JPS607722A - X-ray exposure device - Google Patents

X-ray exposure device

Info

Publication number
JPS607722A
JPS607722A JP58115579A JP11557983A JPS607722A JP S607722 A JPS607722 A JP S607722A JP 58115579 A JP58115579 A JP 58115579A JP 11557983 A JP11557983 A JP 11557983A JP S607722 A JPS607722 A JP S607722A
Authority
JP
Japan
Prior art keywords
ray
intensity distribution
substance
ray intensity
movable base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58115579A
Other languages
Japanese (ja)
Inventor
Masaki Yamabe
山部 正樹
Yoshitaka Kitamura
北村 芳隆
Yasuo Furukawa
古川 泰男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP58115579A priority Critical patent/JPS607722A/en
Publication of JPS607722A publication Critical patent/JPS607722A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To contrive to enhance uniformity of X-ray intensity distribution by a method wherein a means to measure X-ray intensity distribution at an exposing surface, and a means to transfer an exposing substance conforming to the X-ray intensity distribution thereof are provided. CONSTITUTION:An exposing substance 2 is put upon a transferably movable base 1. Detectors 3 of the plural number of pieces are arranged symmetrically centering the mechanically central axis of an X-ray source at the periphery of the movable base 1 thereof as an X-ray (b) intensity distibution measuring means. At the device thereof, when X-ray intensity distribution at an exposing surface put on with the substance 2 becomes ununiformly, differences are generated to detection outputs of the respective detectors 3. When the shape of the relative intensity distribution curve of the X-ray mentioned above is known, the movable base 1 is transferred, the movable base 1 is so transferred as to make the central position of X-ray intensity distribution and the central position of the substance 2 to coincide, and controlled as to make X-ray intensity distribution to become symmetrically centering the central position of the substance 2.

Description

【発明の詳細な説明】 (a)発明の技術分野 本発明は半導体集積回路パターンの転写等に用いるエッ
クス線露光装置に係り、とくに被露光物体に対して均一
な強度分布のエックス線露光が可能とされたエックス線
露光装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to an X-ray exposure apparatus used for transferring semiconductor integrated circuit patterns, etc., and is particularly capable of exposing an object to X-rays with a uniform intensity distribution. The present invention relates to an X-ray exposure device.

fb)技術の背景 半導体集積回路の製造においては、回路の集積度が高く
なるにともなって、より微細なパターンの形成が必要と
されるようになり、この目的でザブミクロン回路パター
ンの転写用エックス線露光装置とその光源用エックス線
源の開発がすすめられている。上記のエックス線源とし
ては、現在のところ、放電によって生成されるプラズマ
から発生されるエックス線を利用するプラズマ型のエッ
クス線源が有望視されている。これは従来の電子衝撃型
のエックス線源よりも高い効率が得られるためで、その
中でも気体放電を用いるガス注入型のプラズマエックス
線源が長寿命等の点で注目されている。
fb) Background of the technology In the manufacturing of semiconductor integrated circuits, as the degree of integration of circuits increases, it becomes necessary to form finer patterns. Development of the device and the X-ray source for its light source is progressing. As the above-mentioned X-ray source, a plasma-type X-ray source that utilizes X-rays generated from plasma generated by electric discharge is currently considered to be promising. This is because higher efficiency can be obtained than conventional electron impact type X-ray sources, and among these, gas injection type plasma X-ray sources that use gas discharge are attracting attention for their long life.

(C)従来技術と問題点 ガス注入型のプラズマエ・7クス線源を用いた露光装置
においては、装置の組立精度あるいは長期間の使用中に
おける電極表面の変化等により、生成するプラズマの位
置が線源の機械的中心軸からずれることがあり、その結
果、露光面におけるエックス線の強度分布が線源の機械
的中心軸に対して非対称となる。すなわち、露光面にお
けるエックス線強度分布が不均一となる。
(C) Prior art and problems In exposure equipment that uses a gas injection type plasma Ex-7 source, the position of the generated plasma may vary due to equipment assembly accuracy or changes in the electrode surface during long-term use. The radiation source may be deviated from the mechanical center axis, and as a result, the intensity distribution of the X-rays at the exposure surface becomes asymmetrical with respect to the mechanical center axis of the source. That is, the X-ray intensity distribution on the exposed surface becomes non-uniform.

