JPH0373982B2 - - Google Patents

Info

Publication number
JPH0373982B2
JPH0373982B2 JP21900782A JP21900782A JPH0373982B2 JP H0373982 B2 JPH0373982 B2 JP H0373982B2 JP 21900782 A JP21900782 A JP 21900782A JP 21900782 A JP21900782 A JP 21900782A JP H0373982 B2 JPH0373982 B2 JP H0373982B2
Authority
JP
Japan
Prior art keywords
electrode
ray generation
ray
plasma
generation chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21900782A
Other languages
Japanese (ja)
Other versions
JPS59108249A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP21900782A priority Critical patent/JPS59108249A/en
Publication of JPS59108249A publication Critical patent/JPS59108249A/en
Publication of JPH0373982B2 publication Critical patent/JPH0373982B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/003X-ray radiation generated from plasma being produced from a liquid or gas

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明はX線発生方法及びX線発生装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to an X-ray generation method and an X-ray generation device.

(b) 技術の背景 IC、LSI等の半導体装置の製造に際し、微細パ
ターンを得るためのホトリソグラフイ技術におい
て、従来の紫外線を用いてホトレジスト膜を露光
する代わりに、より波長の短いX線を用いて露光
する方法が取られるようになつている。
(b) Background of the technology In photolithography technology for obtaining fine patterns when manufacturing semiconductor devices such as ICs and LSIs, instead of exposing photoresist films using conventional ultraviolet rays, X-rays with shorter wavelengths are used. Increasingly, the method of exposure using

このようなX線を用いたX線転写装置に必要な
X線源として各種のプラズマX線源の開発が進め
られている。
Various plasma X-ray sources are being developed as an X-ray source necessary for such an X-ray transfer device using X-rays.

(c) 従来技術と問題点 このようなX線源におけるX線の発生方法とし
て従来はプラズマフオーカス型やガス噴出型があ
る。
(c) Prior Art and Problems Conventionally, methods for generating X-rays in such an X-ray source include a plasma focus type and a gas jet type.

前者の方法は真空に排気されたX線発生室内へ
円柱状のステンレス等よりなる第1の電極とその
周囲に該第1の電極と同一中心軸を有し、内部が
くり抜かれた円筒状のステンレス等よりなる第2
の電極とを設け、前記X線発生室内へクリプトン
(Kr)のようなプラズマ発生用ガスを導入する。
そして前記第1、第2の電極間に高電圧を印加し
て放電を生じさせ、この放電によつて導入された
ガスをプラズマ状にして発生したX線をX線発生
室より外部に照射するものである。
In the former method, a cylindrical first electrode made of stainless steel or the like is placed in an evacuated X-ray generation chamber, and a cylindrical electrode having the same central axis as the first electrode and hollowed out is placed around the first electrode. The second part is made of stainless steel, etc.
A plasma generating gas such as krypton (Kr) is introduced into the X-ray generating chamber.
Then, a high voltage is applied between the first and second electrodes to generate a discharge, and the gas introduced by the discharge is turned into a plasma and the generated X-rays are irradiated to the outside from the X-ray generation chamber. It is something.

また後述の方法は、真空に排気したX線室内へ
バルブを用いて高速でKrガスのようなプラズマ
発生用ガスを導入し、このガスの通路に設けた電
極で放電を生じさせ、導入されたガスにプラズマ
を発生させるようにしたものである。
The method described below uses a valve to introduce a plasma-generating gas such as Kr gas into an evacuated X-ray chamber at high speed, and generates a discharge with an electrode installed in the gas passage. It is designed to generate plasma in gas.

ところで前者の方法では、発生したプラズマを
効率良く収縮化するのが不充分で、その結果X線
の発生効率が低いといつた欠点があり、また後者
の方法はプラズマ発生用ガスをX線発生室へ高速
に導入するための機械的なバルブを用いる必要が
あり、X線発生装置の信頼度が低下する欠点があ
る。
However, the former method has the drawback that it is insufficient to efficiently contract the generated plasma, resulting in low X-ray generation efficiency, and the latter method has the disadvantage that the plasma generation gas is used to generate X-rays. It is necessary to use a mechanical valve to introduce the X-ray into the chamber at high speed, which has the disadvantage of reducing the reliability of the X-ray generator.

