GB2203849A - Method of exposing a semiconductor water to light from a mercury-vapor lamp - Google Patents

Method of exposing a semiconductor water to light from a mercury-vapor lamp Download PDF

Info

Publication number
GB2203849A
GB2203849A GB08810523A GB8810523A GB2203849A GB 2203849 A GB2203849 A GB 2203849A GB 08810523 A GB08810523 A GB 08810523A GB 8810523 A GB8810523 A GB 8810523A GB 2203849 A GB2203849 A GB 2203849A
Authority
GB
United Kingdom
Prior art keywords
mercury
power consumption
vapor lamp
level
exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB08810523A
Other versions
GB8810523D0 (en
GB2203849B (en
Inventor
Takehiro Kira
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Original Assignee
Ushio Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK filed Critical Ushio Denki KK
Publication of GB8810523D0 publication Critical patent/GB8810523D0/en
Publication of GB2203849A publication Critical patent/GB2203849A/en
Application granted granted Critical
Publication of GB2203849B publication Critical patent/GB2203849B/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70558Dose control, i.e. achievement of a desired dose
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Discharge-Lamp Control Circuits And Pulse- Feed Circuits (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

In a step-and-repeat process for exposing a water (2) to light through a mask (11), using light from a short-arc mercury-vapor lamp (1) in a continuously lit state, exposure being effected while the power consumption of the lamp is at a high level with (shutter 4 open) and shifting of the wafer being effected while the power consumption of the lamp is at a low level (with shutter 4 closed), power consumption of the lamp is allowed to reach 95% of the high level value within 1-30 msec. <IMAGE>

