JP2012220619A - Exposure apparatus, exposure method, and method for manufacturing display panel substrate - Google Patents

Exposure apparatus, exposure method, and method for manufacturing display panel substrate Download PDF

Info

Publication number
JP2012220619A
JP2012220619A JP2011084434A JP2011084434A JP2012220619A JP 2012220619 A JP2012220619 A JP 2012220619A JP 2011084434 A JP2011084434 A JP 2011084434A JP 2011084434 A JP2011084434 A JP 2011084434A JP 2012220619 A JP2012220619 A JP 2012220619A
Authority
JP
Japan
Prior art keywords
light emitting
exposure
semiconductor light
substrate
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011084434A
Other languages
Japanese (ja)
Inventor
Minoru Yoshida
稔 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2011084434A priority Critical patent/JP2012220619A/en
Publication of JP2012220619A publication Critical patent/JP2012220619A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To uniformize a lifetime of each semiconductor light-emitting element while keeping intensity of exposure light constant when the exposure light is formed by using a plurality of semiconductor light-emitting elements.SOLUTION: Intensity of exposure light irradiated from an exposure light irradiating device 30 is detected while temperature of each semiconductor light-emitting element 42 is detected. On the basis of teh detecting result of the temperature of each of the semiconductor light-emitting elements 42, lighting time of the semiconductor light-emitting elements of which the temperature is lower than a predetermined temperature or a predetermined temperature range is made to be longer than the lighting time of the semiconductor light-emitting elements of which the temperature is higher than the predetermined temperature or the predetermined temperature range, or driving current of the semiconductor light-emitting elements of which the temperature is lower than the predetermined temperature or the predetermined temperature range is made to be larger than the driving current of the semiconductor light-emitting element of which the temperature is higher than the predetermined temperature or the predetermined temperature range.

Description

本発明は、液晶ディスプレイ装置等の表示用パネル基板の製造において、露光光を発生する光源に複数の半導体発光素子を用いた露光装置、露光方法、及びそれらを用いた表示用パネル基板の製造方法に関する。   The present invention relates to an exposure apparatus using a plurality of semiconductor light emitting elements as a light source for generating exposure light, an exposure method, and a method for manufacturing a display panel substrate using them in the manufacture of a display panel substrate such as a liquid crystal display device. About.

表示用パネルとして用いられる液晶ディスプレイ装置のTFT(Thin Film Transistor)基板やカラーフィルタ基板、プラズマディスプレイパネル用基板、有機EL(Electroluminescence)表示パネル用基板等の製造は、露光装置を用いて、フォトリソグラフィー技術により基板上にパターンを形成して行われる。露光装置としては、レンズ又は鏡を用いてマスクのパターンを基板上に投影するプロジェクション方式と、マスクと基板との間に微小な間隙(プロキシミティギャップ)を設けてマスクのパターンを基板へ転写するプロキシミティ方式とがある。プロキシミティ方式は、プロジェクション方式に比べてパターン解像性能は劣るが、照射光学系の構成が簡単で、かつ処理能力が高く量産用に適している。   Manufacturing of TFT (Thin Film Transistor) substrates, color filter substrates, plasma display panel substrates, organic EL (Electroluminescence) display panel substrates, and the like of liquid crystal display devices used as display panels is performed using photolithography using an exposure apparatus. This is performed by forming a pattern on the substrate by a technique. As an exposure apparatus, a projection method in which a mask pattern is projected onto a substrate using a lens or a mirror, and a minute gap (proximity gap) is provided between the mask and the substrate to transfer the mask pattern to the substrate. There is a proximity method. The proximity method is inferior in pattern resolution performance to the projection method, but the configuration of the irradiation optical system is simple, the processing capability is high, and it is suitable for mass production.

従来、プロキシミティ露光装置の露光光を発生する光源には、水銀ランプ、ハロゲンランプ、キセノンランプ等の様に、高圧ガスをバルブ内に封入したランプが使用されていた。これらのランプは寿命が短く、所定の使用時間が過ぎるとランプを交換しなければならない。例えば、ランプの寿命が750時間の場合、連続して点灯すると、約1ヶ月に1回の交換が必要となる。ランプの交換時は、露光処理が中断されるため、生産性が低下する。   Conventionally, a lamp in which high pressure gas is enclosed in a bulb, such as a mercury lamp, a halogen lamp, or a xenon lamp, has been used as a light source for generating exposure light of a proximity exposure apparatus. These lamps have a short life and must be replaced after a predetermined usage time. For example, if the lamp has a lifetime of 750 hours and it is lit continuously, it needs to be replaced about once a month. When the lamp is replaced, the exposure process is interrupted, resulting in a decrease in productivity.

一方、特許文献1には、プロジェクション方式の露光装置において、露光光の光源として、発光ダイオード等の固体光源素子を用いる技術が開示されている。発光ダイオード等の半導体発光素子は、寿命が数千〜数万時間とランプに比べて長く、露光処理が中断されることが少ないので、生産性の向上が期待される。   On the other hand, Patent Document 1 discloses a technique of using a solid light source element such as a light emitting diode as a light source of exposure light in a projection type exposure apparatus. A semiconductor light emitting device such as a light emitting diode has a lifetime of several thousand to several tens of thousands of hours, which is longer than that of a lamp, and exposure processing is rarely interrupted.

近年、表示用パネルの大画面化に伴い基板が大型化する程、露光光の光源には、より照度の高いものが要求される様になってきた。主に大型の基板の露光に使用されるプロキシミティ露光装置において、露光光を発生する光源に複数の半導体発光素子を用いる場合、半導体発光素子の出力が従来のランプに比べてはるかに小さいので、数百〜数千個程度の半導体発光素子を並べて使用しなければならない。その場合、各半導体発光素子の発熱による出力の低下を抑制するため、多数の半導体発光素子を効率良く冷却する必要がある。特許文献2には、複数の半導体発光素子の内、点灯する半導体発光素子の数を変更して、露光光の照度を調節し、消灯する半導体発光素子を、時間の経過に伴って変更することにより、複数の半導体発光素子を効率良く冷却する技術が開示されている。   In recent years, as the size of the substrate is increased with the increase in the screen size of the display panel, a light source with higher illuminance has been required for the exposure light source. In proximity exposure equipment mainly used for exposure of large substrates, when using multiple semiconductor light emitting elements as a light source that generates exposure light, the output of the semiconductor light emitting elements is much smaller than conventional lamps, Several hundred to several thousand semiconductor light emitting elements must be used side by side. In that case, in order to suppress a decrease in output due to heat generation of each semiconductor light emitting element, it is necessary to efficiently cool a large number of semiconductor light emitting elements. In Patent Document 2, the number of semiconductor light-emitting elements that are turned on among a plurality of semiconductor light-emitting elements is changed to adjust the illuminance of exposure light, and the semiconductor light-emitting elements that are turned off are changed over time. Thus, a technique for efficiently cooling a plurality of semiconductor light emitting elements is disclosed.

特開2006−332077号公報JP 2006-332077 A 特開2010−256428号公報JP 2010-256428 A

発光ダイオード等の半導体発光素子の寿命には、個体差によるばらつきがある。また、個々の半導体発光素子の寿命は、点灯時の温度や出力等の使用状況に応じて大きく異なる。そのため、寿命に達した半導体発光素子をその都度交換すると、交換作業を頻繁に行う必要が生じ、露光処理が中断されて生産性の向上が阻害されるという問題がある。一方、交換作業の回数を少なくするため、複数の半導体発光素子をまとめて交換すると、寿命に達していない使用可能な半導体発光素子も撤去されることとなり、ランニングコストが上昇すると共に、半導体発光素子の製造に要したエネルギーの一部が無駄になる。   The lifetime of semiconductor light emitting devices such as light emitting diodes varies due to individual differences. In addition, the lifetime of each semiconductor light emitting element varies greatly depending on the usage conditions such as temperature during lighting and output. For this reason, if a semiconductor light emitting element that has reached the end of its life is replaced each time, it is necessary to frequently perform replacement work, and there is a problem that the exposure process is interrupted and the improvement in productivity is hindered. On the other hand, if a plurality of semiconductor light emitting elements are replaced together in order to reduce the number of replacement operations, usable semiconductor light emitting elements that have not reached the end of their life are also removed, and the running cost increases and the semiconductor light emitting elements increase. A part of the energy required for manufacturing is wasted.

本発明の課題は、複数の半導体発光素子を用いて露光光を形成する際、露光光の強度を一定に保ちながら、各半導体発光素子の寿命を均一化することである。また、本発明の課題は、表示用パネル基板の生産性を向上させることである。   An object of the present invention is to equalize the lifetime of each semiconductor light emitting element while keeping the intensity of the exposure light constant when forming exposure light using a plurality of semiconductor light emitting elements. Another object of the present invention is to improve the productivity of a display panel substrate.

本発明の露光装置は、基板を支持するチャックと、複数の半導体発光素子を有し、複数の半導体発光素子から発生した光を重ね合わせて露光光を形成する光源と、光源からの露光光をチャックに支持された基板へ照射する照射装置と、チャックと照射装置とを相対的に移動する移動手段とを備え、移動手段によりチャックと照射装置とを相対的に移動し、照射装置から照射された露光光により基板を露光する露光装置であって、照射装置から照射される露光光の強度を検出する強度検出手段と、光源の複数の半導体発光素子の温度を検出する複数の温度検出手段と、基板の露光が行われない時、光源の複数の半導体発光素子へ駆動電流を供給しないで、各半導体発光素子を消灯させ、基板の露光が行われる間、光源の複数の半導体発光素子へ駆動電流を供給して、各半導体発光素子を断続的に点灯させ、複数の温度検出手段の検出結果に基づき、所定温度又は所定温度範囲より低い温度の半導体発光素子の点灯時間を、所定温度又は所定温度範囲より高い温度の半導体発光素子の点灯時間より長くして、強度検出手段により検出した露光光の強度の変化を補う制御手段とを備えたものである。   An exposure apparatus of the present invention includes a chuck that supports a substrate, a plurality of semiconductor light emitting elements, a light source that forms exposure light by superimposing light generated from the plurality of semiconductor light emitting elements, and exposure light from the light source. An irradiation device for irradiating the substrate supported by the chuck, and a moving means for relatively moving the chuck and the irradiation device, the chuck and the irradiation device are relatively moved by the moving means, and are irradiated from the irradiation device. An exposure apparatus that exposes a substrate with the exposure light, an intensity detection means for detecting the intensity of exposure light emitted from the irradiation apparatus, and a plurality of temperature detection means for detecting temperatures of a plurality of semiconductor light emitting elements of the light source When the substrate is not exposed, the semiconductor light emitting elements are turned off without supplying the driving current to the plurality of semiconductor light emitting elements of the light source, and the plurality of semiconductor light emitting elements of the light source are turned on while the substrate is exposed. A dynamic current is supplied to light each semiconductor light emitting element intermittently. Based on the detection results of the plurality of temperature detecting means, the lighting time of the semiconductor light emitting element having a temperature lower than a predetermined temperature or a predetermined temperature range is set to a predetermined temperature or Control means for compensating for a change in the intensity of the exposure light detected by the intensity detection means by extending the lighting time of the semiconductor light emitting element having a temperature higher than the predetermined temperature range.

また、本発明の露光方法は、基板をチャックで支持し、複数の半導体発光素子を有する光源で、複数の半導体発光素子から発生した光を重ね合わせて露光光を形成し、チャックと、光源からの露光光をチャックに支持された基板へ照射する照射装置とを、相対的に移動し、照射装置から照射された露光光により基板を露光する露光方法であって、基板の露光が行われない時、光源の複数の半導体発光素子へ駆動電流を供給しないで、各半導体発光素子を消灯させ、基板の露光が行われる間、光源の複数の半導体発光素子へ駆動電流を供給して、各半導体発光素子を断続的に点灯させ、照射装置から照射される露光光の強度を検出すると共に、各半導体発光素子の温度を検出し、各半導体発光素子の温度の検出結果に基づき、所定温度又は所定温度範囲より低い温度の半導体発光素子の点灯時間を、所定温度又は所定温度範囲より高い温度の半導体発光素子の点灯時間より長くして、検出した露光光の強度の変化を補うものである。   In addition, the exposure method of the present invention includes a light source having a plurality of semiconductor light emitting elements, which supports a substrate with a chuck, and forms exposure light by superimposing light generated from the plurality of semiconductor light emitting elements. Is an exposure method in which the substrate is exposed to the exposure light irradiated from the irradiation device, and the substrate is not exposed. At this time, without supplying driving current to the plurality of semiconductor light emitting elements of the light source, each semiconductor light emitting element is turned off, and during the exposure of the substrate, the driving current is supplied to the plurality of semiconductor light emitting elements of the light source. The light emitting element is turned on intermittently, the intensity of exposure light emitted from the irradiation device is detected, the temperature of each semiconductor light emitting element is detected, and a predetermined temperature or a predetermined temperature is detected based on the temperature detection result of each semiconductor light emitting element. The lighting time of the semiconductor light-emitting device of less than degrees range temperature, are those that are longer than the lighting time of the semiconductor light emitting element of a predetermined temperature or a temperature higher than the predetermined temperature range, compensate for the change in the intensity of the detected exposure light.

