JPS6077358A - Electrode for lead storage battery and its manufacture - Google Patents

Electrode for lead storage battery and its manufacture

Info

Publication number
JPS6077358A
JPS6077358A JP58185254A JP18525483A JPS6077358A JP S6077358 A JPS6077358 A JP S6077358A JP 58185254 A JP58185254 A JP 58185254A JP 18525483 A JP18525483 A JP 18525483A JP S6077358 A JPS6077358 A JP S6077358A
Authority
JP
Japan
Prior art keywords
lead
grid
lattice
perovskite compound
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58185254A
Other languages
Japanese (ja)
Inventor
Hiroyuki Jinbo
裕行 神保
Kenji Kobayashi
健二 小林
Sadao Fukuda
貞夫 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58185254A priority Critical patent/JPS6077358A/en
Publication of JPS6077358A publication Critical patent/JPS6077358A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/68Selection of materials for use in lead-acid accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve the capacity restoration of an electrode for a lead storage battery after it is left in an overdischarged state for a long period of time by causing only the surface of the grid to contain a perovskite compound consisting of lead and chromium as well as a perovskite compound consisting of lead and titanium. CONSTITUTION:A positive casted grid of 15g weight made of a lead-calcium-system alloy containing 0.1wt% of calcium is immersed in an aqueous sulfuric acid solution of 1.10 specific gravity containing 10<-1>mol/l of chromium sulfate and an aqueous sulfuric acid solution of 1.10 specific gravity containing 10<-1>mol/l of titanium sulfate to subject the grid to anodic polarization thereby forming a perovskite compound over the surface of the grid. After the anodic polarization is completed, the casted grid is taken out from the aqueous sulfuric acid solution before being washed with water. After that, a paste is packed over the grid thereby forming a plate. A sealed lead storage battery of about 3 AH capacity is obtained by subjecting three pieces of negative plates and two pieces of thus formed unformed plates used as positive plates to formation charging.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、鉛蓄電池用電極とその製造法に関するもので
、特にポータプルテレビや非常用の電源として多方面に
使用されており、また最近では急速に需要が増加してき
1VTR用電源として使用されている小型密閉鉛蓄電池
の改良に関するものである。
[Detailed Description of the Invention] Industrial Field of Application The present invention relates to an electrode for lead-acid batteries and a method for manufacturing the same.It is used in a wide variety of applications, particularly as portable televisions and emergency power sources, and has recently become rapidly popular. This invention relates to the improvement of small sealed lead-acid batteries, which are being used as a power source for VTRs and demand is increasing.

従来例の構成とその問題点 小型密閉鉛蓄電池は横転や倒置しても漏液せず、かつ補
水不要であるという特徴をもっているので。
Conventional structure and problems Small sealed lead-acid batteries have the characteristics of not leaking even if they are overturned or placed upside down, and do not require water replenishment.

ポータプルテレビや非常用の電源など多方面に使用され
ている。また最近になってポータプルVTR用電源の需
要が増加している。これには従来のものに比べで著しく
高水準のエネルギー密度と、これ贅での鉛蓄電池では困
難とされていた。過放電状態でも長期間の放置に耐えう
るという厳しい特性が要求されている。
It is used for a variety of purposes, including portable televisions and emergency power supplies. Also, recently, the demand for power supplies for portable VTRs has increased. This requires a significantly higher level of energy density than conventional batteries, something that would be difficult to achieve with a lead-acid battery. It is required to have strict characteristics such as being able to withstand long-term storage even in an over-discharged state.

しかしながら、一般的には、鉛蓄電池を過放電したのち
放置すると充電が困難になり、容量回復性が悪くなる欠
点がある。この原因としでに、放置することによって、
正極格子表面、あるいは正極格子と活物質との界面に高
抵抗の腐食層、いわゆるバリヤ一層が形成されることが
考えられる。
However, in general, if a lead-acid battery is over-discharged and then left unattended, it becomes difficult to charge it, and there is a drawback that capacity recovery performance deteriorates. By leaving this as a cause,
It is conceivable that a highly resistant corrosion layer, so-called a barrier layer, is formed on the surface of the positive electrode lattice or at the interface between the positive electrode lattice and the active material.