Description

METHOD OF EXPOSING A SEMICONDUCTOR WAFER TO LIGHT FROM A MERCURY-VAPOR LAMP This invention relates to a method of exposing a semiconductor wafer to light from a mercury-vapor lamp.
Upon fabrication of a semiconductor device such as an integrated circuit, large-scale integrated circuit, super large-scale integrated circuit or the like, a photofabrication process is carried out. For example, in order to remove portions of a silicon oxide film formed on a surface of a substrate, which is for example a silicon wafer, a photofabrication process is carried out in accordance with an image pattern such as a circuit pattern. This photofabrication process includes such steps that a photoresist film is formed over the silicon oxide film on the silicon substrate and the photoresist film is then exposed to ultraviolet rays through a photomask having a pattern image. After exposure, the photoresist film is developed and the silicon oxide film is then subjected to an etching treatment.Thereafter, a circuit-forming treatment such as diffusion, ion implantation or the like is applied to the silicon substrate through the thusetched silicon oxide film.
A semiconductor wafer is generally circular with its surface area intended to be divided into minute square sections arranged in rows and columns.
These minute sections will each be cut afterwards to form chips which will be semiconductor devices respectively. A sheet of semiconductor wafer is generally 3 inches, 5 inches or 6 inches across. The sizes of such semiconductor wafers tend to increase coupled with progresses in their fabrication technology.
A high-output mercury-vapor lamp is virtually indispensable in order to expose the entire surface of a semiconductor wafer simultaneously so that all the minute sections, which will individually be formed into chips, are printed at once. Use of such a high-output mercury-vapor lamp is however accompanied by such problems that it requires a large exposure system containing the lamp assembly, and a considerably high degree of technique is required for uniformity of illuminance on the surface of the semiconductor wafer. Consequently, it is vary difficult to use to print the now preferred larger semiconductor wafers in practice.
With the foregoing in view, it has recently been proposed to expose minute sections, which are arranged in rows and columns on a semiconductor wafer, one after another successively so that pattern images are printed successively and respectively on the minute sections. In such a stepwise exposure method, it is the practice to expose an area equivalent to only one of the minute sections in each exposure operation.
Therefore, the stepwise exposure method permits the use of a low-output mercury-lamp, thereby bringing about such substantial advantages that an exposure system employed would have been reduced in size and the illuminance can be readily made uniform on the surface of each semiconductor wafer because the area of each exposure is small. As a result, a pattern image can be printed with a high degree of accuracy.
A mercury-vapor lamp cannot however be repeatedly turned on and off in a short cycle because the enclosed mercury vapor undergoes condensation while the lamp is turned off. It is therefore advantageous to cause a mercury-vapor lamp to light repeatedly and alternately at a low power consumption level and at a high power consumption level while maintaining the mercury-vapor lamp in a continuously-lit state, to expose a minute section of a semiconductor wafer, which minute section has assumed an exposure position, to the light from the mercury-vapor lamp when the mercuryvapor lamp is lit at the high power consumption level, and when the mercury-vapor lamp is. lit at the low power consumption level, to shift the semiconductor wafer stepwise so that another minute section of the semiconductor wafer, which another minute section is to be subjected to next exposure, is allowed to assume the exposure position, while the light from the mercuryvapor lamp is cut off by means of a shutter. The above method can provide a required level of light quantity at the high power consumption level and at the same time, keeps the mercury-vapor lamp in its lit state at the low power consumption level while avoiding wasting of electric power.
In such a stepwise exposure method, the light of the mercury-vapor lamp is not utilized while the shutter is closed, resulting in such drawbacks that a lot of electricity is still wasted and the shutter is susceptible to considerable damage due to its exposure to the high-energy light. The shutter is required to operate quick, because if its opening or closing motion should be slow, non-uniform exposure of a semiconductor wafer' due to such a slow opening or closing motion of the shutter becomes a problem. In order to meet this requirement, it is indispensable that the shutter has a light weight. However, a light-weight shutter will inevitably result in poor heat resistance.As a result, such a light-weight shutter tends to undergo deformation due to heat which is built up while shielding the light and hence to develop a malfunction which impairs its smooth opening and closing operation.
With the foregoing in view, it may be contemplated to light, during each closure period of the shutter, the mercury-vapor lamp with a power consumption smaller than its power consumption during the exposure time, i.e., while the shutter is,kept open.
Such an exposure method has however been found to involve a new problem. Namely, when the power consumption of the mercury-vapor lamp is varied at a short time interval to conduct the exposure treatment of the semiconductor wafer at a high speed while keeping the mercury-vapor lamp lit continuously, its electrodes are subjected to severe wear and. the quantity of light radiated from the mercury-vapor lamp is thus gradually reduced with the passage of the lit time of the mercury-vapor lamp. Moreover, the service life of the mercubry-vapor lamp becomes shorter. As a result, it is not possible to carry out stable exposure continuously at the initial degree of exposure over a long period of time.