(d) 発明の目的 本発明は上述した欠点を除去し、一つのX線発
生内にプラズマの発生と収縮との二つの機能を別
個に持たせて、X線発生効率を向上させ、かつ機
械的なバルブを必要としない高信頼度のX線発生
方法及びX線発生装置の提供を目的とするもので
ある。
(d) Purpose of the Invention The present invention eliminates the above-mentioned drawbacks, provides two separate functions of plasma generation and plasma contraction within one X-ray generator, improves the X-ray generation efficiency, and improves the mechanical The object of the present invention is to provide a highly reliable X-ray generation method and an X-ray generation device that do not require a standard valve.

(e) 発明の構成 かかる目的を達成するための本発明のX線発生
方法は、真空に排気し得るX線発生室と、該X線
発生室内に設けられた柱状の第1の電極と、該X
線発生室内に設けられ、該第1の電極と絶縁さ
れ、該第1の電極の周囲に中空領域を形成するよ
うに配置された第2の電極と、該X線発生室内に
設けられ、該第1及び第2の電極と絶縁され、第
1及び第2の電極とは隔てられた位置に設けら
れ、少なくとも該第1の電極の中心軸の通る位置
に開口が設けられた第3の電極とを有し、該X線
発生室内にプラズマ発生用ガスを導入後、該第1
の電極と第2の電極間に電圧を印加し、次いで該
第2の電極と第3の電極間に電圧を印加すること
を特徴とし、 またそのX線発生装置は、真空に排気し得るX
線発生室と、該X線発生室内に設けられた柱状の
第1の電極と、該X線発生室内に設けられ、該第
1の電極と絶縁され、該第1の電極の周囲に中空
領域を形成するように配置された第2の電極と、
該X線発生室内に設けられ、該第1及び第2の電
極と絶縁され、第1及び第2の電極とは隔てられ
た位置に設けられ、少なくとも該第1の電極の中
心軸の通る位置に開口が設けられた第3の電極
と、該第1の電極と第2の電極間に電圧を印加す
る第1の電圧印加手段と、該第2の電極と第3の
電極間に電圧を印加する第2の電圧印加手段とを
有することを特徴とするものである。
(e) Structure of the Invention The X-ray generation method of the present invention for achieving the above object includes: an X-ray generation chamber that can be evacuated to a vacuum; a columnar first electrode provided in the X-ray generation chamber; The X
a second electrode provided within the X-ray generation chamber, insulated from the first electrode, and arranged to form a hollow region around the first electrode; a third electrode insulated from the first and second electrodes, provided at a position separated from the first and second electrodes, and having an opening at least at a position through which the central axis of the first electrode passes; and after introducing the plasma generation gas into the X-ray generation chamber, the first
The X-ray generator is characterized in that a voltage is applied between the electrode and the second electrode, and then a voltage is applied between the second electrode and the third electrode, and the X-ray generator includes an
a ray generation chamber; a columnar first electrode provided within the X-ray generation chamber; and a hollow region provided within the X-ray generation chamber, insulated from the first electrode, and surrounding the first electrode. a second electrode arranged to form a second electrode;
Provided within the X-ray generation chamber, insulated from the first and second electrodes, provided at a position separated from the first and second electrodes, and at least a position through which the central axis of the first electrode passes. a third electrode provided with an opening; a first voltage applying means for applying a voltage between the first electrode and the second electrode; and a voltage applying means for applying a voltage between the second electrode and the third electrode. The device is characterized in that it has a second voltage applying means for applying.