あるいは、本発明の露光装置は、基板を支持するチャックと、複数の半導体発光素子を有し、複数の半導体発光素子から発生した光を重ね合わせて露光光を形成する光源と、光源からの露光光をチャックに支持された基板へ照射する照射装置と、チャックと照射装置とを相対的に移動する移動手段とを備え、移動手段によりチャックと照射装置とを相対的に移動し、照射装置から照射された露光光により基板を露光する露光装置であって、照射装置から照射される露光光の強度を検出する強度検出手段と、光源の複数の半導体発光素子の温度を検出する複数の温度検出手段と、基板の露光が行われない時、光源の複数の半導体発光素子へ駆動電流を供給しないで、各半導体発光素子を消灯させ、基板の露光が行われる間、光源の複数の半導体発光素子へ駆動電流を供給して、各半導体発光素子を点灯させ、複数の温度検出手段の検出結果に基づき、所定温度又は所定温度範囲より低い温度の半導体発光素子の駆動電流を、所定温度又は所定温度範囲より高い温度の半導体発光素子の駆動電流より大きくして、強度検出手段により検出した露光光の強度の変化を補う制御手段とを備えたものである。   Alternatively, the exposure apparatus of the present invention includes a chuck that supports a substrate, a plurality of semiconductor light emitting elements, a light source that forms exposure light by superimposing light generated from the plurality of semiconductor light emitting elements, and exposure from the light source. An irradiation device for irradiating light onto a substrate supported by the chuck; and a moving means for relatively moving the chuck and the irradiation device. The moving device moves the chuck and the irradiation device relative to each other. An exposure apparatus that exposes a substrate with irradiated exposure light, the intensity detecting means for detecting the intensity of the exposure light irradiated from the irradiation apparatus, and the plurality of temperature detections for detecting the temperatures of a plurality of semiconductor light emitting elements of the light source Means and when the substrate is not exposed, without supplying drive current to the plurality of semiconductor light emitting elements of the light source, each semiconductor light emitting element is turned off, and the plurality of semiconductors of the light source is exposed while the substrate is exposed A driving current is supplied to the optical element to turn on each semiconductor light emitting element, and based on the detection results of the plurality of temperature detecting means, the driving current of the semiconductor light emitting element having a temperature lower than a predetermined temperature or a predetermined temperature range is set to a predetermined temperature or And a control unit that compensates for a change in the intensity of the exposure light detected by the intensity detection unit by making it larger than the drive current of the semiconductor light emitting element having a temperature higher than the predetermined temperature range.

また、本発明の露光方法は、基板をチャックで支持し、複数の半導体発光素子を有する光源で、複数の半導体発光素子から発生した光を重ね合わせて露光光を形成し、チャックと、光源からの露光光をチャックに支持された基板へ照射する照射装置とを、相対的に移動し、照射装置から照射された露光光により基板を露光する露光方法であって、基板の露光が行われない時、光源の複数の半導体発光素子へ駆動電流を供給しないで、各半導体発光素子を消灯させ、基板の露光が行われる間、光源の複数の半導体発光素子へ駆動電流を供給して、各半導体発光素子を点灯させ、照射装置から照射される露光光の強度を検出すると共に、各半導体発光素子の温度を検出し、各半導体発光素子の温度の検出結果に基づき、所定温度又は所定温度範囲より低い温度の半導体発光素子の駆動電流を、所定温度又は所定温度範囲より高い温度の半導体発光素子の駆動電流より大きくして、検出した露光光の強度の変化を補うものである。   In addition, the exposure method of the present invention includes a light source having a plurality of semiconductor light emitting elements, which supports a substrate with a chuck, and forms exposure light by superimposing light generated from the plurality of semiconductor light emitting elements. Is an exposure method in which the substrate is exposed to the exposure light irradiated from the irradiation device, and the substrate is not exposed. At this time, without supplying driving current to the plurality of semiconductor light emitting elements of the light source, each semiconductor light emitting element is turned off, and during the exposure of the substrate, the driving current is supplied to the plurality of semiconductor light emitting elements of the light source. The light emitting element is turned on, the intensity of exposure light emitted from the irradiation device is detected, the temperature of each semiconductor light emitting element is detected, and a predetermined temperature or a predetermined temperature range is determined based on the temperature detection result of each semiconductor light emitting element. The drive current of the low temperature of the semiconductor light emitting element Ri are those made larger than the driving current of the semiconductor light-emitting device of a temperature higher than the predetermined temperature or predetermined temperature range, compensate for the change in the intensity of the detected exposure light.

あるいは、本発明の露光装置は、基板を支持するチャックと、複数の半導体発光素子を有し、複数の半導体発光素子から発生した光を重ね合わせて露光光を形成する光源と、光源からの露光光をチャックに支持された基板へ照射する照射装置と、チャックと照射装置とを相対的に移動する移動手段とを備え、移動手段によりチャックと照射装置とを相対的に移動し、照射装置から照射された露光光により基板を露光する露光装置であって、照射装置から照射される露光光の強度を検出する強度検出手段と、光源の複数の半導体発光素子の温度を検出する複数の温度検出手段と、基板の露光が行われない時、光源の複数の半導体発光素子へ駆動電流を供給しないで、各半導体発光素子を消灯させ、基板の露光が行われる間、光源の複数の半導体発光素子へ駆動電流を供給して、各半導体発光素子を点灯させ、強度検出手段の検出結果に基づき、各半導体発光素子へ供給する駆動電流を調節して、照射装置から照射される露光光の強度を所定範囲内に保ちながら、複数の温度検出手段の検出結果に基づき、各半導体発光素子間の温度差が許容範囲を超えたとき、最高温度の半導体発光素子の駆動電流を小さくし、最低温度の半導体発光素子の駆動電流を大きくする制御手段とを備えたものである。   Alternatively, the exposure apparatus of the present invention includes a chuck that supports a substrate, a plurality of semiconductor light emitting elements, a light source that forms exposure light by superimposing light generated from the plurality of semiconductor light emitting elements, and exposure from the light source. An irradiation device for irradiating light onto a substrate supported by the chuck; and a moving means for relatively moving the chuck and the irradiation device. The moving device moves the chuck and the irradiation device relative to each other. An exposure apparatus that exposes a substrate with irradiated exposure light, the intensity detecting means for detecting the intensity of the exposure light irradiated from the irradiation apparatus, and the plurality of temperature detections for detecting the temperatures of a plurality of semiconductor light emitting elements of the light source Means and when the substrate is not exposed, without supplying drive current to the plurality of semiconductor light emitting elements of the light source, each semiconductor light emitting element is turned off, and the plurality of semiconductors of the light source is exposed while the substrate is exposed A driving current is supplied to the optical element to turn on each semiconductor light emitting element, and based on the detection result of the intensity detecting means, the driving current supplied to each semiconductor light emitting element is adjusted to adjust the exposure light irradiated from the irradiation apparatus. When the temperature difference between the semiconductor light emitting elements exceeds the allowable range based on the detection results of the plurality of temperature detecting means while keeping the intensity within the predetermined range, the driving current of the semiconductor light emitting element at the highest temperature is reduced, and the minimum And a control means for increasing the driving current of the semiconductor light emitting element at the temperature.

また、本発明の露光方法は、基板をチャックで支持し、複数の半導体発光素子を有する光源で、複数の半導体発光素子から発生した光を重ね合わせて露光光を形成し、チャックと、光源からの露光光をチャックに支持された基板へ照射する照射装置とを、相対的に移動し、照射装置から照射された露光光により基板を露光する露光方法であって、基板の露光が行われない時、光源の複数の半導体発光素子へ駆動電流を供給しないで、各半導体発光素子を消灯させ、基板の露光が行われる間、光源の複数の半導体発光素子へ駆動電流を供給して、各半導体発光素子を点灯させ、照射装置から照射される露光光の強度を検出すると共に、各半導体発光素子の温度を検出し、露光光の強度の検出結果に基づき、各半導体発光素子へ供給する駆動電流を調節して、照射装置から照射される露光光の強度を所定範囲内に保ちながら、各半導体発光素子の温度の検出結果に基づき、各半導体発光素子間の温度差が許容範囲を超えたとき、最高温度の半導体発光素子の駆動電流を小さくし、最低温度の半導体発光素子の駆動電流を大きくするものである。   In addition, the exposure method of the present invention includes a light source having a plurality of semiconductor light emitting elements, which supports a substrate with a chuck, and forms exposure light by superimposing light generated from the plurality of semiconductor light emitting elements. Is an exposure method in which the substrate is exposed to the exposure light irradiated from the irradiation device, and the substrate is not exposed. At this time, without supplying driving current to the plurality of semiconductor light emitting elements of the light source, each semiconductor light emitting element is turned off, and during the exposure of the substrate, the driving current is supplied to the plurality of semiconductor light emitting elements of the light source. The light emitting element is turned on, the intensity of exposure light emitted from the irradiation device is detected, the temperature of each semiconductor light emitting element is detected, and the drive current supplied to each semiconductor light emitting element based on the detection result of the intensity of exposure light When adjusting, based on the detection result of the temperature of each semiconductor light emitting element, while maintaining the intensity of exposure light irradiated from the irradiation device within a predetermined range, when the temperature difference between each semiconductor light emitting element exceeds the allowable range, The drive current of the semiconductor light emitting element having the highest temperature is reduced and the drive current of the semiconductor light emitting element having the lowest temperature is increased.

水銀ランプ等の高圧ガスをバルブ内に封入したランプは、点灯を開始してから照度が安定するまでに数時間を要する。そのため、従来のプロキシミティ露光装置では、装置の稼動中にランプを常に点灯し、基板の搬入及び搬出、基板の移動等のために基板の露光が行われないとき、露光光をシャッターで遮断していた。従って、ランプの寿命が早く尽き、また無駄な消費電力が掛かるという問題があった。これに対し、露光光を発生する光源に複数の半導体発光素子を用いる場合、半導体発光素子は、点灯を開始すると直ちに所望の光量が得られるので、基板の搬入及び搬出、基板の移動等のために基板の露光が行われない時は、各半導体発光素子を消灯することにより、基板の露光が行われない時も各半導体発光素子を点灯させる場合に比べて、各半導体発光素子の寿命が延び、また消費電力が抑えられる。   A lamp in which a high-pressure gas such as a mercury lamp is enclosed in a bulb requires several hours from the start of lighting until the illuminance stabilizes. Therefore, in the conventional proximity exposure apparatus, the lamp is always turned on while the apparatus is in operation, and when the substrate is not exposed due to loading / unloading of the substrate, movement of the substrate, etc., the exposure light is blocked by the shutter. It was. Accordingly, there are problems that the life of the lamp is exhausted quickly and wasteful power consumption is required. On the other hand, when a plurality of semiconductor light emitting elements are used as a light source for generating exposure light, the semiconductor light emitting elements can obtain a desired light quantity immediately after starting lighting, so that the substrate can be carried in and out, the substrate can be moved, etc. When the substrate is not exposed to light, turning off each semiconductor light emitting element extends the life of each semiconductor light emitting element compared to turning on each semiconductor light emitting element even when the substrate is not exposed. In addition, power consumption is reduced.

半導体発光素子の寿命は、点灯時の温度によって大きく異なり、温度が高い状態で点灯を続けると、寿命が短くなる。そして、半導体発光素子の温度は、その出力に依存し、点灯を続ける時間が長くなる程、また駆動電流が大きくなる程、上昇する。基板の露光が行われる間、照射装置から照射される露光光の強度を検出すると共に、各半導体発光素子の温度を検出する。そして、各半導体発光素子の温度の検出結果に基づき、所定温度又は所定温度範囲より低い温度の半導体発光素子の点灯時間を、所定温度又は所定温度範囲より高い温度の半導体発光素子の点灯時間より長くし、または、所定温度又は所定温度範囲より低い温度の半導体発光素子の駆動電流を、所定温度又は所定温度範囲より高い温度の半導体発光素子の駆動電流より大きくして、検出した露光光の強度の変化を補う。あるいは、露光光の強度の検出結果に基づき、各半導体発光素子へ供給する駆動電流を調節して、照射装置から照射される露光光の強度を所定範囲内に保ちながら、各半導体発光素子の温度の検出結果に基づき、各半導体発光素子間の温度差が許容範囲を超えたとき、最高温度の半導体発光素子の駆動電流を小さくし、最低温度の半導体発光素子の駆動電流を大きくする。温度が低い状態で点灯していた半導体発光素子は、温度が上昇してその分だけ寿命が短くなり、温度が高い状態で点灯していた半導体発光素子と同程度の寿命となる。従って、複数の半導体発光素子を用いて露光光を形成する際、露光光の強度を一定に保ちながら、各半導体発光素子の寿命が均一化される。   The lifetime of the semiconductor light emitting element varies greatly depending on the temperature at the time of lighting, and the lifetime is shortened if lighting is continued at a high temperature. The temperature of the semiconductor light emitting element depends on its output, and rises as the time for which lighting continues continues and as the drive current increases. While the exposure of the substrate is performed, the intensity of the exposure light irradiated from the irradiation device is detected, and the temperature of each semiconductor light emitting element is detected. Based on the detection result of the temperature of each semiconductor light emitting element, the lighting time of the semiconductor light emitting element having a temperature lower than the predetermined temperature or the predetermined temperature range is longer than the lighting time of the semiconductor light emitting element having a temperature higher than the predetermined temperature or the predetermined temperature range. Alternatively, the driving current of the semiconductor light emitting element having a predetermined temperature or a temperature lower than the predetermined temperature range is set larger than the driving current of the semiconductor light emitting element having a temperature higher than the predetermined temperature or the predetermined temperature range, and the detected light intensity is increased. Make up for change. Alternatively, the temperature of each semiconductor light emitting element is adjusted while adjusting the drive current supplied to each semiconductor light emitting element based on the detection result of the intensity of exposure light to keep the intensity of exposure light irradiated from the irradiation apparatus within a predetermined range. Based on the detection result, when the temperature difference between the semiconductor light emitting elements exceeds the allowable range, the driving current of the semiconductor light emitting element having the highest temperature is decreased and the driving current of the semiconductor light emitting element having the lowest temperature is increased. The semiconductor light-emitting element that has been lit at a low temperature has a life shortened by the corresponding increase in temperature, and has the same life as a semiconductor light-emitting element that has been lit at a high temperature. Accordingly, when forming exposure light using a plurality of semiconductor light emitting elements, the lifetime of each semiconductor light emitting element is made uniform while keeping the intensity of the exposure light constant.

さらに、本発明の露光装置は、強度検出手段が、照度センサーを含み、照度センサーにより照射装置から照射される露光光の照度を測定して、露光光の強度を検出するものである。また、本発明の露光方法は、照射装置から照射される露光光の照度を照度センサーで測定して、露光光の強度を検出するものである。照度センサーを用いて、露光光の強度が容易に検出される。   Furthermore, in the exposure apparatus of the present invention, the intensity detection means includes an illuminance sensor, and measures the illuminance of the exposure light emitted from the irradiation apparatus by the illuminance sensor to detect the intensity of the exposure light. Moreover, the exposure method of this invention measures the illumination intensity of the exposure light irradiated from an irradiation apparatus with an illumination intensity sensor, and detects the intensity | strength of exposure light. The intensity of exposure light is easily detected using an illuminance sensor.