With the foregoing in view, the present invention has as its object the provision of a method for exposing a semiconductor wafer by a mercury-vapor lamp, in which method the wearing of the electrodes of the mercury-vapor lamp is avoided and an exposure, which is repeated at a short tie interval, can be stably zonducted over a long period of time while enjoying prolonged service life of the mercury-vapor lamp; in other words, a low fabrication cost.
According to the present invention, there is provided a nethod for exposing, through a pattern mask, successive snall sections of a semiconductor wafer to light radiated from a mercury-vapor lamp in high-level steps, during each of which steps the power consumption of the mercury-vapor lamp is at a high level, by continuously lighting the nercury-vapor lamp and repeatedly alternating the highlevel steps with the low-level steps during which the power consumption of the mercury-vapor lamp is at a low level, characterised in that the switch-over from each low-level step to its subsequent high-lvel step is carried out in such a way that the power consumption of the mercury-vapor lamp reaches 95% of the power consumption in the high-level step within a period of from 1 msec. to 30 msec.
The exposure method of this invention is effective in avoiding or minimizing wear of the electrodes of a mercury-vapor lamp. Thus, the mercury-vapor lamp can enojoy long service life while permitting stable exposure over a long period of time.
The above objects, features and advantages of the present invention will become apparent from the following description and the appended claim, taken in conjunction with the accompanying draxings, wherein Fig. 1 is a simplified schematic illustration of one example of an exposure system; Fig. 2 is a graphic representation showing one example of the waveform of power consumption of a mercury-vapor lamp, which waveform varies due to the repetition of a high-level step and a low-level step; Fig. 3 is a fragmentary plan view of a semiconductor wafer, illustrating some of the sections to be exposed; Fig. 4 is a diagram showing overs#hoot and undershoot in the waveform of discharge current for a mercury-vapor lamp; Fig. 5 is a schematic illustration of one example of mercury-vapor lamps;; Fig. 6 is an enlarged fragmentary schematic illustration of the mercury-vapor lamp depicted in Fig. 5; and Fig. 7 is a diagram showing the rising manner of the power consumption of the mercury-vapor lamp from a low-level step to its subsequent high-level step.
The invention will hereinafter be described in detail with reference to the accompanying drawings.
For printing a pattern image by ultraviolet rays in such a manner as mentioned above, there is employed an exposure system having such an optical lightfocusing and projection system as depicted for example in Fig. 1. In Fig. 1, numeral 1 indicates a short-arc mercury-vapor lamp which is an exposing light source. This short-arc mercury-vapor lamp 1 is installed at such a position that its arc is located on the focal point of a light-focusing mirror 5.Light L, which has been given off from the short-arc mercuryvapor lamp 1, is focused by the light-focusing mirror 5, and is then projected onto a photomask 11 bearing a circuit pattern image thereon by way of a first plane mirror 6, integrator 8, second plane mirror 7 and condenser lens 10. Light, which has been transmitted through the photomask '11, is projected via a reducing lens 12 onto a semiconductor wafer 2 supported in place on a susceptor (not shown) and bearing a photoresist film made of an ultraviolet ray sensitive resin and formed on the upper surface of the semiconductor wafer 2, thereby to print on the semiconductor wafer 2 a circuit pattern image corresponding to the photomask 11 but reduced in size with a reduction ratio of 1/10 1/5. Designated by numeral 4 is a shutter, whereas numeral 9 indicates a filter.
In the present invention, a semiconductor wafer is exposed in the following manner. In the system shown in Fig. l, electric power is continuously fed to a mercury-vapor lamp I built in a light-focusing mirror 5 so that the mercury-vapor lamp 1 is lit continuously.
While maintaining the above lighting state, the electric power to be fed to the mercury-vapor lamp 1 is then controlled by ar operation control circuit 3 so that the electric power takes the basic waveform illustrated by way of example in Fig. 2. Accordingly, the power consumption level of the mercury-vapor lamp 1 is alternated periodically and repeatedly between a high level, namely, Step A during which the power consumption of the mercury-vapor lamp 1 is of such a level as about 1.3 - 2.5 times the rated power consumption of the mercury-vapor lamp 1, and a low level, namely, Step B during which the power consumption of the mercury-vapor lamp 1 is of a level equal or close to its rated power consumption.In Step A of the high power consumption level, a shutter 4 is opened and then closed so as to cause the light radiated from the mercury-vapor lamp 1 to expose a small section of a semiconductor wafer 2 through a photomask 11 for a constant time period, which small section is placed at an exposing position.
The extent of' exposure may be controlled to a prescribed desired level on the exposed surface of the semiconductor wafer 2 by setting the opening time of the shutter 4 suitably. In other words, the extent of exposure may be controlled by holding the shutter 4 in its opened position while the mercury-vapor lamp 1 is lit in Step A in which the power consumption of the mercury-vapor lamp l is at the high level. Then, after closing the shutter 4, the mercury-vapor lamp 1 is lit in Step B in which its power consumption is at the low level. During Step B, the shutter is kept closed.
The repeated alternation of Step A of the high level and Step B of the low level is carried out in synchronization with the manner of the stepwise shifting of the semiconductor wafer 2. Namely, as shown in Fig.