したがって、このバリヤ一層の形成を抑制する構造のも
のが望筐しい。
Therefore, it is desirable to have a structure that suppresses the formation of this barrier layer.

このようfj観点から、バリヤ一層が形成されにくい格
子合金組成の検討がなされてきた。例えば、鉛−銀合金
、鉛−リチウム合金、鉛−カルシウムースズ合舎などを
格子に用いた鉛蓄電池の過放電放置後の充電量は入れ性
や容量の回復性が調べられた。その結果、これらの電池
は、メンテナンスフリーの要望から、広く適用されてい
る鉛−力ル/ウム系の鉛蓄電池に比べると前述の特性に
関しては若干優れているが、丑だ満足すべきものではな
い0そして、これらの合金はすべて高価であるという欠
点を持っている。ざらに、鉛−銀合金や鉛−リチウム合
金を格子に用い座電池においては。
In this way, from the viewpoint of fj, studies have been made on lattice alloy compositions in which it is difficult to form a barrier layer. For example, lead-acid batteries using lead-silver alloys, lead-lithium alloys, lead-calcium-tin cages, etc. as grids were investigated for their charging capacity and capacity recovery after being allowed to over-discharge. As a result, these batteries are slightly better in terms of the above-mentioned characteristics than the widely used lead-hydrol/umium-based lead-acid batteries due to maintenance-free requirements, but they are not completely satisfactory. 0 All of these alloys have the disadvantage of being expensive. Generally speaking, lead-silver alloy or lead-lithium alloy is used for the grid in seat batteries.

格子中の水素過電圧の小さい銀やリチウムが電解液中に
溶解し、負極上に析出する傾向が強い。このような電池
においては自己放電が起こりやすく。
Silver and lithium, which have a small hydrogen overvoltage in the lattice, have a strong tendency to dissolve in the electrolyte and precipitate on the negative electrode. Self-discharge is likely to occur in such batteries.

充電過程においては水素ガスが激しく発生するので、電
解液が減少しやすい。−!、た、鉛−銀系格子は機械的
強度が弱い欠点も持っている〇以上、述べたように、格
子合金組成を変えることによって他の電池特性を劣化さ
せずに、過放電状態で長期間放置した後の容量回復性を
向上することは困難であった。
During the charging process, hydrogen gas is generated violently, so the electrolyte tends to decrease. -! Also, the lead-silver lattice has the disadvantage of low mechanical strength. As mentioned above, by changing the lattice alloy composition, it is possible to maintain the battery in an over-discharged state for a long period of time without deteriorating other battery characteristics. It has been difficult to improve capacity recovery after storage.

一方、格子表面のみの組成を変える試みとして。On the other hand, as an attempt to change the composition of only the lattice surface.

格子を金属イオンを含む水溶液中に浸漬したり、あるい
は前記の水溶液中でメッキすることによって、格子表面
に金属層を形成した後に、ペーストを充填し、化成充電
する方法の活用が考えられる。
A possible method is to form a metal layer on the surface of the grid by immersing the grid in an aqueous solution containing metal ions or plating it in the aqueous solution, and then filling the grid with a paste and performing chemical charging.

しかしながら、この方法では化成充電工程において格子
表面に付着した金属が電解液中へ溶解し、さらには負極
板上に析出して電池特性に悪影響を及ぼすことがあった
However, in this method, metal adhering to the lattice surface dissolves into the electrolyte during the chemical charging process, and is further deposited on the negative electrode plate, which may adversely affect battery characteristics.

発明の目的 本発明は、上記従来の欠点を改良するものであり、とく
に鉛蓄電池を過放電状態で長期間放置した後の容量回復
性を向上することを目的とする。
OBJECTS OF THE INVENTION The present invention aims to improve the above-mentioned conventional drawbacks, and particularly aims to improve the capacity recovery of lead-acid batteries after being left in an over-discharged state for a long period of time.