(f) 発明の実施例 以下本発明の一実施例につき図面を用いて詳細
に説明する。図は本発明のX線発生装置を行うた
めの装置の断面図で内部が中空の円筒状のステン
レスより形成されているX線発生室1においてセ
ラミツク等よりなる絶縁基板2上に円柱状のステ
ンレスよりなる第1の電極3を設ける。そして該
第1の電極3の周囲に該第1の電極と同一の中心
軸を有し、内部が中空の円筒状のステンレスより
なる第2の電極4を設ける。そして該第1の電極
3および第2の電極4よりX線が照射される方向
へ所定の間隔を距てて、前記第1の電極3および
第2の電極4と同一の中心軸を有し、かつ中央部
が円形にくり抜かれた円板状のステンレスよりな
る第3の電極5を設ける。勿論この第3の電極5
とX線発生室1との間にはセラミツクよりなる円
板状の絶縁部材6が設けられている。
(f) Embodiment of the Invention An embodiment of the present invention will be described in detail below with reference to the drawings. The figure is a cross-sectional view of an apparatus for performing the X-ray generation apparatus of the present invention. In the X-ray generation chamber 1, which is made of hollow cylindrical stainless steel, a cylindrical stainless steel is placed on an insulating substrate 2 made of ceramic or the like. A first electrode 3 is provided. A second electrode 4 made of stainless steel and having the same central axis as the first electrode and having a hollow cylindrical shape inside is provided around the first electrode 3. The first electrode 3 and the second electrode 4 are spaced apart from each other by a predetermined distance in the direction in which X-rays are irradiated, and have the same central axis as the first electrode 3 and the second electrode 4. , and a third electrode 5 made of stainless steel and having a circular shape cut out in the center is provided. Of course, this third electrode 5
A disc-shaped insulating member 6 made of ceramic is provided between the X-ray generating chamber 1 and the X-ray generating chamber 1.

このようなX線室1内を真空に排気したのちガ
ス導入孔7より室内が1Torr程度の圧力となるま
でアルゴン(Ar)ガスを導入する。そしてコン
デンサ8には抵抗9によつて高電圧を蓄積させて
おき、Arガスの導入後スイツチ10を閉じる。
このようにすると絶縁基板2上に層上に放電によ
つて電流が生じ、この電流によつて磁場が生じ
る。この電流と磁場で発生したプラズマが第1の
電極の中心軸11上の一点Aに収束するようにな
り、このようにプラズマがA点に収束し高密度に
なつた段階でスイツチ12を閉じる。すると抵抗
13によつてコンデンサ14に貯えられている電
荷によつてA点に収束したプラズマが中心軸11
上に収縮されるようになる。この理由は、プラズ
マがA点に収束するとはいえ、従来技術と問題点
のところで説明したように、プラズマフオーカス
型では発生したプラズマを効率よく収縮化するの
が不十分なので、A点以外の部分にもプラズマが
ある程度存在する。この状態で上記のようにスイ
ツチ12を閉じ第2の電極と第3の電極との間に
電圧を印加すると、中心軸11に沿つてプラズマ
電流が流れ、これにより発生する磁場との相互作
用により中心軸11に沿つて存在するプラズマは
中心軸11方向に力を受け、この力によりプラズ
マが中心軸11上に収縮される。
After the interior of the X-ray chamber 1 is evacuated, argon (Ar) gas is introduced through the gas introduction hole 7 until the pressure in the interior reaches a pressure of about 1 Torr. A high voltage is stored in the capacitor 8 through a resistor 9, and a switch 10 is closed after introducing Ar gas.
In this way, a current is generated on the layer on the insulating substrate 2 by discharge, and this current generates a magnetic field. The plasma generated by this current and magnetic field comes to converge at one point A on the central axis 11 of the first electrode, and when the plasma converges at point A and becomes highly dense, the switch 12 is closed. Then, the plasma focused on point A due to the charge stored in the capacitor 14 by the resistor 13
It will be contracted upwards. The reason for this is that although the plasma converges at point A, as explained in the section on conventional technology and problems, the plasma focused type is insufficient to efficiently contract the generated plasma. There is also some plasma present in some parts. In this state, when the switch 12 is closed as described above and a voltage is applied between the second and third electrodes, a plasma current flows along the central axis 11, and due to the interaction with the magnetic field generated thereby. The plasma existing along the central axis 11 receives a force in the direction of the central axis 11, and this force causes the plasma to contract onto the central axis 11.