3, the semiconductor wafer 2 is supposed to be divided into a number of minute sections P arranged in rows and columns. These minute sections P are then shifted stepwise one after another successively to the exposure position in the exposure system, where they are exposed one after another successively while held briefly at a standstill there. One exposure operation is completed after the opening and closing action of the shutter 4 while the mercury-vapor lamp 1 is lit in Step A, thereby printing a pattern image on one of the minute sections P of the semiconductor wafer 2. The wafer 2 is shifted stepwise while the shutter 4 is closed, so that another minute section P, which is to be exposed next, reaches the exposure position. Exposure is then repeated in the same manner so as to complete the exposure of all minute sections P arranged on the semiconductor wafer.
In the above manner, the mercury-vapor lamp 1 is lit while continuously and repeatedly alternating Step A of the high power consumption level and Step B of the low power consumption level. The opening and closing operation of the shutter 4 and the stepwise shifting position of the semiconductor wafer 2 are controlled in association with Step A and Step B. The time period Ta of each Step A of the high power consumption level may be set constant, for example within the range of from 100 msec. to 1000 msec.1 whereas the time periods Tb of Steps B of the low power consumption level may be the same or different and may range for example from 100 msec. to 1000 msec.
At the same time, the switch-over from Step A of the high power consumption level to Step B of the low power consumption level is effected, as depicted in Fig. 4, while controlling the magnitudes of the overshoot I and undershoot I2 of the mercury-vapor lamp 1 below 10%. Here, the term "the magnitude of the overshoot means the ratio of the height hl, which protrudes upwardly from the steady high level il, to the height H from the low level to the high level in the rising time from the low level of the discharge current to its high level in Fig. 4. On the other hand, by the term "the magnitude of the undershoot 1211 is meant the ratio of the height h2, which protrudes downwardly from the steady low#level i2, to the height H from the low level to the high level. The means for controlling the magnitudes of the overshoot I1 and undershoot 12 of the waveform of the discharge current below 108 is not necessarily limited to any particular means. A known structure of power source circuit may be employed. If the magnitudes of the overshoot I1 and undershoot 12 should exceed 10%, the electrodes of the mercury-vapor lamp will undergo severe wear, thereby considerably reducing the practically-applicable service life of the mercury-vapor lamp.
In the above method, it is preferred to repeat Step A of the high energy consumption level while increasing the power consumption little by little with the passage of time, so that the time-dependent gradual reduction of the quantity of light to be radiated in Steps A can be compensated.
Fig. 5 is a schematic illustration showing one example of a short-arc mercury-vapor lamp 1 to be assembled as an exposing light source in an exposure system useful in the practice of one embodiment of this invention. In Fig. 5, numeral 101 indicates an envelope made of silica glass, which is equipped at both end portions thereof with bases 102A, 102B, respectively. Designated at numeral 10.3, 104 are respectively an anode-supporting stem and cathode supporting stem. An anode 105 is mounted on the tip of the anode-supporting stem 103, whereas a cathode 106 is fixedly attached to the tip of the cathode-supporting stem 104. The anode 105 and cathode 106 are disposed in a face-to-face relation, centrally, in the interior of the envelope 101.As illustrated on the enlarged scale in Fig. 6, the anode 105 is formedofa base portion 51 having a large diameter column-like shape and a truncated conical tip portion or frusto-conical tip portion 53 extending frontwardly and inwardly from the base portion 51 and terminating in a planar tip surface 52. The cathode 106 is formed of a base portion 61 and a cone-like tip portion 62.
An illustrative specification of such a short-arc mercury-vapor lamp 1 is as follow: Specification: Rated power consumption 500 W (SOV,lOA) Anode 105: Outer diameter D1 of the base 4.0 mm portion 51 Diameter D2 of the tip surface 52 2.0 mm Opening angle of the tip 90 degrees portion 53 Cathode 106: Outer diameter D of the base 2.0 mm portion 61 Interelectrode distance 3.0 mm Pressure in the envelope about 13 atms.
while the lamp is turned on Using a semiconductor wafer exposure system equipped with a mercury-vapor lamp of the above structure,built#in as an exposing light source, pattern exposure was conducted on a silicon semiconductor wafer in accordance with the stepwise exposure method while controlling the lighting of the mercury-vapor lamp under the following conditions.
Step A Time interval Ta: 400 msec.
Power consumption: Maintained constant at 750 W from the beginning until an elapsed time of 300 hours, and then gradually increased to a final power consumption of 1 KW after the elapsed time of 300 hours until an elapsed time of 600 hours.
Step B Time interval Tb: 400 msec.
Power consumption: Maintained constant at 500 W.
The magnitudes of the overshoot 11 and undershoot I2 in the waveform of the discharge current: 5% Under the above conditions, it was possible to achieve the same exposure results as the initial exposure results even after an elapsed time of 600 hours.
Further exposure tests were also carried out under the same conditions as the above test, except that the magnitudes of the overshoot 11 and undershoot 12 in the waveform of the discharge current were changed to various values given in Table 1. When the overshoot I1 and undershoot 12 exceeded 10%, the practically-applicable service life of mercury-vapor lamps became considerably shorter, as indicated also in Table 1.