本発明の表示用パネル基板の製造方法は、上記のいずれかの露光装置を用いて基板の露光を行い、あるいは、上記のいずれかの露光方法を用いて基板の露光を行うものである。各半導体発光素子の寿命が均一化されるので、複数の半導体発光素子の交換をまとめて無駄なく行い、露光処理の中断を少なくして、表示用パネル基板の生産性を向上させることができる。   The method for producing a display panel substrate according to the present invention involves exposing the substrate using any one of the above exposure apparatuses, or exposing the substrate using any one of the above exposure methods. Since the lifetime of each semiconductor light emitting element is made uniform, a plurality of semiconductor light emitting elements can be exchanged together without waste, the interruption of the exposure process can be reduced, and the productivity of the display panel substrate can be improved.

本発明の露光装置及び露光方法によれば、基板の露光が行われないとき、光源の複数の半導体発光素子へ駆動電流を供給しないで、各半導体発光素子を消灯させることにより、各半導体発光素子の寿命を延ばし、また消費電力を抑えることができる。そして、基板の露光が行われる間、照射装置から照射される露光光の強度を検出すると共に、各半導体発光素子の温度を検出し、各半導体発光素子の温度の検出結果に基づき、所定温度又は所定温度範囲より低い温度の半導体発光素子の点灯時間を、所定温度又は所定温度範囲より高い温度の半導体発光素子の点灯時間より長くし、または、所定温度又は所定温度範囲より低い温度の半導体発光素子の駆動電流を、所定温度又は所定温度範囲より高い温度の半導体発光素子の駆動電流より大きくして、検出した露光光の強度の変化を補い、あるいは、露光光の強度の検出結果に基づき、各半導体発光素子へ供給する駆動電流を調節して、照射装置から照射される露光光の強度を所定範囲内に保ちながら、各半導体発光素子の温度の検出結果に基づき、各半導体発光素子間の温度差が許容範囲を超えたとき、最高温度の半導体発光素子の駆動電流を小さくし、最低温度の半導体発光素子の駆動電流を大きくすることにより、複数の半導体発光素子を用いて露光光を形成する際、露光光の強度を一定に保ちながら、各半導体発光素子の寿命を均一化することができる。   According to the exposure apparatus and the exposure method of the present invention, when the substrate is not exposed, each semiconductor light emitting element is turned off without supplying a driving current to the plurality of semiconductor light emitting elements of the light source. Can extend the life of the battery and reduce power consumption. Then, during the exposure of the substrate, the intensity of the exposure light irradiated from the irradiation device is detected, the temperature of each semiconductor light emitting element is detected, and based on the detection result of the temperature of each semiconductor light emitting element, a predetermined temperature or The lighting time of the semiconductor light emitting element having a temperature lower than the predetermined temperature range is longer than the lighting time of the semiconductor light emitting element having a temperature higher than the predetermined temperature or the predetermined temperature range, or the semiconductor light emitting element having a temperature lower than the predetermined temperature or the predetermined temperature range. The drive current is made larger than the drive current of the semiconductor light emitting element at a predetermined temperature or a temperature higher than the predetermined temperature range to compensate for the change in the intensity of the detected exposure light, or based on the detection result of the intensity of the exposure light, By adjusting the drive current supplied to the semiconductor light-emitting element and keeping the intensity of exposure light emitted from the irradiation device within a predetermined range, the detection result of the temperature of each semiconductor light-emitting element Therefore, when the temperature difference between the semiconductor light emitting elements exceeds the allowable range, the drive current of the semiconductor light emitting element at the highest temperature is reduced, and the drive current of the semiconductor light emitting element at the lowest temperature is increased, so that a plurality of semiconductor light emitting elements are emitted. When forming exposure light using an element, the lifetime of each semiconductor light emitting element can be made uniform while keeping the intensity of exposure light constant.

さらに、本発明の露光装置及び露光方法によれば、照度センサーを用いて、露光光の強度を容易に検出することができる。   Furthermore, according to the exposure apparatus and the exposure method of the present invention, the intensity of exposure light can be easily detected using an illuminance sensor.

本発明の表示用パネル基板の製造方法によれば、各半導体発光素子の寿命を均一化することができるので、複数の半導体発光素子の交換をまとめて無駄なく行い、露光処理の中断を少なくして、表示用パネル基板の生産性を向上させることができる。   According to the method for manufacturing a display panel substrate of the present invention, the lifetime of each semiconductor light emitting device can be made uniform, so that replacement of a plurality of semiconductor light emitting devices can be performed without waste, and interruption of exposure processing can be reduced. Thus, the productivity of the display panel substrate can be improved.

本発明の一実施の形態による露光装置の概略構成を示す図である。1 is a diagram showing a schematic configuration of an exposure apparatus according to an embodiment of the present invention. 光源ユニットの一例を示す図である。It is a figure which shows an example of a light source unit. 半導体発光素子及び拡大レンズを正面から見た図である。It is the figure which looked at the semiconductor light-emitting device and the magnifying lens from the front. 本発明の一実施の形態による露光方法を説明する図である。It is a figure explaining the exposure method by one embodiment of this invention. 本発明の一実施の形態による露光方法を説明する図である。It is a figure explaining the exposure method by one embodiment of this invention. 本発明の一実施の形態による露光方法を説明する図である。It is a figure explaining the exposure method by one embodiment of this invention. 光源ユニットの他の例を示す図である。It is a figure which shows the other example of a light source unit. 半導体発光素子の駆動電流と光量との関係の一例を示す図である。It is a figure which shows an example of the relationship between the drive current and light quantity of a semiconductor light-emitting device. 本発明の他の実施の形態による露光方法を説明する図である。It is a figure explaining the exposure method by other embodiment of this invention. 本発明のさらに他の実施の形態による露光方法を示すフローチャートである。It is a flowchart which shows the exposure method by further another embodiment of this invention. 液晶ディスプレイ装置のTFT基板の製造工程の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing process of the TFT substrate of a liquid crystal display device. 液晶ディスプレイ装置のカラーフィルタ基板の製造工程の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing process of the color filter board | substrate of a liquid crystal display device.

図1は、本発明の一実施の形態による露光装置の概略構成を示す図である。本実施の形態は、プロキシミティ方式を用いて基板の露光を行うプロキシミティ露光装置の例を示している。プロキシミティ露光装置は、ベース3、Xガイド4、Xステージ5、Yガイド6、Yステージ7、θステージ8、チャック支持台9、チャック10、マスクホルダ20、及び露光光照射装置30を含んで構成されている。プロキシミティ露光装置は、これらの他に、基板1をチャック10へ搬入し、また基板1をチャック10から搬出する基板搬送ロボット、装置内の温度管理を行う温度制御ユニット等を備えている。   FIG. 1 is a view showing the schematic arrangement of an exposure apparatus according to an embodiment of the present invention. This embodiment shows an example of a proximity exposure apparatus that exposes a substrate using a proximity method. The proximity exposure apparatus includes a base 3, an X guide 4, an X stage 5, a Y guide 6, a Y stage 7, a θ stage 8, a chuck support 9, a chuck 10, a mask holder 20, and an exposure light irradiation device 30. It is configured. In addition to these, the proximity exposure apparatus includes a substrate transfer robot that loads the substrate 1 into the chuck 10 and unloads the substrate 1 from the chuck 10, a temperature control unit that performs temperature management in the apparatus, and the like.

なお、以下に説明する実施の形態におけるXY方向は例示であって、X方向とY方向とを入れ替えてもよい。   Note that the XY directions in the embodiments described below are examples, and the X direction and the Y direction may be interchanged.

図1において、チャック10は、基板1の露光を行う露光位置にある。露光位置の上空には、マスク2を保持するマスクホルダ20が設置されている。マスクホルダ20には、露光光が通過する開口が設けられており、マスクホルダ20は、開口の周囲に設けられた吸着溝により、マスク2の周辺部を真空吸着して保持している。マスクホルダ20に保持されたマスク2の上空には、露光光照射装置30が配置されている。露光時、露光光照射装置30からの露光光がマスク2を透過して基板1へ照射されることにより、マスク2のパターンが基板1の表面に転写され、基板1上にパターンが形成される。   In FIG. 1, the chuck 10 is at an exposure position where the substrate 1 is exposed. A mask holder 20 for holding the mask 2 is installed above the exposure position. The mask holder 20 is provided with an opening through which exposure light passes. The mask holder 20 holds the peripheral portion of the mask 2 by vacuum suction using suction grooves provided around the opening. An exposure light irradiation device 30 is disposed above the mask 2 held by the mask holder 20. At the time of exposure, exposure light from the exposure light irradiation device 30 passes through the mask 2 and is irradiated onto the substrate 1, whereby the pattern of the mask 2 is transferred to the surface of the substrate 1 and a pattern is formed on the substrate 1. .

チャック10は、Xステージ5及びYステージ7により、露光位置から離れたロード/アンロード位置へ移動される。ロード/アンロード位置において、図示しない基板搬送ロボットにより、基板1がチャック10へ搬入され、また基板1がチャック10から搬出される。チャック10への基板1のロード及びチャック10からの基板1のアンロードは、チャック10に設けた複数の突き上げピンを用いて行われる。突き上げピンは、チャック10の内部に収納されており、チャック10の内部から上昇して、基板1をチャック10にロードする際、基板搬送ロボットから基板1を受け取り、基板1をチャック10からアンロードする際、基板搬送ロボットへ基板1を受け渡す。   The chuck 10 is moved to the load / unload position away from the exposure position by the X stage 5 and the Y stage 7. At the load / unload position, the substrate 1 is carried into the chuck 10 and the substrate 1 is carried out of the chuck 10 by a substrate transfer robot (not shown). The loading of the substrate 1 onto the chuck 10 and the unloading of the substrate 1 from the chuck 10 are performed using a plurality of push-up pins provided on the chuck 10. The push-up pin is housed inside the chuck 10 and is lifted from the inside of the chuck 10 to receive the substrate 1 from the substrate transfer robot and unload the substrate 1 from the chuck 10 when loading the substrate 1 onto the chuck 10. In doing so, the substrate 1 is delivered to the substrate transfer robot.

チャック10は、チャック支持台9を介してθステージ8に搭載されており、θステージ8の下にはYステージ7及びXステージ5が設けられている。Xステージ5は、ベース3に設けられたXガイド4に搭載され、Xガイド4に沿ってX方向(図1の図面横方向)へ移動する。Yステージ7は、Xステージ5に設けられたYガイド6に搭載され、Yガイド6に沿ってY方向(図1の図面奥行き方向)へ移動する。θステージ8は、Yステージ7に搭載され、θ方向へ回転する。チャック支持台9は、θステージ8に搭載され、チャック10を複数箇所で支持する。   The chuck 10 is mounted on the θ stage 8 via the chuck support 9, and a Y stage 7 and an X stage 5 are provided below the θ stage 8. The X stage 5 is mounted on an X guide 4 provided on the base 3 and moves along the X guide 4 in the X direction (the horizontal direction in FIG. 1). The Y stage 7 is mounted on a Y guide 6 provided on the X stage 5 and moves along the Y guide 6 in the Y direction (the depth direction in FIG. 1). The θ stage 8 is mounted on the Y stage 7 and rotates in the θ direction. The chuck support 9 is mounted on the θ stage 8 and supports the chuck 10 at a plurality of locations.

Xステージ5のX方向への移動及びYステージ7のY方向への移動により、チャック10は、ロード/アンロード位置と露光位置との間を移動される。ロード/アンロード位置において、Xステージ5のX方向への移動、Yステージ7のY方向への移動、及びθステージ8のθ方向への回転により、チャック10に搭載された基板1のプリアライメントが行われる。露光位置において、Xステージ5のX方向への移動及びYステージ7のY方向への移動により、チャック10に搭載された基板1のXY方向へのステップ移動が行われる。また、図示しないZ−チルト機構により、マスクホルダ20をZ方向(図1の図面上下方向)へ移動及びチルトすることによって、マスク2と基板1とのギャップ合わせが行われる。そして、Xステージ5のX方向への移動、Yステージ7のY方向への移動、及びθステージ8のθ方向への回転により、基板1のアライメントが行われる。   The chuck 10 is moved between the load / unload position and the exposure position by the movement of the X stage 5 in the X direction and the movement of the Y stage 7 in the Y direction. At the load / unload position, the substrate 1 mounted on the chuck 10 is pre-aligned by moving the X stage 5 in the X direction, moving the Y stage 7 in the Y direction, and rotating the θ stage 8 in the θ direction. Is done. At the exposure position, the X stage 5 is moved in the X direction and the Y stage 7 is moved in the Y direction, whereby the substrate 1 mounted on the chuck 10 is stepped in the XY direction. Further, the gap between the mask 2 and the substrate 1 is adjusted by moving and tilting the mask holder 20 in the Z direction (the vertical direction in FIG. 1) by a Z-tilt mechanism (not shown). Then, the substrate 1 is aligned by the movement of the X stage 5 in the X direction, the movement of the Y stage 7 in the Y direction, and the rotation of the θ stage 8 in the θ direction.

なお、本実施の形態では、マスクホルダ20をZ方向へ移動及びチルトすることにより、マスク2と基板1とのギャップ合わせを行っているが、チャック支持台9にZ−チルト機構を設けて、チャック10をZ方向へ移動及びチルトすることにより、マスク2と基板1とのギャップ合わせを行ってもよい。   In the present embodiment, the gap between the mask 2 and the substrate 1 is adjusted by moving and tilting the mask holder 20 in the Z direction. However, the chuck support base 9 is provided with a Z-tilt mechanism, The gap between the mask 2 and the substrate 1 may be adjusted by moving and tilting the chuck 10 in the Z direction.

露光光照射装置30は、コリメーションレンズ群32、平面鏡33、照度センサー35、及び光源ユニット40を含んで構成されている。後述する光源ユニット40は、基板1の露光を行う時に露光光を発生し、基板1の露光を行わない時は露光光を発生しない。光源ユニット40から発生した露光光は、コリメーションレンズ群32を透過して平行光線束となり、平面鏡33で反射して、マスク2へ照射される。マスク2へ照射された露光光により、マスク2のパターンが基板1へ転写され、基板1の露光が行われる。   The exposure light irradiation device 30 includes a collimation lens group 32, a plane mirror 33, an illuminance sensor 35, and a light source unit 40. The light source unit 40 described later generates exposure light when the substrate 1 is exposed, and does not generate exposure light when the substrate 1 is not exposed. The exposure light generated from the light source unit 40 passes through the collimation lens group 32 to become a parallel light beam, is reflected by the plane mirror 33, and is applied to the mask 2. The pattern of the mask 2 is transferred to the substrate 1 by the exposure light applied to the mask 2, and the substrate 1 is exposed.