しかしながら、従来のこの種エックス線露光装置におい
ては、線源の機械的中心軸に対して被露光物体を固定的
に配置する構造となっていたために、上記のような強度
分布の不均一が生じた場合にこれを補正する手段がなく
、被露光物体に対する露光量分布が不均一となり、所望
のパターン精度が得られない等の欠点があった。
However, in conventional X-ray exposure equipment of this type, the object to be exposed is fixedly arranged with respect to the mechanical center axis of the radiation source, which resulted in the non-uniformity of the intensity distribution as described above. In some cases, there is no means to correct this, and the exposure dose distribution to the exposed object becomes non-uniform, resulting in disadvantages such as the inability to obtain desired pattern precision.

(d1発明の目的 本発明は、上記従来のエックス線露光装置における欠点
を解消し、均一な露光を可能とし、以て高精度のパター
ン転写が可能なエックス線露光装置を提供することを目
的とする。
(d1) Purpose of the Invention The object of the present invention is to provide an X-ray exposure apparatus that eliminates the drawbacks of the conventional X-ray exposure apparatus described above, enables uniform exposure, and is capable of highly accurate pattern transfer.

te+発明の構成 本発明は、ガス注入型プラズマエックス線源を用いるエ
ックス線露光装置において、露光面におけるエックス線
強度分布を測定する手段と、該エックス線強度分布に基
づき被露光物体を移動する手段を備えたことを特徴とし
、この場合のエックス線強度を測定する手段として複数
のエックス線検知器を用い、これらを露光面かもしくは
エックス線源と露光面との間かのいずれかに配置するこ
とを特徴とする。
te+ Structure of the Invention The present invention provides an X-ray exposure apparatus using a gas-injected plasma X-ray source, which includes means for measuring an X-ray intensity distribution on an exposure surface and means for moving an object to be exposed based on the X-ray intensity distribution. In this case, a plurality of X-ray detectors are used as means for measuring the X-ray intensity, and these are arranged either on the exposure surface or between the X-ray source and the exposure surface.

ff1発明の実施例 以下に本発明の実施例を図面を参照して説明する。Examples of ff1 invention Embodiments of the present invention will be described below with reference to the drawings.

第1図において、外部制御信号によって、例えば二次元
方向に移動可能な可動台l上に、例えばレジストを塗布
したシリコンウェファのような被露光物体2が載置され
ている。該被露光物体2の表面には所定パターンの開口
部を有するマスク(図示省略;以下同様)が装着されぞ
いる。また、該可動台1の周囲にはエックス線強度分布
測定手段として、例えば半導体検知器のような検知器3
が複数個、線源の機械的中心軸(具体的には後述するア
ノード4に設けられている開口5の中心軸)を中心に対
称に配置されている。本実施例の場合には同図(B)の
平面図に示すように4個が配置されている。
In FIG. 1, an object to be exposed 2, such as a silicon wafer coated with a resist, is placed on a movable table l that can be moved in two dimensions, for example, in response to an external control signal. A mask (not shown; the same applies hereinafter) having openings in a predetermined pattern is attached to the surface of the object 2 to be exposed. Further, around the movable table 1, a detector 3 such as a semiconductor detector is installed as an X-ray intensity distribution measuring means.
are arranged symmetrically about the mechanical central axis of the radiation source (specifically, the central axis of an aperture 5 provided in the anode 4, which will be described later). In the case of this embodiment, four pieces are arranged as shown in the plan view of the same figure (B).