発明の構成 本発明は、格子合金表面上にペロブスカイト化合物を保
持したことを特徴とする鉛蓄電池用電極を提供するもの
である。前記ペロブスカイト化合物とじては鉛とクロム
、あるいは鉛とチタンの化合物を活用することに特徴が
ある。さらに1本発明は、鉛格子をクロムイオンあるい
はチタンイオンを含む水溶液中で陽分極した後、格子を
前記水溶液中から引き上げて水洗し、格子表面にペース
トを充填することによって、前述のペロブスカイト化合
物を格子表面に保持させることを特徴とする鉛蓄電池の
製造法を提供するものである。
Structure of the Invention The present invention provides an electrode for a lead-acid battery, characterized in that a perovskite compound is held on the surface of a lattice alloy. The perovskite compound is characterized by the use of a compound of lead and chromium or lead and titanium. Furthermore, in the present invention, the above-mentioned perovskite compound is prepared by anodically polarizing a lead lattice in an aqueous solution containing chromium ions or titanium ions, then pulling the lattice out of the aqueous solution, washing it with water, and filling the surface of the lattice with a paste. The present invention provides a method for manufacturing a lead-acid battery, which is characterized by being held on a grid surface.

実施例の説明 以下1本発明の実施例について説明する。Description of examples An embodiment of the present invention will be described below.

本発明は、格子と活物質との界面のみにペロブスカイト
化合物を形成することに特徴がある。ペロブスカイト化
合物の形成方法から丑ず述べる。
The present invention is characterized in that a perovskite compound is formed only at the interface between the lattice and the active material. The method for forming perovskite compounds will be briefly described.

10−’ mol /(lの硫酸クロムを含む比重1・
10の硫酸水溶液、および1o−’mol/βの硫酸チ
タンを含む比重1・10の硫酸水溶液中にカルシウムの
含有量が0.1重量%の鉛−カルシウム系合金からなる
重量159の正極用鋳造格子を浸漬し陽分極した。陽分
極する時には、対極板としては純鉛板を用い、2枚の対
極板の間にポリエチレンのセパレータを介して正極用鋳
造格子を入れ、50111Aの定電流で陽分極した。陽
分極した後は、上記の硫酸水溶液中から鋳造格子を鉗き
」−げて水洗し、その後格子上にペーストを充填した。
Specific gravity 1・ containing 10-' mol/(l of chromium sulfate)
A positive electrode casting having a weight of 159 and consisting of a lead-calcium alloy with a calcium content of 0.1% in a sulfuric acid aqueous solution with a specific gravity of 1.10 and a sulfuric acid aqueous solution with a specific gravity of 1.10 containing 1 o-' mol/β of titanium sulfate. The grid was immersed and polarized positively. When anodic polarization was performed, a pure lead plate was used as the counter electrode plate, a cast grid for the positive electrode was inserted between the two counter electrode plates via a polyethylene separator, and anodic polarization was performed at a constant current of 50111A. After anodic polarization, the cast grid was removed from the sulfuric acid aqueous solution and washed with water, and then the paste was filled onto the grid.

このようにして作成した極板を正極板用の未化成板とし
、正極板2枚、負極板3枚の構成で、化成充電すること
によって、容量約31Hの密閉式鉛蓄電池を作成した。
The thus produced electrode plates were used as unformed plates for positive electrode plates, and a sealed lead-acid battery with a capacity of about 31 H was created by chemical charging with a configuration of two positive electrode plates and three negative electrode plates.

なお、負極板としては通常の極板を用い、セパレータに
に1ガラスマットを使用した。
Note that a normal electrode plate was used as the negative electrode plate, and a glass mat was used as the separator.

以後、硫酸クロムを含む硫酸水溶液中で10分間陽分極
した格子を用いた電池をA、硫酸チタンを含む硫酸水溶
液中で10分間陽分極した格子を用いた電池をB、比較
のためにクロムイオンやチタンイオンを含丑ない比重1
.10の硫酸水溶液中で10分間陽分極した格子を用い
た電池をCとした。
Hereafter, A is a battery using a grid that was anodically polarized for 10 minutes in a sulfuric acid aqueous solution containing chromium sulfate, B is a battery using a lattice that was anodically polarized for 10 minutes in a sulfuric acid aqueous solution containing titanium sulfate, and chromium ion battery is for comparison. Specific gravity 1 that does not contain titanium ions or titanium ions
.. A battery using a grid that was anodically polarized for 10 minutes in a sulfuric acid aqueous solution of 10% was designated as C.

鉛蓄電池を過放電状態で長期間放置した後の容量回復性
を調べるために次の試験方法を採用した。
The following test method was adopted to examine capacity recovery after a lead-acid battery was left in an over-discharged state for a long period of time.