平面鏡33の裏側近傍には、照度センサー35が配置されている。平面鏡33には、露光光の一部を通過させる小さな開口が設けられている。照度センサー35は、平面鏡33の開口を通過した光を受光して、露光光照射装置30からマスク2を介して基板1へ照射される露光光の照度を測定し、露光光の強度を検出する。照度センサー35の測定結果は、光源ユニット40へ入力される。   An illuminance sensor 35 is disposed in the vicinity of the back side of the plane mirror 33. The plane mirror 33 is provided with a small opening that allows a part of the exposure light to pass therethrough. The illuminance sensor 35 receives light that has passed through the opening of the plane mirror 33, measures the illuminance of the exposure light irradiated from the exposure light irradiation device 30 to the substrate 1 via the mask 2, and detects the intensity of the exposure light. . The measurement result of the illuminance sensor 35 is input to the light source unit 40.

図2は、光源ユニットの一例を示す図である。光源ユニット40は、ベース基板41、半導体発光素子42、拡大レンズ43、集光レンズ44、レンズ群45、制御回路46、冷却部材47、冷却装置48、及び温度センサー50を含んで構成されている。ベース基板41には、複数の半導体発光素子42が搭載されている。ベース基板41は、制御回路46の制御により、各半導体発光素子42を駆動する。各半導体発光素子42は、発光ダイオードやレーザーダイオード等から成り、露光光を形成する光を発生する。各半導体発光素子42には、各半導体発光素子42の温度を測定する温度センサー50がそれぞれ取り付けられている。制御回路46は、照度センサー35及び温度センサー50の測定結果に基づき、各半導体発光素子42の駆動電流をベース基板41へ供給し、各半導体発光素子42の駆動を制御する。   FIG. 2 is a diagram illustrating an example of a light source unit. The light source unit 40 includes a base substrate 41, a semiconductor light emitting element 42, a magnifying lens 43, a condenser lens 44, a lens group 45, a control circuit 46, a cooling member 47, a cooling device 48, and a temperature sensor 50. . A plurality of semiconductor light emitting elements 42 are mounted on the base substrate 41. The base substrate 41 drives each semiconductor light emitting element 42 under the control of the control circuit 46. Each semiconductor light emitting element 42 is formed of a light emitting diode, a laser diode, or the like, and generates light that forms exposure light. A temperature sensor 50 for measuring the temperature of each semiconductor light emitting element 42 is attached to each semiconductor light emitting element 42. Based on the measurement results of the illuminance sensor 35 and the temperature sensor 50, the control circuit 46 supplies the drive current of each semiconductor light emitting element 42 to the base substrate 41 and controls the driving of each semiconductor light emitting element 42.

なお、図2では、13個の半導体発光素子42が示されているが、実際の光源ユニットには、数百〜数千個程度の半導体発光素子が使用されている。   In FIG. 2, 13 semiconductor light emitting elements 42 are shown, but several hundred to several thousand semiconductor light emitting elements are used in an actual light source unit.

各半導体発光素子42に対応して、拡大レンズ43が設けられており、各拡大レンズ43は、各半導体発光素子42から発生した光を拡大して、集光レンズ44へ照射する。集光レンズ44は、各拡大レンズ43により拡大された光を集光して、レンズ群45へ照射する。レンズ群45は、フライアイレンズ又はロッドレンズ等からなり、露光光の照射面における露光光の照度分布を均一化する。各拡大レンズ43、集光レンズ44、及びレンズ群45の働きにより、各半導体発光素子42から発生した光が重ね合わされて、露光光が形成される。   A magnifying lens 43 is provided corresponding to each semiconductor light emitting element 42, and each magnifying lens 43 magnifies the light generated from each semiconductor light emitting element 42 and irradiates the condensing lens 44. The condensing lens 44 condenses the light magnified by each magnifying lens 43 and irradiates the lens group 45. The lens group 45 includes a fly-eye lens or a rod lens, and uniformizes the illuminance distribution of the exposure light on the exposure light irradiation surface. The light generated from each semiconductor light emitting element 42 is superposed by the action of each magnifying lens 43, condenser lens 44, and lens group 45 to form exposure light.

図2に示した例では、ベース基板41が球面の一部を切り取った形状に構成されている。そして、各半導体発光素子42から発生した光が、各拡大レンズ43及び集光レンズ44を介してレンズ群45へ照射される様に、各半導体発光素子42が、ベース基板41上に配置されている。ベース基板41の裏面には、冷却部材47が取り付けられている。冷却部材47は、内部に冷却水が流れる冷却水通路を有し、冷却装置48から冷却水通路へ供給される冷却水により、各半導体発光素子42を冷却する。なお、冷却部材47及び冷却装置48はこれに限らず、放熱板及び冷却ファンを含む空冷式としてもよい。図2に示した例では、冷却部材47が、ベース基板41の形状に合わせて、球面の一部を切り取った形状に構成されている。   In the example shown in FIG. 2, the base substrate 41 is configured to have a shape obtained by cutting off a part of the spherical surface. Then, each semiconductor light emitting element 42 is arranged on the base substrate 41 so that light generated from each semiconductor light emitting element 42 is irradiated to the lens group 45 through each magnifying lens 43 and condenser lens 44. Yes. A cooling member 47 is attached to the back surface of the base substrate 41. The cooling member 47 has a cooling water passage through which the cooling water flows, and cools each semiconductor light emitting element 42 by the cooling water supplied from the cooling device 48 to the cooling water passage. The cooling member 47 and the cooling device 48 are not limited to this, and may be an air cooling type including a heat radiating plate and a cooling fan. In the example shown in FIG. 2, the cooling member 47 is configured to have a shape obtained by cutting out a part of the spherical surface in accordance with the shape of the base substrate 41.

図3は、半導体発光素子及び拡大レンズを正面から見た図である。拡大レンズ43は、同じスペースにより多くの拡大レンズ43を配置できる様に、できるだけ隙間無く配置するのが望ましい。また、本実施の形態では、半導体発光素子42が正六角形に構成されているが、半導体発光素子42の形状はこれに限らず、さらに角の多い多角形又は円形に構成してもよい。半導体発光素子42の形状を拡大レンズ43の形状に近づける程、拡大レンズ43の受光面を有効に利用することができる。   FIG. 3 is a front view of the semiconductor light emitting element and the magnifying lens. It is desirable that the magnifying lens 43 be arranged with as little gap as possible so that many magnifying lenses 43 can be arranged in the same space. Further, in the present embodiment, the semiconductor light emitting element 42 is configured as a regular hexagon, but the shape of the semiconductor light emitting element 42 is not limited to this, and may be configured as a polygon or a circle having more corners. The closer the shape of the semiconductor light emitting element 42 is to the shape of the magnifying lens 43, the more effectively the light receiving surface of the magnifying lens 43 can be used.

図4〜図6は、本発明の一実施の形態による露光方法を説明する図である。図2において、制御装置46は、チャック10をロード/アンロード位置と露光位置との間で移動する際、ロード/アンロード位置において基板1の搬入及び搬出、基板1のロード及びアンロード、並びに基板1のプリアライメントを行う際、露光位置において基板1のXY方向へのステップ移動、マスク2と基板1とのギャップ合わせ、及び基板1のアライメントを行う際等の様に、基板1の露光が行われない時、各半導体発光素子42の駆動電流をベース基板41へ供給しないで、各半導体発光素子42を消灯させる。基板1の露光が行われない時、光源ユニット40の複数の半導体発光素子42へ駆動電流を供給しないで、各半導体発光素子42を消灯させるので、基板1の露光が行われない時も各半導体発光素子42を点灯させる場合に比べて、各半導体発光素子42の寿命が延び、また消費電力が抑えられる。   4 to 6 are views for explaining an exposure method according to an embodiment of the present invention. In FIG. 2, when the chuck 46 moves the chuck 10 between the load / unload position and the exposure position, the substrate 1 is loaded and unloaded at the load / unload position, the substrate 1 is loaded and unloaded, and When pre-alignment of the substrate 1 is performed, the exposure of the substrate 1 is performed as in the step movement of the substrate 1 in the X and Y directions at the exposure position, the gap alignment between the mask 2 and the substrate 1, the alignment of the substrate 1, and the like. When not performed, each semiconductor light emitting element 42 is turned off without supplying the drive current of each semiconductor light emitting element 42 to the base substrate 41. When the substrate 1 is not exposed, each semiconductor light emitting element 42 is turned off without supplying a driving current to the plurality of semiconductor light emitting elements 42 of the light source unit 40, so that each semiconductor is also exposed when the substrate 1 is not exposed. Compared with the case where the light emitting element 42 is turned on, the lifetime of each semiconductor light emitting element 42 is extended and the power consumption is suppressed.

そして、制御装置46は、基板1の露光が行われる間、各半導体発光素子42の駆動電流をベース基板41へ供給して、各半導体発光素子42を点灯させる。本実施の形態は、制御回路46が、各半導体発光素子42を断続的に点灯させて、露光光の照度を調節し、複数の半導体発光素子の一部を、他の半導体発光素子と異なるタイミングで点灯させるものである。   Then, while the substrate 1 is exposed, the control device 46 supplies the drive current of each semiconductor light emitting element 42 to the base substrate 41 to light up each semiconductor light emitting element 42. In the present embodiment, the control circuit 46 intermittently lights each semiconductor light emitting element 42 to adjust the illuminance of the exposure light, and a timing at which some of the plurality of semiconductor light emitting elements differ from other semiconductor light emitting elements. Is to light up.

図4〜図6は、制御回路46が、複数の半導体発光素子42の内、同時に点灯させる半導体発光素子の数を全体の3分の2にして、露光光の照度を、全ての半導体発光素子42を点灯するときの3分の2に調節する場合を示す。この場合、制御回路46は、各半導体発光素子42を、図3において符号A,B,Cを付した3つのグループに分割する。図4(a)は、図3で符号Aを付したグループの半導体発光素子42の点灯/消灯状態を示し、図4(b)は、図3で符号Bを付したグループの半導体発光素子42の点灯/消灯状態を示し、図4(c)は、図3で符号Cを付したグループの半導体発光素子42の点灯/消灯状態を示している。制御回路46は、図4(a),(b),(c)に示す様に、消灯させる半導体発光素子を、時間の経過に伴って変更しながら、露光光の照度を一定に保つ。   4 to 6, the control circuit 46 reduces the illuminance of exposure light to all the semiconductor light emitting elements by reducing the number of semiconductor light emitting elements to be turned on simultaneously among the plurality of semiconductor light emitting elements 42 to two thirds of the total. The case where it adjusts to 2/3 when turning on 42 is shown. In this case, the control circuit 46 divides each semiconductor light emitting element 42 into three groups denoted by reference signs A, B, and C in FIG. 4A shows the on / off state of the group of semiconductor light emitting elements 42 labeled A in FIG. 3, and FIG. 4B shows the group of semiconductor light emitting elements 42 labeled B in FIG. FIG. 4C shows the on / off state of the semiconductor light emitting elements 42 of the group denoted by C in FIG. As shown in FIGS. 4A, 4B, and 4C, the control circuit 46 keeps the illuminance of the exposure light constant while changing the semiconductor light emitting element to be turned off over time.

各半導体発光素子42を冷却しながら、各半導体発光素子42を断続的に点灯して、露光光の照度を調節するので、各半導体発光素子42は、連続して点灯する場合に比べ、冷却部材47により温度が下げられて、冷却が効率良く行われる。そして、複数の半導体発光素子の一部を、他の半導体発光素子と異なるタイミングで点灯するので、露光光の照度が断続的に急激に変化することがない。   While each semiconductor light emitting element 42 is cooled, each semiconductor light emitting element 42 is intermittently turned on to adjust the illuminance of the exposure light, so that each semiconductor light emitting element 42 is a cooling member as compared with the case where the semiconductor light emitting elements 42 are continuously turned on. The temperature is lowered by 47 and cooling is performed efficiently. Since some of the plurality of semiconductor light emitting elements are lit at different timings from other semiconductor light emitting elements, the illuminance of the exposure light does not change intermittently and rapidly.

図1において、露光光照射装置30からマスク2を介して基板1へ照射される露光光の強度が変化すると、照度センサー35の測定結果が変化する。従って、照度センサー35を用いて、露光光の強度の変化が容易に検出される。図2において、制御回路46は、照度センサー35の測定結果が変化すると、各温度センサー50が測定した各半導体発光素子42の温度に基づき、予め決めた所定温度又は所定温度範囲より低い温度の半導体発光素子の点灯時間を、所定温度又は所定温度範囲より高い温度の半導体発光素子の点灯時間より長くして、照度センサー35の測定結果が所定範囲(例えば、基準値±数%)内となる様に、露光光の強度の変化を補う。   In FIG. 1, when the intensity of the exposure light irradiated from the exposure light irradiation device 30 to the substrate 1 through the mask 2 changes, the measurement result of the illuminance sensor 35 changes. Therefore, a change in the intensity of the exposure light can be easily detected using the illuminance sensor 35. In FIG. 2, when the measurement result of the illuminance sensor 35 changes, the control circuit 46 is based on the temperature of each semiconductor light emitting element 42 measured by each temperature sensor 50, and a semiconductor having a temperature lower than a predetermined temperature or a predetermined temperature range. The lighting time of the light emitting element is set longer than the lighting time of the semiconductor light emitting element at a predetermined temperature or a temperature higher than the predetermined temperature range so that the measurement result of the illuminance sensor 35 is within a predetermined range (for example, a reference value ± several%). In addition, it compensates for changes in the intensity of exposure light.

