an impurity having a deep impurity level in the semiconductor crystal constituting the current blocking layer. A semiconductor laser device characterized by shortening the diffusion length of minority carriers. (2) A semiconductor laser device according to claim 1, characterized in that the diffusion length of minority carriers in the current blocking layer is made shorter than the thickness of the current blocking layer by doping with an impurity having a deep impurity level. @0 (3) Chromium is an impurity with a deep impurity level. 3. The semiconductor laser device according to claim 1, wherein the semiconductor laser device is doped with one or more of cobalt, iron, and nickel. (4) The semiconductor laser device according to claim 1, 2, or 3, wherein the doping amount of the impurity having a deep impurity level is 1X10'' to 1 x 1017/cm3.
JP18642483A 1983-10-03 1983-10-03 Semiconductor laser device Pending JPS6077485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18642483A JPS6077485A (en) 1983-10-03 1983-10-03 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18642483A JPS6077485A (en) 1983-10-03 1983-10-03 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS6077485A true JPS6077485A (en) 1985-05-02

Family

ID=16188179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18642483A Pending JPS6077485A (en) 1983-10-03 1983-10-03 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS6077485A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0915542A2 (en) * 1997-11-07 1999-05-12 Nec Corporation Semiconductor laser having improved current blocking layers and method of forming the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5390786A (en) * 1977-01-20 1978-08-09 Matsushita Electric Ind Co Ltd Semiconductor light emitting device and its production
JPS5821887A (en) * 1981-08-03 1983-02-08 Agency Of Ind Science & Technol Semiconductor light emitting element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5390786A (en) * 1977-01-20 1978-08-09 Matsushita Electric Ind Co Ltd Semiconductor light emitting device and its production
JPS5821887A (en) * 1981-08-03 1983-02-08 Agency Of Ind Science & Technol Semiconductor light emitting element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0915542A2 (en) * 1997-11-07 1999-05-12 Nec Corporation Semiconductor laser having improved current blocking layers and method of forming the same
EP0915542A3 (en) * 1997-11-07 2001-10-24 Nec Corporation Semiconductor laser having improved current blocking layers and method of forming the same

Similar Documents

Publication Publication Date Title
US5148267A (en) Double heterostructure step recovery diode with internal drift field
US5271028A (en) Semiconductor laser device
Buda et al. Analysis of 6-nm AlGaAs SQW low-confinement laser structures for very high-power operation
US20030021320A1 (en) Semiconductor laser device
KR920000079B1 (en) Semiconductor laser apparatus and manufacture method
JPS6077485A (en) Semiconductor laser device
JPS58225680A (en) Semiconductor laser
JPS61164287A (en) Semiconductor laser
JPH01286479A (en) Semiconductor laser device
JPS59202677A (en) Semiconductor laser device
JPS63133587A (en) Buried structure semiconductor laser
JP2555984B2 (en) Semiconductor laser and manufacturing method thereof
JPS61228684A (en) Semiconductor light emitting element
JPS6251283A (en) Semiconductor light emitting device
JPS60134489A (en) Semiconductor laser device
JPS641074B2 (en)
JP2866683B2 (en) Bistable light emitting device
JPH0653613A (en) Semiconductor element
JPS6362391A (en) Semiconductor laser
JPH04177888A (en) Semiconductor laser device and manufacture of the same
JPS63104494A (en) Semiconductor laser device
JPS59205788A (en) Semiconductor laser
JPH04321290A (en) Semiconductor laser
JPH0378284A (en) Semiconductor laser
JPH01236668A (en) Semiconductor laser device