1ず、5時間率で放電し初期容量を調べ、つぎに2・4
5V(7)定電圧で5時間充電した後、10Ωの定抵抗
放電を4日間連続で実施した。つぎに40℃の条件下で
長期間放置した後、2.46 Vの定電圧で6時間充電
した。最後に、最初と同様に6時間率で放電し容量を調
べ、これと初期容量の比、すなわち容量回復率を調べた
。なお、過放電後の放置以外はすべて、25℃の温度条
件下で実施した0 第1図に、A、B、Cの各電池、および比較のために何
の処理もしない鉛−カル/ラム格子を用いた電池(D電
池とする)の容量回復率と、放置期間の関係を示した。
1. Check the initial capacity by discharging at a rate of 5 hours, then 2.4
After charging at a constant voltage of 5V (7) for 5 hours, constant resistance discharge of 10Ω was performed for 4 consecutive days. Next, after being left at 40° C. for a long period of time, it was charged at a constant voltage of 2.46 V for 6 hours. Finally, as in the beginning, the battery was discharged at a rate of 6 hours to check the capacity, and the ratio of this to the initial capacity, ie, the capacity recovery rate, was checked. Figure 1 shows batteries A, B, and C, and for comparison, a lead-Cal/RAM battery without any treatment. The relationship between the capacity recovery rate of a battery using a grid (referred to as battery D) and the storage period is shown.

この図から、電池A、Bの容量回復率が他の電池に比べ
ると極めて優れていることがわかる。
From this figure, it can be seen that the capacity recovery rates of Batteries A and B are extremely superior compared to other batteries.

以上の結果の原因としてつぎのことが考えられる〇 一般にクロムとチタンは鉛とPbCrO4およびPbT
iO4のペロブスカイト化合物を形成する。そして本実
施例に示したように、格子をクロムイオンあるいはチタ
ンイオンを含んだ硫酸水溶液中で陽分極すると、前記の
ペロブスカイト化合物が格子表面に形成されると考えら
れる。なぜならば。
The following may be the cause of the above results: Generally, chromium and titanium are lead, PbCrO4 and PbT.
Forms a perovskite compound of iO4. As shown in this example, when the lattice is anodically polarized in an aqueous sulfuric acid solution containing chromium ions or titanium ions, the above-mentioned perovskite compound is thought to be formed on the lattice surface. because.

鉛格子を硫酸水溶液中で陽分極すると、格子表面にβ−
PbO2が形成されるが、β−Pb02が形成される過
程においては、寸ず格子表面の鉛が2価の鉛イオンとな
って溶解し、その後β−pbo 2となって析出すると
考えられる。もし、溶解した鉛イオンの1わりに多量の
クロムやチタンのイオンが存在すれば、鉛イオンとクロ
ムイオン、あるいは鉛イオンとチタンイオンは互いに結
合した状態で、PbCrO4ヤPbTiO4のペロブス
カイト化合物となって格子表面に析出すると考えられる
。実際に、これらのペロブスカイト化合物の存在を確か
めたところ、これらの化合物は格子表面のみに形成され
るので、X線回折では定量できなかったが、格子表面を
走査型電子顕微鏡で観察すると、上記のペロブスカイト
化合物の存在が明らかとなった。
When a lead lattice is anodically polarized in an aqueous sulfuric acid solution, β-
PbO2 is formed, but in the process of forming β-Pb02, it is thought that lead on the surface of the small lattice becomes divalent lead ions and dissolves, and then becomes β-pbo2 and precipitates. If a large amount of chromium or titanium ions exist for each dissolved lead ion, the lead ions and chromium ions, or the lead ions and titanium ions, bond to each other and form a perovskite compound of PbCrO4 and PbTiO4 in the lattice. It is thought that it precipitates on the surface. When we actually confirmed the existence of these perovskite compounds, we were unable to quantify them by X-ray diffraction because these compounds are formed only on the lattice surface, but when we observed the lattice surface with a scanning electron microscope, we found that The existence of perovskite compounds has been revealed.