例えば、照度センサー35により測定された露光光の照度が下限値より低下した場合、制御回路46は、まず、所定温度又は所定温度範囲より低い温度の半導体発光素子の総数から、露光光の照度を所定範囲内とするために必要な追加の総点灯時間を算出する。次に、制御回路46は、図3で符号A,B,Cを付した各グループにつき、各グループ内の所定温度又は所定温度範囲より低い温度の半導体発光素子の数に応じて、追加の総点灯時間を各グループへ割り振る。続いて、制御回路46は、グループ毎に、各グロープへ割り振った追加の点灯時間と、各グループ内の所定温度又は所定温度範囲より低い温度の半導体発光素子の数とから、それらの半導体発光素子の追加の点灯時間を算出する。そして、制御回路46は、グループ毎に、各グループ内の所定温度又は所定温度範囲より低い温度の半導体発光素子を、算出した点灯時間分だけ長く点灯させる。   For example, when the illuminance of the exposure light measured by the illuminance sensor 35 falls below the lower limit value, the control circuit 46 first calculates the illuminance of the exposure light from the total number of semiconductor light emitting elements having a predetermined temperature or a temperature lower than the predetermined temperature range. An additional total lighting time required to be within the predetermined range is calculated. Next, the control circuit 46 adds an additional total for each group denoted by reference symbols A, B, and C in FIG. 3 according to the number of semiconductor light emitting elements having a predetermined temperature or a temperature lower than a predetermined temperature range in each group. Allocate lighting time to each group. Subsequently, the control circuit 46 determines, based on the additional lighting time allocated to each group and the number of semiconductor light emitting elements having a temperature lower than a predetermined temperature or a predetermined temperature range in each group, for each group. Calculate the additional lighting time. Then, for each group, the control circuit 46 turns on the semiconductor light emitting element having a temperature lower than the predetermined temperature or the predetermined temperature range in each group for the calculated lighting time.

逆に、照度センサー35により測定された露光光の照度が上限値より上昇した場合、制御回路46は、まず、所定温度又は所定温度範囲より高い温度の半導体発光素子の総数から、露光光の照度を所定範囲内とするために必要な追加の総消灯時間を算出する。次に、制御回路46は、図3で符号A,B,Cを付した各グループにつき、各グループ内の所定温度又は所定温度範囲より高い温度の半導体発光素子の数に応じて、追加の総消灯時間を各グループへ割り振る。続いて、制御回路46は、グループ毎に、各グロープへ割り振った追加の消灯時間と、各グループ内の所定温度又は所定温度範囲より高い温度の半導体発光素子の数とから、それらの半導体発光素子の追加の消灯時間を算出する。そして、制御回路46は、グループ毎に、各グループ内の所定温度又は所定温度範囲より高い温度の半導体発光素子を、算出した消灯時間分だけ長く消灯させる。   Conversely, when the illuminance of the exposure light measured by the illuminance sensor 35 rises above the upper limit value, the control circuit 46 first determines the illuminance of the exposure light from the total number of semiconductor light emitting elements having a predetermined temperature or a temperature higher than the predetermined temperature range. An additional total extinguishing time required to keep the value within a predetermined range is calculated. Next, the control circuit 46 adds an additional total according to the number of semiconductor light emitting elements having a predetermined temperature or a temperature higher than the predetermined temperature range in each group for each group denoted by reference symbols A, B, and C in FIG. Allocate the turn-off time to each group. Subsequently, for each group, the control circuit 46 calculates the semiconductor light emitting element from the additional turn-off time allocated to each group and the number of semiconductor light emitting elements having a temperature higher than a predetermined temperature or a predetermined temperature range in each group. Calculate the additional turn-off time. Then, for each group, the control circuit 46 turns off the semiconductor light emitting elements having a predetermined temperature or a temperature higher than the predetermined temperature range in each group for the calculated turn-off time.

図5は、照度センサー35により測定された露光光の照度が下限値より低下し、所定温度又は所定温度範囲より低い温度の半導体発光素子の数が、各グループとも同じであった場合の例である。図5(a)は、図3で符号Aを付したグループの半導体発光素子42の内、所定温度又は所定温度範囲より低い温度の半導体発光素子の点灯/消灯状態を示し、図5(b)は、図3で符号Bを付したグループの半導体発光素子42の内、所定温度又は所定温度範囲より低い温度の半導体発光素子の点灯/消灯状態を示し、図5(c)は、図3で符号Cを付したグループの半導体発光素子42の内、所定温度又は所定温度範囲より低い温度の半導体発光素子の点灯/消灯状態を示している。本例では、所定温度又は所定温度範囲より低い温度の半導体発光素子の数が各グループとも同じであるため、追加の点灯時間が各グループとも同じになっている。   FIG. 5 shows an example in which the illuminance of the exposure light measured by the illuminance sensor 35 is lower than the lower limit value, and the number of semiconductor light emitting elements having a predetermined temperature or a temperature lower than the predetermined temperature range is the same in each group. is there. FIG. 5A shows the lighting / extinguishing state of the semiconductor light emitting elements at a predetermined temperature or a temperature lower than the predetermined temperature range among the semiconductor light emitting elements 42 of the group denoted by A in FIG. FIG. 5 shows the on / off state of the semiconductor light emitting elements at a predetermined temperature or a temperature lower than the predetermined temperature range, among the semiconductor light emitting elements 42 of the group denoted by B in FIG. 3, and FIG. Of the semiconductor light emitting elements 42 of the group denoted by reference symbol C, the semiconductor light emitting elements at a predetermined temperature or a temperature lower than a predetermined temperature range are turned on / off. In this example, since the number of semiconductor light emitting elements having a predetermined temperature or a temperature lower than a predetermined temperature range is the same for each group, the additional lighting time is the same for each group.

図6は、照度センサー35により測定された露光光の照度が下限値より低下し、所定温度又は所定温度範囲より低い温度の半導体発光素子の数が、図3で符号Aを付したグループに対し、図3で符号Bを付したグループでは2倍、図3で符号Cを付したグループでは半分であった場合の例である。図6(a)は、図3で符号Aを付したグループの半導体発光素子42の内、所定温度又は所定温度範囲より低い温度の半導体発光素子の点灯/消灯状態を示し、図6(b)は、図3で符号Bを付したグループの半導体発光素子42の内、所定温度又は所定温度範囲より低い温度の半導体発光素子の点灯/消灯状態を示し、図6(c)は、図3で符号Cを付したグループの半導体発光素子42の内、所定温度又は所定温度範囲より低い温度の半導体発光素子の点灯/消灯状態を示している。本例では、追加の点灯時間が、図3で符号Aを付したグループに対し、図3で符号Bを付したグループでは半分、図3で符号Cを付したグループでは2倍となっている。   FIG. 6 shows a group in which the illuminance of the exposure light measured by the illuminance sensor 35 is lower than the lower limit value and the number of semiconductor light emitting elements having a temperature lower than a predetermined temperature or a predetermined temperature range is indicated by a symbol A in FIG. FIG. 3 shows an example of a case in which the number is 2 for the group denoted by B and half for the group denoted by C in FIG. FIG. 6A shows the on / off state of the semiconductor light-emitting elements at a predetermined temperature or a temperature lower than the predetermined temperature range among the semiconductor light-emitting elements 42 of the group denoted by A in FIG. Fig. 6 shows the on / off state of the semiconductor light emitting elements at a predetermined temperature or a temperature lower than the predetermined temperature range among the semiconductor light emitting elements 42 of the group denoted by B in Fig. 3. Of the semiconductor light emitting elements 42 of the group denoted by reference symbol C, the semiconductor light emitting elements at a predetermined temperature or a temperature lower than a predetermined temperature range are turned on / off. In this example, the additional lighting time is half for the group labeled B in FIG. 3 and doubled for the group labeled C in FIG. 3 compared to the group labeled A in FIG. .

この様に、グループ毎に、各グループ内の所定温度又は所定温度範囲より低い温度の半導体発光素子の数に応じて追加の点灯時間を決定し、あるいは、各グループ内の所定温度又は所定温度範囲より高い温度の半導体発光素子の数に応じて追加の消灯時間を決定することにより、露光光の強度を一定に保って、パターンの露光を均一に行うことができる。   In this way, for each group, an additional lighting time is determined according to the number of semiconductor light emitting elements having a predetermined temperature or a temperature lower than a predetermined temperature range in each group, or a predetermined temperature or a predetermined temperature range in each group. By determining the additional turn-off time according to the number of semiconductor light emitting elements having higher temperatures, the exposure light intensity can be kept constant and the pattern can be exposed uniformly.

次に、本発明の他の実施の形態について説明する。図7は、光源ユニットの他の例を示す図である。図7に示した例では、ベース基板41が複数に分割されており、各ベース基板41に、各半導体発光素子42の温度を測定する温度センサー50がそれぞれ取り付けられている。各ベース基板41上には、複数の半導体発光素子42が平面的に配置されている。そして、各ベース基板41に搭載された複数の半導体発光素子42から発生した光が、各拡大レンズ43及び集光レンズ44を介してレンズ群45へ照射される様に、各ベース基板41が異なった角度で配置されている。各半導体発光素子42を各ベース基板41上に平面的に配置することにより、各半導体発光素子42の位置調整を容易に行うことができる。   Next, another embodiment of the present invention will be described. FIG. 7 is a diagram illustrating another example of the light source unit. In the example shown in FIG. 7, the base substrate 41 is divided into a plurality of parts, and the temperature sensors 50 for measuring the temperatures of the respective semiconductor light emitting elements 42 are attached to the respective base substrates 41. On each base substrate 41, a plurality of semiconductor light emitting elements 42 are arranged in a plane. Each base substrate 41 is different so that light generated from a plurality of semiconductor light emitting elements 42 mounted on each base substrate 41 is irradiated to the lens group 45 via each magnifying lens 43 and condenser lens 44. Are arranged at different angles. By arranging each semiconductor light emitting element 42 on each base substrate 41 in a plane, the position of each semiconductor light emitting element 42 can be easily adjusted.

各ベース基板41の裏面には、冷却部材47が取り付けられている。冷却部材47は、内部に冷却水が流れる冷却水通路を有し、冷却装置48から冷却水通路へ供給される冷却水により、各半導体発光素子42を冷却する。なお、冷却部材47及び冷却装置48はこれに限らず、放熱板及び冷却ファンを含む空冷式としてもよい。図7に示した例では、冷却部材47が、各ベース基板41の配置に合わせた形状に構成されている。その他の構成要素は、図2に示した例と同様である。   A cooling member 47 is attached to the back surface of each base substrate 41. The cooling member 47 has a cooling water passage through which the cooling water flows, and cools each semiconductor light emitting element 42 by the cooling water supplied from the cooling device 48 to the cooling water passage. The cooling member 47 and the cooling device 48 are not limited to this, and may be an air cooling type including a heat radiating plate and a cooling fan. In the example shown in FIG. 7, the cooling member 47 is configured in a shape that matches the arrangement of the base substrates 41. Other components are the same as in the example shown in FIG.

本実施の形態は、基板の露光が行われる間、制御回路46が、各半導体発光素子42を連続的に点灯させ、各半導体発光素子42の駆動電流を調節して、露光光の照度を調節するものである。図1において、露光光照射装置30からマスク2を介して基板1へ照射される露光光の強度が変化すると、照度センサー35の測定結果が変化する。従って、照度センサー35を用いて、露光光の強度の変化が容易に検出される。   In the present embodiment, while the substrate is exposed, the control circuit 46 continuously lights each semiconductor light emitting element 42 and adjusts the drive current of each semiconductor light emitting element 42 to adjust the illuminance of the exposure light. To do. In FIG. 1, when the intensity of the exposure light irradiated from the exposure light irradiation device 30 to the substrate 1 through the mask 2 changes, the measurement result of the illuminance sensor 35 changes. Therefore, a change in the intensity of the exposure light can be easily detected using the illuminance sensor 35.

図7において、制御回路46は、照度センサー35の測定結果が変化すると、各温度センサー50が測定した各半導体発光素子42の温度に基づき、予め決めた所定温度又は所定温度範囲より低い温度の半導体発光素子の駆動電流を、所定温度又は所定温度範囲より高い温度の半導体発光素子の駆動電流より大きくして、照度センサー35の測定結果が所定範囲(例えば、基準値±数%)内となる様に、露光光の強度の変化を補う。   In FIG. 7, when the measurement result of the illuminance sensor 35 changes, the control circuit 46 is based on the temperature of each semiconductor light emitting element 42 measured by each temperature sensor 50, and a semiconductor having a temperature lower than a predetermined temperature or a predetermined temperature range. The driving current of the light emitting element is set to be larger than the driving current of the semiconductor light emitting element at a predetermined temperature or a temperature higher than the predetermined temperature range so that the measurement result of the illuminance sensor 35 is within a predetermined range (for example, a reference value ± several%). In addition, it compensates for changes in the intensity of exposure light.

図8は、半導体発光素子の駆動電流と光量との関係の一例を示す図である。図8の縦軸は、半導体発光素子42から発生する光の光量を、駆動電流が500mAであるときを1とした相対光量で示している。図8に示す様に、半導体発光素子42から発生する光の光量は、駆動電流に応じてほぼ直線的に増加する。   FIG. 8 is a diagram illustrating an example of the relationship between the drive current and the light amount of the semiconductor light emitting element. The vertical axis in FIG. 8 indicates the amount of light generated from the semiconductor light emitting element 42 as a relative amount of light when the drive current is 500 mA. As shown in FIG. 8, the amount of light generated from the semiconductor light emitting element 42 increases substantially linearly according to the drive current.

例えば、照度センサー35により測定された露光光の照度が下限値より低下した場合、制御回路46は、所定温度又は所定温度範囲より低い温度の半導体発光素子の総数と、図8に示した半導体発光素子の駆動電流と光量との関係から、露光光の照度を所定範囲内とするために必要な、所定温度又は所定温度範囲より低い温度の半導体発光素子の駆動電流の大きさを算出する。そして、制御回路46は、所定温度又は所定温度範囲より低い温度の半導体発光素子へ、算出した大きさの駆動電流を供給する。   For example, when the illuminance of the exposure light measured by the illuminance sensor 35 falls below the lower limit value, the control circuit 46 determines the total number of semiconductor light emitting elements having a predetermined temperature or a temperature lower than the predetermined temperature range and the semiconductor light emission shown in FIG. From the relationship between the drive current of the element and the amount of light, the magnitude of the drive current of the semiconductor light-emitting element at a predetermined temperature or lower than the predetermined temperature range, which is necessary for setting the illuminance of the exposure light within the predetermined range, is calculated. Then, the control circuit 46 supplies a drive current having a calculated magnitude to the semiconductor light emitting element having a predetermined temperature or a temperature lower than the predetermined temperature range.