エックス線源の主要部は同図(A)の側面図に示すよう
に、−前記アノード4とカソード6と該カソード6とガ
ス溜(図示省略)との間に設けられた高速バルブ7とか
ら成り、真空容器8内部を真空排気したのち前記高速バ
ルブ7を高速で開閉してカソード6の先端部に設けられ
ているノズル9からガスを噴出させ、該ガス噴出と同期
をとって放電スイッチ10を開閉してアノード4とカソ
ード6間に放電用コンデンサ11に充電されている高電
圧を印加することにより放電を起こさせ、アノード4と
カソード6間の前記開口5部にプラズマ12を生じさせ
る。その結果、該プラズマ12で発生したエックス線が
開口5を通して被露光物体2に照射されるのである。
The main parts of the X-ray source, as shown in the side view of FIG. After evacuating the inside of the vacuum container 8, the high-speed valve 7 is opened and closed at high speed to eject gas from the nozzle 9 provided at the tip of the cathode 6, and in synchronization with the gas ejection, the discharge switch 10 is activated. A high voltage charged in a discharging capacitor 11 is applied between the anode 4 and the cathode 6 by opening and closing to cause discharge, and plasma 12 is generated in the opening 5 between the anode 4 and the cathode 6. As a result, the X-rays generated by the plasma 12 are irradiated onto the object 2 to be exposed through the opening 5.

上記において、可動台1の中心、開口5の中心軸、カソ
ード6の中心軸の相互間に位置すれがある場合、あるい
は長期間における反復放電によって開口5の周辺部また
はカソード6の表面が変形したり、あるいは堆積物が付
着したりした場合には、開口5の中心軸上にプラズマ1
2が生成されず、その結果、被露光物体2におけるエッ
クス線の強度分布は線源の中心軸に関して対称にならな
い。
In the above case, if there is misalignment between the center of the movable base 1, the central axis of the opening 5, and the central axis of the cathode 6, or if the periphery of the opening 5 or the surface of the cathode 6 is deformed due to repeated discharge over a long period of time. If the plasma 1 is deposited on the central axis of the aperture 5,
2 is not generated, and as a result, the X-ray intensity distribution in the exposed object 2 is not symmetrical with respect to the central axis of the source.

この非対称性は被露光物体2が載置されている被露光面
における強度分布を不均一にし、それぞれの検知器3の
検知出力に差を生じる。この様子を第2図に示す。
This asymmetry makes the intensity distribution on the exposed surface on which the exposed object 2 is placed non-uniform, causing a difference in the detection outputs of the respective detectors 3. This situation is shown in FIG.

同図(A)は線源の機械的中心軸を中心として前記被露
光物体2におけるエックス線強度が対称に分布している
場合であって、該中心軸に関して対称位置にある2つの
検知器の検知出力(11およびI2)は等しい。一方、
同図(B)は線源の機械的中心軸に関してエックス線強
度が対称に分布していない場合であって、例えば上記と
同様の2つの検知器の検知出力(IIおよび12)には
差を生じている。ここでエックス線の相対的強度分布曲
線が同図の破線のような形であることが分かっていると
すると、この強度分布の中心位置はCxであり、一方、
前記被露光物体2の中心位置はCsであるから、Csが
Cxと一致するように前記可動台1を移動し、Csを中
心としてエックス線強度分布が対称になるように制御す
る。
Figure (A) shows a case where the X-ray intensity in the exposed object 2 is distributed symmetrically around the mechanical central axis of the radiation source, and the detection by two detectors located symmetrically with respect to the central axis is shown. The outputs (11 and I2) are equal. on the other hand,
Figure (B) shows a case where the X-ray intensity is not distributed symmetrically with respect to the mechanical center axis of the radiation source, and for example, there is a difference between the detection outputs (II and 12) of two detectors similar to the above. ing. Assuming that it is known that the relative intensity distribution curve of X-rays is shaped like the broken line in the figure, the center position of this intensity distribution is Cx, and on the other hand,
Since the center position of the object 2 to be exposed is Cs, the movable table 1 is moved so that Cs coincides with Cx, and the X-ray intensity distribution is controlled to be symmetrical about Cs.

第3図は検知器3を可動台1上に被露光物体2の中心位
置に関して対称に配置した例であって、この構成により
第2図(B)に示したような検知出力(11および12
)を得た場合、単に11とI2が等しくなるように可動
台1を移動させればよく、前記のようなエックス線の相
対的強度分布曲線を仮定する必要がなくなり、被露光物
体2に対する強度分布の制御をより正確に行うことが可
能である。
FIG. 3 shows an example in which the detectors 3 are arranged on the movable table 1 symmetrically with respect to the center position of the object to be exposed 2. With this configuration, the detection outputs (11 and 12) as shown in FIG.
), it is sufficient to simply move the movable table 1 so that 11 and I2 become equal, and there is no need to assume the relative intensity distribution curve of X-rays as described above, and the intensity distribution for the object 2 to be exposed can be controlled more accurately.