Table 1 The magnitudes of overshoot Practically-applicable I1 and undershoot 12 (%) service life of vapor lamp (hours) 6 600 8 600 12 500 15 500 20 300 25 300 The method of this invention can bring about the following advantageous effects: (1) The mercury-vapor lamp is lit at a low power consumption level while the light radiated from the mercury-vapor lamp is not used for exposure. It is thus possible to reduce, to a significant extent, the electricity to be wasted by the mercury-vapor lamp and, at the same time, to avoid possible damage to the shutter due to its overheating. In a preferred embodiment, the mercury-vapor lamp may be lit at its rated power consumption level in the steps of the low power consumption level and its power consumption is increased in the steps of the high power consumption level.Thus, the degree of exposure can be adjusted as needed or desired. Accordingly, the exposure of semiconductor wafers can be suitably carried out with a small mercury-vapor lamp, As a result, the exposure system does not require too much space for its installation, thereby making it possible to lower the cost required for the maintenance of a clean room or the like in which the exposure system is installed and consequently to lower the fabrication cost of the semiconductor devices significantly.
(2) Since the alteration of the step of high power consumption level and the step of low power consumption level is effected while controlling the magnitudes of the overshoot and undershoot in the waveform of the discharge current for the mercuryvapor lamp below 10%, the electrodes do not develop early-stage wearing which will occur when the overshoot and undershoot should exceed 108. It is thus possible to maintain, over a long period of time, the quantity of light to be radiated from the mercury-vapor lamp in the steps of the high power consumption level at the same level as that at the beginning. Furthermore, the service life of the mercury-vapor lamp can be prolonged.As a result, it is possible to perform successive low-cost exposure of semiconductor wafers with a radiated light of stable quantity over a long period of time by repeatedly alternating the step of the high power consumption level and the step of the low power consumption level at a short time interval.
In the method avoiding to the present invention the switch-over of the mercury-vapor lamp from Step B of the low energy consumption level to Step A of the high energy consumption level is carried out while allowing the power consumption of the mercury-vapor lamp 1 to reach 95% of the power consumption W1 in Step A of the high power cons ption level within the period of from 1 msec. to 30 msec.as shown on an enlarged scale in Fig. 7.More specifically, this may be achieved by employing in the operation control circuit 3 a conventionally-known power source circuit that the time required for the power consumption level of the mercury-vapor lamp 1 to reach 95% of its high level when he power consumption rises from its low level to the high level (rise time: T) falls within the range of from 1 msec. to 30 msec. It should however be borne in mind that the overshoot and undershoot are both omitted in Fig. 7.
If the rise time T should exceed 30 msec., the switch-over of the mercury-vapor lamp 1 from Step B of the low power consumption level to Step A of the high power consumption level will not be able to follow the high-speed opening and closing operation of the shutter 4. Thus, such a slow rise time T will impair the highspeed exposure treatment. If the rise time T should be faster than 1 msec. on the other hand, the change of the power consumption will be unduly fast and the wear of the electrodes of the mercury-vapor lamp 1 will become severe, leading to a reduction to the service life of the mercury-vapor lamp.
Using a semiconductor wafer exposure system similar to that employed in the preceding example, pattern exposure was conducted on a silicon semiconductor wafer in accordance with the stepwise exposure method while controlling the lighting of the mercury-vapor lamp under the following conditions.
Step A Time interval Ta: 400 msec.
Power consumption: Maintained constant at 750 W from the beginning until an elapsed time of 300 hours, and then gradually increased to a final power consumption of 1 KW after the elapsed time of 300 hours until an elapsed time of 600 hours.
Step B Time interval Tb: 400 msec.
Power consumption: Maintained constant at 500 W.
The rise time T upon change-over: 20 msec.
from Step B to Step A Under the above conditions, it was possible to achieve the same exposure results as the initial exposure results even after an elapsed time of 600 hours. By the way, the magnitudes of the overshoot and undershoot in the waveform of the discharge current were 12%.
Still further exposure tests were also carried out under the same conditions as the above test,except that the rise time T upon change-over from Step B to Step A was changed to various values shown in Table 2.
When the rise time T was shorter than 1 msec., the practically-applicable service life of mercury-vapor lamps were extremely short. When the rise time T was in excess of 30 msec., it was necessary to close the shutter longer and the efficiency of the exposure treatment dropped significantly.
Table 2 The riso time upon switch- Practically-applicable over from Step A to Step A service life of mercury (msec.) vapor lamp (hours) 0.5 400 3 500 15 550 25 600 40 700 50 750 Since the switch-over from the step of the low power consumption level to the step of the high power consumption level is carried out while allowing the power consumption of the mercury-vapor lamp to reach 95% of the power consumption in the step of the high power consumption level within the period of from 1 msec. to 30 msec. as described above, it is possible to avoid the early-stage wear of the electrodes of the mercury-vapor lamp. In addition, the alteration of the step of the low power consumption level and the step of the high power consumption level is carried out at a short time interval. Therefore, it is possible to conduct highly-efficient successive exposure of semiconductor wafers with radiated light of a stable quantity over a long period of time.
It is also possible to prolong the service life of the mercury-vapor lamp still longer by controlling the magnitudes of the overshoot and undershoot in the waveform of the discharge current below 10%, and also controlling the rise time T upon change-over from the step of the low power consumption level to the step of the high power consumption level within the period of from 1 msec. to 30 msec.