逆に、照度センサー35により測定された露光光の照度が上限値より上昇した場合、制御回路46は、所定温度又は所定温度範囲より高い温度の半導体発光素子の総数と、図8に示した半導体発光素子の駆動電流と光量との関係から、露光光の照度を所定範囲内とするために必要な、所定温度又は所定温度範囲より高い温度の半導体発光素子の駆動電流の大きさを算出する。そして、制御回路46は、所定温度又は所定温度範囲より高い温度の半導体発光素子へ、算出した大きさの駆動電流を供給する。   Conversely, when the illuminance of the exposure light measured by the illuminance sensor 35 rises above the upper limit value, the control circuit 46 determines the total number of semiconductor light emitting elements having a predetermined temperature or a temperature higher than the predetermined temperature range, and the semiconductor shown in FIG. From the relationship between the driving current of the light emitting element and the amount of light, the magnitude of the driving current of the semiconductor light emitting element at a predetermined temperature or higher than the predetermined temperature range necessary for setting the illuminance of the exposure light within the predetermined range is calculated. Then, the control circuit 46 supplies a drive current having a calculated magnitude to the semiconductor light emitting element having a predetermined temperature or a temperature higher than the predetermined temperature range.

図9は、本発明の他の実施の形態による露光方法を説明する図である。図9は、基板1の露光を行う5秒の間、各半導体発光素子42へ500mAの駆動電流を連続して供給しているとき、照度センサー35により測定された露光光の照度が下限値より低下した場合の例である。図9(a)は、所定温度又は所定温度範囲より高い温度の半導体発光素子の駆動電流を示し、図9(b)は、所定温度又は所定温度範囲より低い温度の半導体発光素子の駆動電流を示している。本例では、所定温度又は所定温度範囲より低い温度の半導体発光素子の駆動電流が、500mAから520mAへ増加されている。   FIG. 9 is a view for explaining an exposure method according to another embodiment of the present invention. FIG. 9 shows that the illuminance of the exposure light measured by the illuminance sensor 35 is lower than the lower limit value when a drive current of 500 mA is continuously supplied to each semiconductor light emitting element 42 for 5 seconds when the substrate 1 is exposed. It is an example when it falls. FIG. 9A shows a driving current of a semiconductor light emitting element having a predetermined temperature or a temperature higher than a predetermined temperature range, and FIG. 9B shows a driving current of a semiconductor light emitting element having a temperature lower than the predetermined temperature or the predetermined temperature range. Show. In this example, the drive current of the semiconductor light emitting element at a predetermined temperature or a temperature lower than a predetermined temperature range is increased from 500 mA to 520 mA.

図10は、本発明のさらに他の実施の形態による露光方法を示すフローチャートである。本実施の形態は、基板の露光が行われる間、制御回路46が、各半導体発光素子42を連続的に点灯させ、各半導体発光素子42の駆動電流を調節して、露光光の照度を調節するものである。図7において、制御回路46は、まず、各半導体発光素子42へ規定の大きさの駆動電流を供給して、各半導体発光素子42を点灯させる(ステップ301)。図1において、照度センサー35は、露光光照射装置30から照射される露光光の照度を測定する(ステップ302)。露光光照射装置30からマスク2を介して基板1へ照射される露光光の強度が変化すると、照度センサー35の測定結果が変化する。従って、照度センサー35を用いて、露光光の強度の変化が容易に検出される。   FIG. 10 is a flowchart showing an exposure method according to still another embodiment of the present invention. In the present embodiment, while the substrate is exposed, the control circuit 46 continuously lights each semiconductor light emitting element 42 and adjusts the drive current of each semiconductor light emitting element 42 to adjust the illuminance of the exposure light. To do. In FIG. 7, the control circuit 46 first supplies a drive current having a specified magnitude to each semiconductor light emitting element 42 to light each semiconductor light emitting element 42 (step 301). In FIG. 1, the illuminance sensor 35 measures the illuminance of the exposure light emitted from the exposure light irradiation device 30 (step 302). When the intensity of the exposure light irradiated from the exposure light irradiation device 30 to the substrate 1 through the mask 2 changes, the measurement result of the illuminance sensor 35 changes. Therefore, a change in the intensity of the exposure light can be easily detected using the illuminance sensor 35.

図10において、制御回路46は、照度センサー35の測定結果が所定範囲(例えば、基準値±数%)内であるか否かを判断する(ステップ303)。照度センサー35の測定結果が所定範囲内でない場合、制御回路46は、第1の駆動電流調節を行う(ステップ304)。第1の駆動電流調節において、制御回路46は、後述する第2の駆動電流調節(ステップ307)が未だ実施されていない場合は、全部の半導体発光素子42について、また、第2の駆動電流調節が実施された場合は、直前の第2の駆動電流調節で駆動電流が調節されていない半導体発光素子42について、図8に示した半導体発光素子の駆動電流と光量との関係から、露光光の照度を所定範囲内とするために必要な、各半導体発光素子の駆動電流の大きさを算出する。そして、制御回路46は、各半導体発光素子へ、算出した大きさの駆動電流を供給して、ステップ302へ戻る。ステップ302〜304により、露光光照射装置30から照射される露光光の強度が所定範囲内に保たれる。   In FIG. 10, the control circuit 46 determines whether or not the measurement result of the illuminance sensor 35 is within a predetermined range (for example, reference value ± several%) (step 303). If the measurement result of the illuminance sensor 35 is not within the predetermined range, the control circuit 46 performs the first drive current adjustment (step 304). In the first drive current adjustment, the control circuit 46 performs the second drive current adjustment for all the semiconductor light emitting elements 42 when the second drive current adjustment (step 307) described later has not been performed yet. Is applied to the semiconductor light emitting device 42 whose drive current has not been adjusted by the second drive current adjustment immediately before, from the relationship between the drive current and the light amount of the semiconductor light emitting device shown in FIG. The magnitude of the drive current of each semiconductor light emitting element required to make the illuminance within a predetermined range is calculated. Then, the control circuit 46 supplies a drive current having the calculated magnitude to each semiconductor light emitting element, and returns to Step 302. By steps 302 to 304, the intensity of the exposure light irradiated from the exposure light irradiation device 30 is kept within a predetermined range.

ステップ303において、照度センサー35の測定結果が所定範囲内である場合、図7の各温度センサー50は、各半導体発光素子42の温度を測定する(ステップ305)。制御回路46は、各温度センサー50の測定結果から、各半導体発光素子42間の温度差が許容範囲内か否かを判断する(ステップ306)。各半導体発光素子42間の温度差が許容範囲を超えた場合、制御回路46は、第2の駆動電流調節を行う(ステップ307)。第2の駆動電流調節において、制御回路46は、最高温度の半導体発光素子の駆動電流を小さくし、最低温度の半導体発光素子の駆動電流を大きくする。このとき、制御回路46は、図8に示した半導体発光素子の駆動電流と光量との関係から、露光光の照度が所定範囲内に留まる様に、最高温度及び最低温度の半導体発光素子へ供給する駆動電流を決定する。   In step 303, when the measurement result of the illuminance sensor 35 is within the predetermined range, each temperature sensor 50 in FIG. 7 measures the temperature of each semiconductor light emitting element 42 (step 305). The control circuit 46 determines from the measurement result of each temperature sensor 50 whether or not the temperature difference between the respective semiconductor light emitting elements 42 is within an allowable range (step 306). When the temperature difference between the semiconductor light emitting elements 42 exceeds the allowable range, the control circuit 46 performs the second drive current adjustment (step 307). In the second drive current adjustment, the control circuit 46 decreases the drive current of the semiconductor light emitting element having the highest temperature and increases the drive current of the semiconductor light emitting element having the lowest temperature. At this time, the control circuit 46 supplies the semiconductor light emitting element having the highest temperature and the lowest temperature so that the illuminance of the exposure light stays within a predetermined range based on the relationship between the drive current and the light amount of the semiconductor light emitting element shown in FIG. The driving current to be determined is determined.

なお、図10に示した実施の形態では、基板の一面を複数のショットに分けて露光する場合、ショット毎にステップ305〜307が行われるが、基板毎に1回目のショットの時だけステップ305〜307を行ってもよい。第2の駆動電流調節(ステップ307)で駆動電流が小さくなった半導体発光素子は、出力が低下して温度が下がり、駆動電流が大きくなった半導体発光素子は、出力が上昇して温度が上がる。従って、第2の駆動電流調節の対象となる最高温度及び最低温度の半導体発光素子は毎回同じではなく、ステップ305〜307がショット毎又は基板毎に行われることにより、各半導体発光素子42の点灯時の温度が均一化される。   In the embodiment shown in FIG. 10, when one surface of the substrate is divided into a plurality of shots and exposed, steps 305 to 307 are performed for each shot, but step 305 is performed only for the first shot for each substrate. ~ 307 may be performed. The semiconductor light emitting device whose drive current has been reduced by the second drive current adjustment (step 307) has its output lowered and its temperature lowered, and the semiconductor light emitting device whose drive current has been increased has its output raised and its temperature raised. . Accordingly, the semiconductor light emitting elements having the highest temperature and the lowest temperature to be adjusted for the second drive current are not the same every time, and the steps 305 to 307 are performed for each shot or each substrate, so that each semiconductor light emitting element 42 is turned on. The temperature at the time is made uniform.

ステップ306において、各半導体発光素子42間の温度差が許容範囲内である場合、制御回路46は、所定の露光時間が経過したか否かを判断し(ステップ308)、経過していない場合はステップ302へ戻り、経過した場合は各半導体発光素子42を消灯させる。   In step 306, when the temperature difference between the semiconductor light emitting elements 42 is within the allowable range, the control circuit 46 determines whether or not a predetermined exposure time has elapsed (step 308). Returning to step 302, if it has elapsed, each semiconductor light emitting element 42 is turned off.

半導体発光素子の寿命は、点灯時の温度によって大きく異なり、温度が高い状態で点灯を続けると、寿命が短くなる。そして、半導体発光素子の温度は、その出力に依存し、点灯を続ける時間が長くなる程、また駆動電流が大きくなる程、上昇する。基板1の露光が行われる間、露光光照射装置30から照射される露光光の強度を検出すると共に、各半導体発光素子42の温度を検出し、各半導体発光素子42の温度の検出結果に基づき、所定温度又は所定温度範囲より低い温度の半導体発光素子の点灯時間を、所定温度又は所定温度範囲より高い温度の半導体発光素子の点灯時間より長くし、または、所定温度又は所定温度範囲より低い温度の半導体発光素子の駆動電流を、所定温度又は所定温度範囲より高い温度の半導体発光素子の駆動電流より大きくして、検出した露光光の強度の変化を補い、あるいは、露光光の強度の検出結果に基づき、各半導体発光素子42へ供給する駆動電流を調節して、露光光照射装置30から照射される露光光の強度を所定範囲内に保ちながら、各半導体発光素子42の温度の検出結果に基づき、各半導体発光素子42間の温度差が許容範囲を超えたとき、最高温度の半導体発光素子の駆動電流を小さくし、最低温度の半導体発光素子の駆動電流を大きくするので、温度が低い状態で点灯していた半導体発光素子は、温度が上昇してその分だけ寿命が短くなり、温度が高い状態で点灯していた半導体発光素子と同程度の寿命となる。従って、複数の半導体発光素子42を用いて露光光を形成する際、露光光の強度を一定に保ちながら、各半導体発光素子42の寿命が均一化される。   The lifetime of the semiconductor light emitting element varies greatly depending on the temperature at the time of lighting, and the lifetime is shortened if lighting is continued at a high temperature. The temperature of the semiconductor light emitting element depends on its output, and rises as the time for which lighting continues continues and as the drive current increases. While the exposure of the substrate 1 is performed, the intensity of the exposure light irradiated from the exposure light irradiation device 30 is detected, the temperature of each semiconductor light emitting element 42 is detected, and based on the detection result of the temperature of each semiconductor light emitting element 42. The lighting time of a semiconductor light emitting element having a temperature lower than a predetermined temperature or a predetermined temperature range is longer than the lighting time of a semiconductor light emitting element having a temperature higher than the predetermined temperature or the predetermined temperature range, or a temperature lower than the predetermined temperature or the predetermined temperature range. The driving current of the semiconductor light emitting element is made larger than the driving current of the semiconductor light emitting element at a predetermined temperature or a temperature higher than the predetermined temperature range to compensate for the change in the intensity of the detected exposure light, or the detection result of the intensity of the exposure light And adjusting the drive current supplied to each semiconductor light emitting element 42 to maintain the intensity of the exposure light irradiated from the exposure light irradiation device 30 within a predetermined range, Based on the detection result of the temperature of the optical element 42, when the temperature difference between the semiconductor light emitting elements 42 exceeds an allowable range, the driving current of the semiconductor light emitting element having the highest temperature is reduced and the driving current of the semiconductor light emitting element having the lowest temperature is set. Therefore, the semiconductor light-emitting element that was lit at a low temperature has a shorter life due to the rise in temperature, and has the same life as a semiconductor light-emitting element that was lit at a high temperature. Become. Therefore, when forming exposure light using a plurality of semiconductor light emitting elements 42, the lifetime of each semiconductor light emitting element 42 is made uniform while keeping the intensity of the exposure light constant.