このように中心軸11上にプラズマが収縮され
ると、従来の方法よりプラズマが高密度かつ高温
度になりX線の発生を容易に促進することになり
X線の発生効率が高まることになる。
When the plasma is contracted on the central axis 11 in this way, the plasma becomes denser and has a higher temperature than in the conventional method, which facilitates the generation of X-rays and increases the efficiency of X-ray generation. .

また第1、第2の電極を用いてプラズマの発生
および収束を行い、第1、第3の電極を用いて発
生したプラズマの収縮を行わせる等、同一のX線
発生室内において機能を分担させて持たせている
ので、プラズマの発生収束と、プラズマの収縮と
をそれぞれ別個に最適条件で実施することがで
き、X線発生効率が向上する。
In addition, functions are shared within the same X-ray generation chamber, such as generating and converging plasma using the first and second electrodes, and contracting the generated plasma using the first and third electrodes. Therefore, plasma generation and convergence and plasma contraction can be performed separately under optimal conditions, thereby improving X-ray generation efficiency.

また従来のガス噴出型のX線発生装置における
高速バルブのような機械的操作を用いないのでX
線発生装置の信頼度が向上する利点を生じる。
In addition, since it does not use mechanical operations such as high-speed valves in conventional gas jet type X-ray generators,
This has the advantage of improving the reliability of the line generator.

(g) 発明の効果 以上述べたように、本発明のX線発生方法及び
X線発生装置によれば、高温度、高密度のプラズ
マの発生が容易となり、これを用いると高効率、
高信頼度のX線発生方法及びX線発生装置が得ら
れる利点を生じる。
(g) Effects of the invention As described above, according to the X-ray generation method and X-ray generation apparatus of the present invention, it is easy to generate high-temperature, high-density plasma.
The advantage is that a highly reliable X-ray generation method and X-ray generation device are obtained.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明のX線発生方法及びX線発生装置に
用いる装置の断面図である。 図において、1はX線発生室、2,6は絶縁基
板、3は第1の電極、4は第2の電極、5は第3
の電極、7はガス導入孔、8,14はコンデン
サ、9,13は抵抗、10,12はスイツチ、1
1は中心軸、を示す。
The figure is a sectional view of an apparatus used for the X-ray generation method and X-ray generation apparatus of the present invention. In the figure, 1 is an X-ray generation chamber, 2 and 6 are insulating substrates, 3 is a first electrode, 4 is a second electrode, and 5 is a third electrode.
, 7 is a gas introduction hole, 8 and 14 are capacitors, 9 and 13 are resistors, 10 and 12 are switches, 1
1 indicates the central axis.

Claims (1)