これらのペロブスカイト化合物は、半導体的性質を持っ
ているので電子電導性はあるが、面]酸註が非常に強く
反応性に乏しいので、過放電やその後の長期放置におい
ても、格子表面にペロブスカイト化合物は安定に存在し
続けると考えられる。
These perovskite compounds have semiconducting properties and are electronically conductive, but they have very strong surface acidity and poor reactivity, so even after overdischarge or after long-term storage, the perovskite compound remains on the lattice surface. is considered to continue to exist stably.

したがって、長期放置によって格子表面にバリヤ一層が
形成されても、ペロブスカイト化合物はノ・リヤ一層の
中に存在し、格子と活物質との間の電子伝導に大きく寄
与すると考えられる。このような理由で過放電状態で長
期間放置しても、充電することによって、回復率良く容
量は回復したと考えられる。
Therefore, even if a barrier layer is formed on the lattice surface due to long-term storage, the perovskite compound exists within the barrier layer and is considered to greatly contribute to electron conduction between the lattice and the active material. For this reason, it is thought that even if the battery is left in an over-discharged state for a long period of time, the capacity is recovered with a good recovery rate by charging.

このように本発明は格子表面のみに鉛とクロム。In this way, the present invention uses lead and chromium only on the lattice surface.

鉛とチタンのペロブスカイト化合物を保持することに特
徴がある。したがって、格子自体の機械的強度、および
耐食性に何らの影響を与えるものではない。
It is characterized by holding a perovskite compound of lead and titanium. Therefore, the mechanical strength and corrosion resistance of the lattice itself are not affected in any way.

さらに本発明は、ペーストを充填する前にペロブスカイ
ト化合物を格子表面に形成することに特徴がある。すな
わち、ペーストを充填する前に、ペロブスカイト化合物
が、−!格子表面に形成されれば、ペロブスカイト化合
物は分解してクロムイオンやチタンイオンとなって電解
液中へ溶解することはない。1だ1本発明においては、
格子を金属イオンを含む水溶液中で陽分極した後、格子
を水洗する方法を活用しているので、格子に付着したク
ロムイオンやチタンイオンが電池の電解液中に溶解する
ことはない。このように本発明は電池特性に何らの悪影
響を馬えないものである。
Furthermore, the present invention is characterized in that a perovskite compound is formed on the lattice surface before filling with the paste. That is, before filling the paste, the perovskite compound -! Once formed on the lattice surface, the perovskite compound will not decompose into chromium or titanium ions and dissolve into the electrolyte. In the present invention,
Since the grid is anodically polarized in an aqueous solution containing metal ions and then washed with water, the chromium and titanium ions attached to the grid will not dissolve into the battery electrolyte. As described above, the present invention does not have any adverse effect on battery characteristics.

第2図には、10−’ mol / lの硫酸クロムを
含む比重1.1oの硫酸水溶液中で格子を50mAで陽
分極した格子を用いた電池において、陽分極の時間と過
放電状態で3ケ月放置した後の容量回復率の関係を示し
た。この図から、格子表面にある程度の量のペロブスカ
イト化合物が形成されれば、容量回復率(d著しく改善
されることが明らかとなった0 発明の効果 本発明は格子表面のみに鉛とクロム、あるいに鉛とチタ
ンのペロブスカイト化合物を形成することによって、他
の電池特性に何らの悪影響を与えずに、過放電状態での
長期放置後の容量回復性を著しく向上させたものである
。したがって、本発明に最近ポータプルVTR用電源等
として活用きれている小型密閉鉛蓄電池の信頼性を太い
に高めるものである。
Figure 2 shows the anodic polarization time and the overdischarge rate for a battery using a grid that was anodically polarized at 50 mA in an aqueous sulfuric acid solution with a specific gravity of 1.1o containing 10-' mol/l of chromium sulfate. The relationship between the capacity recovery rate after being left unused for several months is shown. From this figure, it is clear that if a certain amount of perovskite compound is formed on the lattice surface, the capacity recovery rate (d) is significantly improved. By forming a perovskite compound of lead and titanium, the battery has significantly improved capacity recovery after being left in an over-discharged state for a long period of time without having any adverse effects on other battery characteristics. The present invention greatly increases the reliability of small sealed lead-acid batteries, which have recently been fully utilized as power sources for portable VTRs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は1本発明の実施例における電池用電極を備えた
鉛蓄電池を過放電状態で長期放置した後の容量回復率と
放置期間との関係を示す特性図、第2図は、本発明の実
施例における鉛とクロムのペロブスカイト化合物を保持
した電池において。 陽分極の時間と過放電状態で3ケ月放置した後の容量回
復率との関係を示す特性図である。
FIG. 1 is a characteristic diagram showing the relationship between the capacity recovery rate and the period of storage after a lead-acid battery equipped with a battery electrode according to an embodiment of the present invention is left in an over-discharged state for a long period of time. In a battery containing a perovskite compound of lead and chromium in an example. FIG. 3 is a characteristic diagram showing the relationship between the time of positive polarization and the capacity recovery rate after being left in an over-discharged state for three months.