以上説明した実施の形態によれば、基板1の露光が行われないとき、光源ユニット40の複数の半導体発光素子42へ駆動電流を供給しないで、各半導体発光素子42を消灯させることにより、各半導体発光素子42の寿命を延ばし、また消費電力を抑えることができる。そして、基板1の露光が行われる間、露光光照射装置30から照射される露光光の強度を検出すると共に、各半導体発光素子42の温度を検出し、各半導体発光素子42の温度の検出結果に基づき、所定温度又は所定温度範囲より低い温度の半導体発光素子の点灯時間を、所定温度又は所定温度範囲より高い温度の半導体発光素子の点灯時間より長くし、または、所定温度又は所定温度範囲より低い温度の半導体発光素子の駆動電流を、所定温度又は所定温度範囲より高い温度の半導体発光素子の駆動電流より大きくして、検出した露光光の強度の変化を補い、あるいは、露光光の強度の検出結果に基づき、各半導体発光素子へ供給する駆動電流を調節して、照射装置から照射される露光光の強度を所定範囲内に保ちながら、各半導体発光素子の温度の検出結果に基づき、各半導体発光素子間の温度差が許容範囲を超えたとき、最高温度の半導体発光素子の駆動電流を小さくし、最低温度の半導体発光素子の駆動電流を大きくすることにより、複数の半導体発光素子42を用いて露光光を形成する際、露光光の強度を一定に保ちながら、各半導体発光素子42の寿命を均一化することができる。   According to the embodiment described above, when exposure of the substrate 1 is not performed, each semiconductor light emitting element 42 is turned off without supplying a driving current to the plurality of semiconductor light emitting elements 42 of the light source unit 40. The lifetime of the semiconductor light emitting device 42 can be extended and the power consumption can be suppressed. And while exposure of the board | substrate 1 is performed, while detecting the intensity | strength of the exposure light irradiated from the exposure light irradiation apparatus 30, while detecting the temperature of each semiconductor light-emitting device 42, the detection result of the temperature of each semiconductor light-emitting device 42 Based on the above, the lighting time of the semiconductor light emitting element having a temperature lower than the predetermined temperature or the predetermined temperature range is set longer than the lighting time of the semiconductor light emitting element having a temperature higher than the predetermined temperature or the predetermined temperature range, or from the predetermined temperature or the predetermined temperature range. The drive current of the semiconductor light emitting element at a low temperature is made larger than the drive current of the semiconductor light emitting element at a temperature higher than a predetermined temperature or a predetermined temperature range to compensate for the change in the intensity of the detected exposure light, or the intensity of the exposure light Based on the detection result, the drive current supplied to each semiconductor light emitting element is adjusted to keep the intensity of exposure light emitted from the irradiation device within a predetermined range, while maintaining the semiconductor light emitting element. Based on the temperature detection result, when the temperature difference between the semiconductor light emitting elements exceeds the allowable range, the driving current of the semiconductor light emitting element at the highest temperature is reduced and the driving current of the semiconductor light emitting element at the lowest temperature is increased. Thus, when forming the exposure light using the plurality of semiconductor light emitting elements 42, the lifetime of each semiconductor light emitting element 42 can be made uniform while keeping the intensity of the exposure light constant.

本発明は、プロキシミティ露光装置に限らず、フォトレジストが塗布された基板へ光ビームを照射し、光ビームにより基板を走査して、基板にパターンを描画する露光装置にも適用することができる。   The present invention can be applied not only to a proximity exposure apparatus but also to an exposure apparatus that irradiates a substrate coated with a photoresist with a light beam, scans the substrate with the light beam, and draws a pattern on the substrate. .

本発明の露光装置を用いて基板の露光を行い、あるいは、本発明の露光方法を用いて基板の露光を行うことにより、各半導体発光素子の寿命を均一化することができるので、複数の半導体発光素子の交換をまとめて無駄なく行い、露光処理の中断を少なくして、表示用パネル基板の生産性を向上させることができる。   Since the exposure of the substrate is performed using the exposure apparatus of the present invention, or the substrate is exposed using the exposure method of the present invention, the lifetime of each semiconductor light emitting element can be made uniform. The light emitting elements can be exchanged together without waste, and the interruption of the exposure process can be reduced to improve the productivity of the display panel substrate.

例えば、図11は、液晶ディスプレイ装置のTFT基板の製造工程の一例を示すフローチャートである。薄膜形成工程(ステップ101)では、スパッタ法やプラズマ化学気相成長(CVD)法等により、基板上に液晶駆動用の透明電極となる導電体膜や絶縁体膜等の薄膜を形成する。レジスト塗布工程(ステップ102)では、ロール塗布法等により感光樹脂材料(フォトレジスト)を塗布して、薄膜形成工程(ステップ101)で形成した薄膜上にフォトレジスト膜を形成する。露光工程(ステップ103)では、プロキシミティ露光装置や投影露光装置等を用いて、マスクのパターンをフォトレジスト膜に転写する。現像工程(ステップ104)では、シャワー現像法等により現像液をフォトレジスト膜上に供給して、フォトレジスト膜の不要部分を除去する。エッチング工程(ステップ105)では、ウエットエッチングにより、薄膜形成工程(ステップ101)で形成した薄膜の内、フォトレジスト膜でマスクされていない部分を除去する。剥離工程(ステップ106)では、エッチング工程(ステップ105)でのマスクの役目を終えたフォトレジスト膜を、剥離液によって剥離する。これらの各工程の前又は後には、必要に応じて、基板の洗浄/乾燥工程が実施される。これらの工程を数回繰り返して、基板上にTFTアレイが形成される。   For example, FIG. 11 is a flowchart showing an example of the manufacturing process of the TFT substrate of the liquid crystal display device. In the thin film formation step (step 101), a thin film such as a conductor film or an insulator film, which becomes a transparent electrode for driving liquid crystal, is formed on the substrate by sputtering, plasma chemical vapor deposition (CVD), or the like. In the resist coating process (step 102), a photosensitive resin material (photoresist) is applied by a roll coating method or the like to form a photoresist film on the thin film formed in the thin film forming process (step 101). In the exposure step (step 103), the mask pattern is transferred to the photoresist film using a proximity exposure apparatus, a projection exposure apparatus, or the like. In the development step (step 104), a developer is supplied onto the photoresist film by a shower development method or the like to remove unnecessary portions of the photoresist film. In the etching process (step 105), a portion of the thin film formed in the thin film formation process (step 101) that is not masked by the photoresist film is removed by wet etching. In the stripping step (step 106), the photoresist film that has finished the role of the mask in the etching step (step 105) is stripped with a stripping solution. Before or after each of these steps, a substrate cleaning / drying step is performed as necessary. These steps are repeated several times to form a TFT array on the substrate.

また、図12は、液晶ディスプレイ装置のカラーフィルタ基板の製造工程の一例を示すフローチャートである。ブラックマトリクス形成工程(ステップ201)では、レジスト塗布、露光、現像、エッチング、剥離等の処理により、基板上にブラックマトリクスを形成する。着色パターン形成工程(ステップ202)では、染色法、顔料分散法、印刷法、電着法等により、基板上に着色パターンを形成する。この工程を、R、G、Bの着色パターンについて繰り返す。保護膜形成工程(ステップ203)では、着色パターンの上に保護膜を形成し、透明電極膜形成工程(ステップ204)では、保護膜の上に透明電極膜を形成する。これらの各工程の前、途中又は後には、必要に応じて、基板の洗浄/乾燥工程が実施される。   FIG. 12 is a flowchart showing an example of the manufacturing process of the color filter substrate of the liquid crystal display device. In the black matrix forming step (step 201), a black matrix is formed on the substrate by processing such as resist coating, exposure, development, etching, and peeling. In the colored pattern forming step (step 202), a colored pattern is formed on the substrate by a dyeing method, a pigment dispersion method, a printing method, an electrodeposition method, or the like. This process is repeated for the R, G, and B coloring patterns. In the protective film forming step (step 203), a protective film is formed on the colored pattern, and in the transparent electrode film forming step (step 204), a transparent electrode film is formed on the protective film. Before, during or after each of these steps, a substrate cleaning / drying step is performed as necessary.

図11に示したTFT基板の製造工程では、露光工程(ステップ103)において、図12に示したカラーフィルタ基板の製造工程では、ブラックマトリクス形成工程(ステップ201)及び着色パターン形成工程(ステップ202)の露光処理において、本発明の露光装置又は露光方法を適用することができる。   In the TFT substrate manufacturing process shown in FIG. 11, in the exposure process (step 103), in the color filter substrate manufacturing process shown in FIG. 12, in the black matrix forming process (step 201) and the colored pattern forming process (step 202). In this exposure process, the exposure apparatus or the exposure method of the present invention can be applied.

1 基板
2 マスク
3 ベース
4 Xガイド
5 Xステージ
6 Yガイド
7 Yステージ
8 θステージ
9 チャック支持台
10 チャック
20 マスクホルダ
30 露光光照射装置
32 コリメーションレンズ群
33 平面鏡
35 照度センサー
40 光源ユニット
41 ベース基板
42 半導体発光素子
43 拡大レンズ
44 集光レンズ
45 レンズ群
46 制御回路
47 冷却部材
48 冷却装置
50 温度センサー
DESCRIPTION OF SYMBOLS 1 Substrate 2 Mask 3 Base 4 X guide 5 X stage 6 Y guide 7 Y stage 8 θ stage 9 Chuck support 10 Chuck 20 Mask holder 30 Exposure light irradiation device 32 Collimation lens group 33 Plane mirror 35 Illuminance sensor 40 Light source unit 41 Base substrate 42 Semiconductor Light Emitting Element 43 Magnifying Lens 44 Condensing Lens 45 Lens Group 46 Control Circuit 47 Cooling Member 48 Cooling Device 50 Temperature Sensor

Claims (18)