Claims (6)

CLAIMS:
1. A method for exposing, through a pattern mask, successive small sections of a semiconductor wafer to light radiated from a mercury-vapor lamp in high-level steps, during each of which steps the power consumption of the lnercury-vapor lamp is at a high level, by continuously lighting the mercury-vapor lamp and repeatedly alternating the high-level steps with low-level steps during which the power consumption of the mercury-vapor lamp is at a low level, characterised in that the switchover from each low-level step to its subsequent high-level step is carried out in such a way that the power consumption of the mercury-vapor lamp reaches 95% of the power consumption in the high-level step within a period of from 1 msec. to 30 msec.
2. A method as claimed in Claim 1, wherein a shutter is opened and then closed only once during the period of each of said high-level steps so as to exposethe corresponding one of the small sections of the semiconductor wafer at an exposure position, and, while the shutter is closed, the semiconductor wafer is shifted stepwise to place the next small section at the exposure position.
3. A method as claimed in Claim 1 or Claim 2, wherein the level of the power consumption in each of said lowlevel steps is substantially equal to the rated power consumption of the mercury-vapor lamp, and the level of the power consumption in each of the high-level steps is within 1.3 to 2.5 times the rated power consumption of the mercury-vapor lamp.
4. A method as claimed in any preceding claim, wherein the high-level steps are repeated while increasing the power consumption little by little so as to compensate the reduction of the quantity of light radiated with the passage of time.
5. A method for exposing semiconductor wafers to a mercury-vapor lamp, substantially as hereinbefore described with reference to the accompanying drawings.
6. Semiconductor wafers, whenever produced by a process including an exposure method according to any preceding claim.
GB8810523A 1984-07-07 1988-05-04 Method of exposing a semiconductor wafer to light from a mercury-vapor lamp Expired GB2203849B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59139775A JPS6120324A (en) 1984-07-07 1984-07-07 Method for exposing material of semiconductor wafer by mercury lamp