第4図は検知器3を被露光物体2とエックス線線源(簡
単にはアノード4)との間に設けた場合であって、検知
器3は、例えば充分大きな径の開口13が設けられてい
る環状支持台14の上に配置されている。また、該環状
支持台14と被露光物体2との間には可動シャンク15
が設けられている。同図の構成によれば、あらかじめ可
動台1の中心と環状支持台14の中心との相対的位置関
係をめておけば、以後は可動シャッタ15を閉じた状態
、すなわち被露光物体2にエックス線を照射しない状態
で検知器3による強度分布測定を行い、第2図(B)に
示したと同様な検知出力(11およびI2)とから可動
台1を移動制御し、被露光物体2の中心と強度分布の中
心とを一致させた状態で可動シャッタ15を開いて露光
を行うことができる。すなわち、均一な強度分布の露光
条件が調えられた状態で露光を行うことが可能となり、
上記他の実施例におけるように露光期間中に位置調整(
強度分布制御)が行われないので、全露光エックス線量
の均一性をより向上できる。
FIG. 4 shows a case where a detector 3 is provided between an object to be exposed 2 and an X-ray source (simply an anode 4), and the detector 3 is provided with an aperture 13 having a sufficiently large diameter, for example. It is arranged on an annular support base 14. Furthermore, a movable shank 15 is provided between the annular support base 14 and the object to be exposed 2.
is provided. According to the configuration shown in the figure, if the relative positional relationship between the center of the movable base 1 and the center of the annular support base 14 is determined in advance, the X-ray Measure the intensity distribution with the detector 3 without irradiating the object, and control the movement of the movable table 1 based on the detection output (11 and I2) similar to that shown in FIG. Exposure can be performed by opening the movable shutter 15 while aligning the center of the intensity distribution. In other words, it is now possible to perform exposure under adjusted exposure conditions with a uniform intensity distribution.
As in the other embodiments above, position adjustment (
Since no intensity distribution control is performed, the uniformity of the total exposure X-ray dose can be further improved.

(g)発明の効果 本発明によれば、ガス注入型のプラズマエンクス線源を
用いたエックス線露光装置において、露光面におけるエ
ックス線強度分布の均一性が向上され、より高精度の露
光が可能となり、高集積度回路パターン等の露光に適し
たエックス線露光装置を提供可能とする効果がある。
(g) Effects of the Invention According to the present invention, in an X-ray exposure apparatus using a gas-injected plasma Enx-ray source, the uniformity of the X-ray intensity distribution on the exposure surface is improved, making it possible to perform exposure with higher precision. This has the effect of making it possible to provide an X-ray exposure apparatus suitable for exposing highly integrated circuit patterns and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るエックス線露光装置の基本概念を
示す図、第2図はエックス線強度分布と均一化制御を説
明するための図、第3図および第4図は本発明の他の実
施例を示す図である。 図において、1は可動台、2は被露光物体、3は検知器
、4はアノード、5および13は開口、6はカソード、
7は高速バルブ、8は真空容器、9はノズル、10は放
電スイッチ、11は放電用コンデンサ、12はプラズマ
、14は環状支持台、15は可動シャッタである。 第1図 第2 図 (A)(β) 晃 3 図 第4図
FIG. 1 is a diagram showing the basic concept of the X-ray exposure apparatus according to the present invention, FIG. 2 is a diagram for explaining the X-ray intensity distribution and uniformization control, and FIGS. 3 and 4 are diagrams showing other embodiments of the present invention. It is a figure which shows an example. In the figure, 1 is a movable table, 2 is an object to be exposed, 3 is a detector, 4 is an anode, 5 and 13 are openings, 6 is a cathode,
7 is a high speed valve, 8 is a vacuum vessel, 9 is a nozzle, 10 is a discharge switch, 11 is a discharge capacitor, 12 is plasma, 14 is an annular support, and 15 is a movable shutter. Figure 1 Figure 2 (A) (β) Akira 3 Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)ガス注入型プラズマエックス線源を用いるエック
ス線露光装置において、露光面におけるエックス線強度
分布を測定する手段と、該エックス線強度分布に基づき
被露光物体を移動する手段を備えたことを特徴とするエ
ックス線露光装置。
(1) An X-ray exposure apparatus using a gas injection plasma X-ray source, characterized by comprising means for measuring an X-ray intensity distribution on an exposure surface and means for moving an object to be exposed based on the X-ray intensity distribution. Exposure equipment.
(2)エックス線強度を測定する手段として複数のエッ
クス線検知器を露光面に配置したことを特徴とする特許
請求の範囲第1項記載のエックス線露光装置。
(2) The X-ray exposure apparatus according to claim 1, characterized in that a plurality of X-ray detectors are arranged on the exposure surface as means for measuring X-ray intensity.
(3)エックス線強度を測定する手段として複数のエッ
クス線検知器をエックス線源と露光面との間に配置した
ことを特徴とする特許請求の範囲第1項記載のエックス
線露光装置。
(3) The X-ray exposure apparatus according to claim 1, wherein a plurality of X-ray detectors are arranged between the X-ray source and the exposure surface as means for measuring X-ray intensity.
JP58115579A 1983-06-27 1983-06-27 X-ray exposure device Pending JPS607722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58115579A JPS607722A (en) 1983-06-27 1983-06-27 X-ray exposure device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58115579A JPS607722A (en) 1983-06-27 1983-06-27 X-ray exposure device