【特許請求の範囲】 1 真空に排気し得るX線発生室と、 該X線発生室内に設けられた柱状の第1の電極
と、 該X線発生室内に設けられ、該第1の電極と絶
縁され、該第1の電極の周囲に中空領域を形成す
るように配置された第2の電極と、 該X線発生室内に設けられ、該第1及び第2の
電極と絶縁され、第1及び第2の電極とは隔てら
れた位置に設けられ、少なくとも該第1の電極の
中心軸の通る位置に開口が設けられた第3の電極
とを有し、 該X線発生室内にプラズマ発生用ガスを導入
後、該第1の電極と第2の電極間に電圧を印加
し、次いで該第2の電極と第3の電極間に電圧を
印加することを特徴とするX線発生方法。 2 真空に排気し得るX線発生室と、 該X線発生室内に設けられた柱状の第1の電極
と、 該X線発生室内に設けられ、該第1の電極と絶
縁され、該第1の電極の周囲に中空領域を形成す
るように配置された第2の電極と、 該X線発生室内に設けられ、該第1及び第2の
電極と絶縁され、第1及び第2の電極とは隔てら
れた位置に設けられ、少なくとも該第1の電極の
中心軸の通る位置に開口が設けられた第3の電極
と、 該第1の電極と第2の電極間に電圧を印加する
第1の電圧印加手段と、該第2の電極と第3の電
極間に電圧を印加する第2の電圧印加手段とを有
することを特徴とするX線発生装置。
[Scope of Claims] 1. An X-ray generation chamber that can be evacuated to a vacuum, a columnar first electrode provided within the X-ray generation chamber, and a columnar first electrode provided within the X-ray generation chamber. a second electrode that is insulated and arranged to form a hollow region around the first electrode; and a third electrode provided at a position separated from the second electrode and having an opening at least at a position through which the central axis of the first electrode passes, plasma generation within the X-ray generation chamber. 1. An X-ray generation method, comprising: applying a voltage between the first electrode and the second electrode, and then applying a voltage between the second electrode and the third electrode after introducing a gas for generating X-rays. 2. an X-ray generation chamber that can be evacuated; a columnar first electrode provided within the X-ray generation chamber; a second electrode arranged to form a hollow region around the electrode; and a second electrode provided within the X-ray generation chamber and insulated from the first and second electrodes, and a third electrode which is provided at a separated position and has an opening at least at a position through which the central axis of the first electrode passes; and a third electrode which applies a voltage between the first electrode and the second electrode. An X-ray generator comprising: one voltage application means; and a second voltage application means that applies a voltage between the second electrode and the third electrode.
JP21900782A 1982-12-13 1982-12-13 X-ray generating method Granted JPS59108249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21900782A JPS59108249A (en) 1982-12-13 1982-12-13 X-ray generating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21900782A JPS59108249A (en) 1982-12-13 1982-12-13 X-ray generating method

Publications (2)

Publication Number Publication Date
JPS59108249A JPS59108249A (en) 1984-06-22
JPH0373982B2 true JPH0373982B2 (en) 1991-11-25

Family

ID=16728795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21900782A Granted JPS59108249A (en) 1982-12-13 1982-12-13 X-ray generating method

Country Status (1)

Country Link
JP (1) JPS59108249A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61198598A (en) * 1985-02-28 1986-09-02 Hitachi Ltd X-ray generating equipment
JPS62177842A (en) * 1986-01-31 1987-08-04 Hitachi Ltd X-ray generating device
KR920004961B1 (en) * 1988-12-30 1992-06-22 한국 전기통신공사 X-ray generation system for an ultra fine lithography and a method therefor

Also Published As

Publication number Publication date
JPS59108249A (en) 1984-06-22

Similar Documents

Publication Publication Date Title
KR20160089515A (en) Direct current superposition freeze
US3865624A (en) Interconnection of electrical devices
JPH0373982B2 (en)
US6355574B1 (en) Method and device for treating a semiconductor surface
JP2843249B2 (en) Method and apparatus for manufacturing a device
Chang et al. Scanning electron beam lithography for fabrication of magnetic bubble circuits
JPS607723A (en) Plasma x-ray exposing device
US4555460A (en) Mask for the formation of patterns in lacquer layers by means of X-ray lithography and method of manufacturing same
JPS61163547A (en) X-ray pickup window
JP3168593B2 (en) Method for generating compound thin film pattern using high-intensity focused ion beam
JPH0614456B2 (en) Ultra-fine shape soft X-ray generator and method
JP3589278B2 (en) Method and apparatus for generating pinch plasma
JP3584785B2 (en) Method of forming fluororesin film, semiconductor device and method of manufacturing the same
RU2205469C1 (en) Method for producing three-dimensional conducting structure
JPH0638391B2 (en) X-ray exposure device
JPS62229844A (en) Thin-film deposition method
JPS6154631A (en) Etching process
JPS59158097A (en) High voltage switch
JPH05283369A (en) Fine processing device
JPS62219924A (en) Manufacture of x-ray mask
JP2655513B2 (en) Electron beam exposure equipment
JPH02253548A (en) Gas ion source and ion beam machining device using it
JPH08264444A (en) Method and apparatus of forming circuit pattern and integrated circuit formed by the method
JPS5852325B2 (en) Plasma etching processing method and processing equipment
JPH02117131A (en) Focussed ion beam processor