Publications (3)

Publication Number Publication Date
GB8810523D0 GB8810523D0 (en) 1988-06-08
GB2203849A true GB2203849A (en) 1988-10-26
GB2203849B GB2203849B (en) 1989-05-24

Family

ID=15253123

Family Applications (2)

Application Number Title Priority Date Filing Date
GB888808723A Pending GB8808723D0 (en) 1984-07-07 1988-04-13 Method of exposing semiconductor wafer to light from mercury-vapour lamp
GB8810523A Expired GB2203849B (en) 1984-07-07 1988-05-04 Method of exposing a semiconductor wafer to light from a mercury-vapor lamp

Family Applications Before (1)

Application Number Title Priority Date Filing Date
GB888808723A Pending GB8808723D0 (en) 1984-07-07 1988-04-13 Method of exposing semiconductor wafer to light from mercury-vapour lamp

Country Status (2)

Country Link
JP (1) JPS6120324A (en)
GB (2) GB8808723D0 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0679107B2 (en) * 1986-07-04 1994-10-05 オリンパス光学工業株式会社 Light source device for electronic scope
JPH0679108B2 (en) * 1988-07-28 1994-10-05 オリンパス光学工業株式会社 Light source for electronic scope
JPH0679109B2 (en) * 1988-07-28 1994-10-05 オリンパス光学工業株式会社 Light source for electronic scope
DE4402611A1 (en) * 1994-01-28 1995-08-10 Wack O K Chemie Gmbh Motor cycle washing assembly applies cleaning agent and rinses with jets
JP4897397B2 (en) * 2005-12-27 2012-03-14 ハリソン東芝ライティング株式会社 UV irradiation equipment
JP2008281934A (en) * 2007-05-14 2008-11-20 Harison Toshiba Lighting Corp Ultraviolet radiation device
JP5736989B2 (en) * 2011-06-15 2015-06-17 ウシオ電機株式会社 Light source device and lamp lighting method
JP2022167503A (en) * 2021-04-23 2022-11-04 株式会社ブイ・テクノロジー Control method of luminaire and exposure device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54108478A (en) * 1978-02-14 1979-08-25 Ushio Electric Inc Printing or transcribing method of semiconductor and discharge lamp suitable for printing or transcription

Also Published As

Publication number Publication date
GB8810523D0 (en) 1988-06-08
JPH0254654B2 (en) 1990-11-22
GB2203849B (en) 1989-05-24
GB8808723D0 (en) 1988-05-18
JPS6120324A (en) 1986-01-29

Similar Documents

Publication Publication Date Title
US4732842A (en) Exposure method of semiconductor wafer by rare gas-mercury discharge lamp
US5134436A (en) Exposure control method for adjusting the temperature of a workpiece holding chuck attracting surface based on memorized data
US20160342095A1 (en) Mirror array
KR101134769B1 (en) Exposure apparatus, illumination method of an exposure light beam and method of manufacturing a display panel substrate
GB2203849A (en) Method of exposing a semiconductor water to light from a mercury-vapor lamp
US10409167B2 (en) Method for illuminating an object field of a projection exposure system
KR20000057050A (en) A method for controlling lamp used in an exposing apparatus
US4605301A (en) Exposure method of semiconductor wafer by mercury-vapor lamp
US4606997A (en) Exposure method of semiconductor wafer by mercury-vapor lamp
KR0167385B1 (en) Scanning exposure apparatus and method for manufacturing devices using the same
GB2161283A (en) Controlled light emission
GB2161285A (en) Controlling light emission
KR960002282B1 (en) Charged particle beam exposure device for improving the heating
US4704346A (en) Process for the exposure of semiconductor wafer
JPS6059733A (en) Device for exposing semiconductor
JPS6146023A (en) Exposure of semiconductor wafer material by superhigh pressure mercury-arc lamp
JPS6120323A (en) Method for exposing material of semiconductor wafer by mercury lamp
JP2012220619A (en) Exposure apparatus, exposure method, and method for manufacturing display panel substrate
CN109426088B (en) Illumination system, exposure device and exposure method
EP0282704A2 (en) Method of treating photoresists
Watts Advanced lithography
JPS607722A (en) X-ray exposure device
KR100764057B1 (en) Aperture unit and exposure system including the same, and method for replacement of an aperture of the aperture unit
JPH1064791A (en) Exposure correction and apparatus
JPS6057930A (en) Exposure device

Legal Events

Date Code Title Description
PE20 Patent expired after termination of 20 years

Effective date: 20050307