Publications (1)

Publication Number Publication Date
JPS607722A true JPS607722A (en) 1985-01-16

Family

ID=14666073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58115579A Pending JPS607722A (en) 1983-06-27 1983-06-27 X-ray exposure device

Country Status (1)

Country Link
JP (1) JPS607722A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0416811A2 (en) * 1989-09-07 1991-03-13 Canon Kabushiki Kaisha X-ray exposure method and apparatus
EP0421746A2 (en) * 1989-10-03 1991-04-10 Canon Kabushiki Kaisha Exposure apparatus
US5285488A (en) * 1989-09-21 1994-02-08 Canon Kabushiki Kaisha Exposure apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0416811A2 (en) * 1989-09-07 1991-03-13 Canon Kabushiki Kaisha X-ray exposure method and apparatus
US5285488A (en) * 1989-09-21 1994-02-08 Canon Kabushiki Kaisha Exposure apparatus
EP0421746A2 (en) * 1989-10-03 1991-04-10 Canon Kabushiki Kaisha Exposure apparatus

Similar Documents

Publication Publication Date Title
US4712013A (en) Method of forming a fine pattern with a charged particle beam
US4310743A (en) Ion beam lithography process and apparatus using step-and-repeat exposure
US4298803A (en) Process and apparatus for making fine-scale patterns
US3614423A (en) Charged particle pattern imaging and exposure system
EP0104763B1 (en) An electron beam pattern transfer system having an autofocusing mechanism
JPS607722A (en) X-ray exposure device
EP0066243B1 (en) Electron-beam image transfer device
US10056229B2 (en) Charged-particle beam exposure method and charged-particle beam correction method
GB2164787A (en) Electron beam apparatus
Chang et al. Scanning electron beam lithography for fabrication of magnetic bubble circuits
EP0602833A1 (en) Processes for electron lithography
JP6027150B2 (en) Low energy electron beam lithography
GB2203849A (en) Method of exposing a semiconductor water to light from a mercury-vapor lamp
JPS6132998A (en) X-ray transcriber
US4122335A (en) Method and apparatus for mask to wafer gap control in X-ray lithography
JPS622535A (en) Electron beam exposing device
JPS56146138A (en) Method and apparatus for exposing photomask
JPS569742A (en) Developing method of photosensitive resin
Watts Advanced lithography
JPH08250403A (en) Method for projecting patterned ion beam and the device
JPS6148772B2 (en)
JPS6122344A (en) Transfer method of mask pattern
JPS5950216B2 (en) X-ray exposure device
JPH0373982B2 (en)
JPS5638475A (en) Fabrication of photomask