Claims (3)

【特許請求の範囲】[Claims] (1)格子合金表面上にペロブスカイト化合物を保持し
たことを特徴とする鉛蓄電池用電極。
(1) An electrode for lead-acid batteries characterized by holding a perovskite compound on the surface of a lattice alloy.
(2)格子合金表面上のペロブスカイト化合物が鉛とク
ロム、あるいは鉛とチタンの化合物である特許請求の範
囲第1項記載の鉛蓄電池用電極。
(2) The electrode for a lead-acid battery according to claim 1, wherein the perovskite compound on the surface of the lattice alloy is a compound of lead and chromium, or lead and titanium.
(3) クロムあるいはチタンの金属イオンを含む水溶
液中で格子を陽分極する工程と、その後格子を前記水溶
液中から引き上げて水洗し、ついで格子表面にペースト
を充填する工程によって、格子表面にペロブスカイト化
合物を形成することを特徴とする鉛蓄電池用電極の製造
法。
(3) A perovskite compound is formed on the lattice surface by a process of anodically polarizing the lattice in an aqueous solution containing metal ions of chromium or titanium, then pulling the lattice out of the aqueous solution and washing it with water, and then filling the lattice surface with a paste. A method for producing an electrode for a lead-acid battery, characterized by forming an electrode.
JP58185254A 1983-10-03 1983-10-03 Electrode for lead storage battery and its manufacture Pending JPS6077358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58185254A JPS6077358A (en) 1983-10-03 1983-10-03 Electrode for lead storage battery and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58185254A JPS6077358A (en) 1983-10-03 1983-10-03 Electrode for lead storage battery and its manufacture

Publications (1)

Publication Number Publication Date
JPS6077358A true JPS6077358A (en) 1985-05-01

Family

ID=16167593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58185254A Pending JPS6077358A (en) 1983-10-03 1983-10-03 Electrode for lead storage battery and its manufacture

Country Status (1)

Country Link
JP (1) JPS6077358A (en)

Similar Documents

Publication Publication Date Title
JP2008130516A (en) Liquid lead-acid storage battery
US20100062327A1 (en) Non-toxic alkaline electrolyte with additives for rechargeable zinc cells
JPS6077358A (en) Electrode for lead storage battery and its manufacture
JP3094423B2 (en) Lead storage battery
JPS58117658A (en) Sealed lead-acid battery
JPH0750616B2 (en) Lead acid battery
KR950004457B1 (en) Lead battery
JPS6065458A (en) Manufacture of electrode for lead storage battery
JP4151825B2 (en) Negative electrode current collector for Li secondary battery
JPS60202675A (en) Manufacture of negative electrode for nonaqueous electrolyte secondary battery
JPS63152871A (en) Sealed lead-acid battery
JP2006155901A (en) Control valve type lead-acid storage battery
JP3111475B2 (en) Manufacturing method of sealed lead-acid battery
JP4742424B2 (en) Control valve type lead acid battery
JP2762730B2 (en) Nickel-cadmium storage battery
JP3582068B2 (en) How to charge lead storage batteries
JPH01117279A (en) Lead-acid battery
JP2518090B2 (en) Lead acid battery
JP2808685B2 (en) Lead storage battery
JPS63158749A (en) Zinc electrode for alkaline storage battery
JP3496241B2 (en) How to charge lead storage batteries
JPS58209063A (en) Manufacture of plate for lead-acid battery
JP2019204790A (en) Control valve type lead-acid battery
JPS61198574A (en) Lead storage battery
JPS5889781A (en) Sealed lead-acid battery