基板を支持するチャックと、
複数の半導体発光素子を有し、該複数の半導体発光素子から発生した光を重ね合わせて露光光を形成する光源と、
前記光源からの露光光を前記チャックに支持された基板へ照射する照射装置と、
前記チャックと前記照射装置とを相対的に移動する移動手段とを備え、
前記移動手段により前記チャックと前記照射装置とを相対的に移動し、前記照射装置から照射された露光光により基板を露光する露光装置であって、
前記照射装置から照射される露光光の強度を検出する強度検出手段と、
前記光源の複数の半導体発光素子の温度を検出する複数の温度検出手段と、
基板の露光が行われない時、前記光源の複数の半導体発光素子へ駆動電流を供給しないで、各半導体発光素子を消灯させ、基板の露光が行われる間、前記光源の複数の半導体発光素子へ駆動電流を供給して、各半導体発光素子を断続的に点灯させ、前記複数の温度検出手段の検出結果に基づき、所定温度又は所定温度範囲より低い温度の半導体発光素子の点灯時間を、所定温度又は所定温度範囲より高い温度の半導体発光素子の点灯時間より長くして、前記強度検出手段により検出した露光光の強度の変化を補う制御手段とを備えたことを特徴とする露光装置。
A chuck for supporting the substrate;
A light source having a plurality of semiconductor light emitting elements and forming exposure light by superimposing light generated from the plurality of semiconductor light emitting elements;
An irradiation device for irradiating the substrate supported by the chuck with exposure light from the light source;
A moving means for relatively moving the chuck and the irradiation device;
An exposure apparatus that relatively moves the chuck and the irradiation apparatus by the moving means, and exposes the substrate by exposure light irradiated from the irradiation apparatus,
Intensity detecting means for detecting the intensity of exposure light irradiated from the irradiation device;
A plurality of temperature detecting means for detecting temperatures of a plurality of semiconductor light emitting elements of the light source;
When the substrate is not exposed, each semiconductor light emitting element is turned off without supplying a driving current to the plurality of semiconductor light emitting elements of the light source, and the plurality of semiconductor light emitting elements of the light source is supplied while the substrate is exposed. A drive current is supplied to light each semiconductor light emitting element intermittently, and based on the detection results of the plurality of temperature detecting means, the lighting time of the semiconductor light emitting element at a predetermined temperature or a temperature lower than a predetermined temperature range is set to a predetermined temperature. An exposure apparatus comprising: a control unit that compensates for a change in the intensity of exposure light detected by the intensity detection unit by extending the lighting time of the semiconductor light emitting element having a temperature higher than a predetermined temperature range.
前記強度検出手段は、照度センサーを含み、該照度センサーにより前記照射装置から照射される露光光の照度を測定して、露光光の強度を検出することを特徴とする請求項1に記載の露光装置。   2. The exposure according to claim 1, wherein the intensity detection unit includes an illuminance sensor, and detects the intensity of the exposure light by measuring the illuminance of the exposure light emitted from the irradiation device by the illuminance sensor. apparatus. 基板をチャックで支持し、
複数の半導体発光素子を有する光源で、複数の半導体発光素子から発生した光を重ね合わせて露光光を形成し、
チャックと、光源からの露光光をチャックに支持された基板へ照射する照射装置とを、相対的に移動し、
照射装置から照射された露光光により基板を露光する露光方法であって、
基板の露光が行われない時、光源の複数の半導体発光素子へ駆動電流を供給しないで、各半導体発光素子を消灯させ、
基板の露光が行われる間、光源の複数の半導体発光素子へ駆動電流を供給して、各半導体発光素子を断続的に点灯させ、照射装置から照射される露光光の強度を検出すると共に、各半導体発光素子の温度を検出し、各半導体発光素子の温度の検出結果に基づき、所定温度又は所定温度範囲より低い温度の半導体発光素子の点灯時間を、所定温度又は所定温度範囲より高い温度の半導体発光素子の点灯時間より長くして、検出した露光光の強度の変化を補うことを特徴とする露光方法。
Support the substrate with a chuck,
In a light source having a plurality of semiconductor light emitting elements, exposure light is formed by superimposing light generated from the plurality of semiconductor light emitting elements,
Relatively moving the chuck and the irradiation device for irradiating the substrate supported by the chuck with the exposure light from the light source;
An exposure method for exposing a substrate with exposure light irradiated from an irradiation apparatus,
When substrate exposure is not performed, each semiconductor light emitting element is turned off without supplying drive current to the plurality of semiconductor light emitting elements of the light source,
While exposure of the substrate is performed, a driving current is supplied to the plurality of semiconductor light emitting elements of the light source, each semiconductor light emitting element is intermittently turned on, and the intensity of exposure light irradiated from the irradiation apparatus is detected, and each The temperature of the semiconductor light emitting element is detected, and based on the detection result of the temperature of each semiconductor light emitting element, the lighting time of the semiconductor light emitting element having a temperature lower than the predetermined temperature or the predetermined temperature range is set to a semiconductor having a temperature higher than the predetermined temperature or the predetermined temperature range. An exposure method characterized by compensating for a change in the intensity of the detected exposure light by making it longer than the lighting time of the light emitting element.
照射装置から照射される露光光の照度を照度センサーで測定して、露光光の強度を検出することを特徴とする請求項3に記載の露光方法。   The exposure method according to claim 3, wherein the intensity of the exposure light is detected by measuring the illuminance of the exposure light emitted from the irradiation device with an illuminance sensor. 基板を支持するチャックと、
複数の半導体発光素子を有し、該複数の半導体発光素子から発生した光を重ね合わせて露光光を形成する光源と、
前記光源からの露光光を前記チャックに支持された基板へ照射する照射装置と、
前記チャックと前記照射装置とを相対的に移動する移動手段とを備え、
前記移動手段により前記チャックと前記照射装置とを相対的に移動し、前記照射装置から照射された露光光により基板を露光する露光装置であって、
前記照射装置から照射される露光光の強度を検出する強度検出手段と、
前記光源の複数の半導体発光素子の温度を検出する複数の温度検出手段と、
基板の露光が行われない時、前記光源の複数の半導体発光素子へ駆動電流を供給しないで、各半導体発光素子を消灯させ、基板の露光が行われる間、前記光源の複数の半導体発光素子へ駆動電流を供給して、各半導体発光素子を点灯させ、前記複数の温度検出手段の検出結果に基づき、所定温度又は所定温度範囲より低い温度の半導体発光素子の駆動電流を、所定温度又は所定温度範囲より高い温度の半導体発光素子の駆動電流より大きくして、前記強度検出手段により検出した露光光の強度の変化を補う制御手段とを備えたことを特徴とする露光装置。
A chuck for supporting the substrate;
A light source having a plurality of semiconductor light emitting elements and forming exposure light by superimposing light generated from the plurality of semiconductor light emitting elements;
An irradiation device for irradiating the substrate supported by the chuck with exposure light from the light source;
A moving means for relatively moving the chuck and the irradiation device;
An exposure apparatus that relatively moves the chuck and the irradiation apparatus by the moving means, and exposes the substrate by exposure light irradiated from the irradiation apparatus,
Intensity detecting means for detecting the intensity of exposure light irradiated from the irradiation device;
A plurality of temperature detecting means for detecting temperatures of a plurality of semiconductor light emitting elements of the light source;
When the substrate is not exposed, each semiconductor light emitting element is turned off without supplying a driving current to the plurality of semiconductor light emitting elements of the light source, and the plurality of semiconductor light emitting elements of the light source is supplied while the substrate is exposed. A driving current is supplied to light each semiconductor light emitting element, and based on the detection results of the plurality of temperature detecting means, the driving current of the semiconductor light emitting element having a temperature lower than a predetermined temperature or a predetermined temperature range is set to a predetermined temperature or a predetermined temperature. An exposure apparatus comprising: a control unit that compensates for a change in the intensity of the exposure light detected by the intensity detection unit by making the drive current of the semiconductor light emitting element having a temperature higher than the range higher.
前記強度検出手段は、照度センサーを含み、該照度センサーにより前記照射装置から照射される露光光の照度を測定して、露光光の強度を検出することを特徴とする請求項5に記載の露光装置。   6. The exposure according to claim 5, wherein the intensity detection means includes an illuminance sensor, and the illuminance sensor measures the illuminance of the exposure light emitted from the irradiation device to detect the intensity of the exposure light. apparatus. 基板をチャックで支持し、
複数の半導体発光素子を有する光源で、複数の半導体発光素子から発生した光を重ね合わせて露光光を形成し、
チャックと、光源からの露光光をチャックに支持された基板へ照射する照射装置とを、相対的に移動し、
照射装置から照射された露光光により基板を露光する露光方法であって、
基板の露光が行われない時、光源の複数の半導体発光素子へ駆動電流を供給しないで、各半導体発光素子を消灯させ、
基板の露光が行われる間、光源の複数の半導体発光素子へ駆動電流を供給して、各半導体発光素子を点灯させ、照射装置から照射される露光光の強度を検出すると共に、各半導体発光素子の温度を検出し、各半導体発光素子の温度の検出結果に基づき、所定温度又は所定温度範囲より低い温度の半導体発光素子の駆動電流を、所定温度又は所定温度範囲より高い温度の半導体発光素子の駆動電流より大きくして、検出した露光光の強度の変化を補うことを特徴とする露光方法。
Support the substrate with a chuck,
In a light source having a plurality of semiconductor light emitting elements, exposure light is formed by superimposing light generated from the plurality of semiconductor light emitting elements,
Relatively moving the chuck and the irradiation device for irradiating the substrate supported by the chuck with the exposure light from the light source;
An exposure method for exposing a substrate with exposure light irradiated from an irradiation apparatus,
When substrate exposure is not performed, each semiconductor light emitting element is turned off without supplying drive current to the plurality of semiconductor light emitting elements of the light source,
While exposure of the substrate is performed, a driving current is supplied to the plurality of semiconductor light emitting elements of the light source to turn on each semiconductor light emitting element and detect the intensity of exposure light emitted from the irradiation apparatus, and each semiconductor light emitting element Based on the temperature detection result of each semiconductor light emitting element, the driving current of the semiconductor light emitting element having a temperature lower than the predetermined temperature or the predetermined temperature range is determined based on the detection result of the temperature of each semiconductor light emitting element. An exposure method characterized in that the exposure current is made larger than the drive current to compensate for a change in the intensity of the detected exposure light.
照射装置から照射される露光光の照度を照度センサーで測定して、露光光の強度を検出することを特徴とする請求項7に記載の露光方法。   The exposure method according to claim 7, wherein the intensity of the exposure light is detected by measuring the illuminance of the exposure light emitted from the irradiation device with an illuminance sensor. 基板を支持するチャックと、
複数の半導体発光素子を有し、該複数の半導体発光素子から発生した光を重ね合わせて露光光を形成する光源と、
前記光源からの露光光を前記チャックに支持された基板へ照射する照射装置と、
前記チャックと前記照射装置とを相対的に移動する移動手段とを備え、
前記移動手段により前記チャックと前記照射装置とを相対的に移動し、前記照射装置から照射された露光光により基板を露光する露光装置であって、
前記照射装置から照射される露光光の強度を検出する強度検出手段と、
前記光源の複数の半導体発光素子の温度を検出する複数の温度検出手段と、
基板の露光が行われない時、前記光源の複数の半導体発光素子へ駆動電流を供給しないで、各半導体発光素子を消灯させ、基板の露光が行われる間、前記光源の複数の半導体発光素子へ駆動電流を供給して、各半導体発光素子を点灯させ、前記強度検出手段の検出結果に基づき、各半導体発光素子へ供給する駆動電流を調節して、前記照射装置から照射される露光光の強度を所定範囲内に保ちながら、前記複数の温度検出手段の検出結果に基づき、各半導体発光素子間の温度差が許容範囲を超えたとき、最高温度の半導体発光素子の駆動電流を小さくし、最低温度の半導体発光素子の駆動電流を大きくする制御手段とを備えたことを特徴とする露光装置。
A chuck for supporting the substrate;
A light source having a plurality of semiconductor light emitting elements and forming exposure light by superimposing light generated from the plurality of semiconductor light emitting elements;
An irradiation device for irradiating the substrate supported by the chuck with exposure light from the light source;
A moving means for relatively moving the chuck and the irradiation device;
An exposure apparatus that relatively moves the chuck and the irradiation apparatus by the moving means, and exposes the substrate by exposure light irradiated from the irradiation apparatus,
Intensity detecting means for detecting the intensity of exposure light irradiated from the irradiation device;
A plurality of temperature detecting means for detecting temperatures of a plurality of semiconductor light emitting elements of the light source;
When the substrate is not exposed, each semiconductor light emitting element is turned off without supplying a driving current to the plurality of semiconductor light emitting elements of the light source, and the plurality of semiconductor light emitting elements of the light source is supplied while the substrate is exposed. Supplying a drive current to turn on each semiconductor light emitting element, and adjusting the drive current supplied to each semiconductor light emitting element based on the detection result of the intensity detecting means, thereby adjusting the intensity of exposure light emitted from the irradiation apparatus Is maintained within a predetermined range, based on the detection results of the plurality of temperature detecting means, when the temperature difference between the semiconductor light emitting elements exceeds the allowable range, the driving current of the semiconductor light emitting element at the highest temperature is reduced, and the lowest An exposure apparatus comprising: control means for increasing a driving current of the semiconductor light emitting element at a temperature.
前記強度検出手段は、照度センサーを含み、該照度センサーにより前記照射装置から照射される露光光の照度を測定して、露光光の強度を検出することを特徴とする請求項9に記載の露光装置。   The exposure according to claim 9, wherein the intensity detection unit includes an illuminance sensor, and detects the intensity of the exposure light by measuring the illuminance of the exposure light emitted from the irradiation device by the illuminance sensor. apparatus. 基板をチャックで支持し、
複数の半導体発光素子を有する光源で、複数の半導体発光素子から発生した光を重ね合わせて露光光を形成し、
チャックと、光源からの露光光をチャックに支持された基板へ照射する照射装置とを、相対的に移動し、
照射装置から照射された露光光により基板を露光する露光方法であって、
基板の露光が行われない時、光源の複数の半導体発光素子へ駆動電流を供給しないで、各半導体発光素子を消灯させ、
基板の露光が行われる間、光源の複数の半導体発光素子へ駆動電流を供給して、各半導体発光素子を点灯させ、照射装置から照射される露光光の強度を検出すると共に、各半導体発光素子の温度を検出し、露光光の強度の検出結果に基づき、各半導体発光素子へ供給する駆動電流を調節して、照射装置から照射される露光光の強度を所定範囲内に保ちながら、各半導体発光素子の温度の検出結果に基づき、各半導体発光素子間の温度差が許容範囲を超えたとき、最高温度の半導体発光素子の駆動電流を小さくし、最低温度の半導体発光素子の駆動電流を大きくすることを特徴とする露光方法。
Support the substrate with a chuck,
In a light source having a plurality of semiconductor light emitting elements, exposure light is formed by superimposing light generated from the plurality of semiconductor light emitting elements,
Relatively moving the chuck and the irradiation device for irradiating the substrate supported by the chuck with the exposure light from the light source;
An exposure method for exposing a substrate with exposure light irradiated from an irradiation apparatus,
When substrate exposure is not performed, each semiconductor light emitting element is turned off without supplying drive current to the plurality of semiconductor light emitting elements of the light source,
While exposure of the substrate is performed, a driving current is supplied to the plurality of semiconductor light emitting elements of the light source to turn on each semiconductor light emitting element and detect the intensity of exposure light emitted from the irradiation apparatus, and each semiconductor light emitting element Each semiconductor is detected while adjusting the drive current supplied to each semiconductor light emitting element based on the detection result of the intensity of exposure light and maintaining the intensity of exposure light irradiated from the irradiation device within a predetermined range. Based on the detection result of the temperature of the light emitting element, when the temperature difference between the semiconductor light emitting elements exceeds the allowable range, the driving current of the semiconductor light emitting element at the highest temperature is reduced and the driving current of the semiconductor light emitting element at the lowest temperature is increased. An exposure method characterized by:
照射装置から照射される露光光の照度を照度センサーで測定して、露光光の強度を検出することを特徴とする請求項11に記載の露光方法。   The exposure method according to claim 11, wherein the intensity of the exposure light is detected by measuring the illuminance of the exposure light emitted from the irradiation device with an illuminance sensor. 請求項1又は請求項2に記載の露光装置を用いて基板の露光を行うことを特徴とする表示用パネル基板の製造方法。   A method for manufacturing a display panel substrate, wherein the substrate is exposed using the exposure apparatus according to claim 1. 請求項3又は請求項4に記載の露光方法を用いて基板の露光を行うことを特徴とする表示用パネル基板の製造方法。   A method for producing a display panel substrate, wherein the substrate is exposed using the exposure method according to claim 3. 請求項5又は請求項6に記載の露光装置を用いて基板の露光を行うことを特徴とする表示用パネル基板の製造方法。   A method for manufacturing a display panel substrate, wherein the substrate is exposed using the exposure apparatus according to claim 5. 請求項7又は請求項8に記載の露光方法を用いて基板の露光を行うことを特徴とする表示用パネル基板の製造方法。   A method for manufacturing a display panel substrate, wherein the substrate is exposed using the exposure method according to claim 7 or 8. 請求項9又は請求項10に記載の露光装置を用いて基板の露光を行うことを特徴とする表示用パネル基板の製造方法。   A method for manufacturing a display panel substrate, wherein the substrate is exposed using the exposure apparatus according to claim 9. 請求項11又は請求項12に記載の露光方法を用いて基板の露光を行うことを特徴とする表示用パネル基板の製造方法。   A method for manufacturing a display panel substrate, wherein the substrate is exposed using the exposure method according to claim 11.
JP2011084434A 2011-04-06 2011-04-06 Exposure apparatus, exposure method, and method for manufacturing display panel substrate Withdrawn JP2012220619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011084434A JP2012220619A (en) 2011-04-06 2011-04-06 Exposure apparatus, exposure method, and method for manufacturing display panel substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011084434A JP2012220619A (en) 2011-04-06 2011-04-06 Exposure apparatus, exposure method, and method for manufacturing display panel substrate

Publications (1)

Publication Number Publication Date
JP2012220619A true JP2012220619A (en) 2012-11-12

Family

ID=47272220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011084434A Withdrawn JP2012220619A (en) 2011-04-06 2011-04-06 Exposure apparatus, exposure method, and method for manufacturing display panel substrate

Country Status (1)

Country Link
JP (1) JP2012220619A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019164309A (en) * 2018-03-20 2019-09-26 東芝ライテック株式会社 Device for producing liquid crystal panel
JP2021015240A (en) * 2019-07-16 2021-02-12 株式会社Screenホールディングス Correction method of light source device, light source device and drawing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019164309A (en) * 2018-03-20 2019-09-26 東芝ライテック株式会社 Device for producing liquid crystal panel
JP2021015240A (en) * 2019-07-16 2021-02-12 株式会社Screenホールディングス Correction method of light source device, light source device and drawing device

Similar Documents

Publication Publication Date Title
JP5345443B2 (en) Exposure apparatus, exposure light irradiation method, and display panel substrate manufacturing method
KR101705380B1 (en) Local exposure method and local exposure apparatus
KR101269255B1 (en) Light source for exposure, exposure apparatus, exposure method, and method of manufacturing a display panel substrate
KR20060104925A (en) Peripheral exposure apparatus
TWI608309B (en) Uv led light source module unit for exposure photolithography process and exposure photolithography apparatus used the same
KR20140080510A (en) An illumination system
JP2013171088A (en) Proximity exposure apparatus, method for forming exposure light of proximity exposure apparatus, and method for manufacturing display panel substrate
JP5355261B2 (en) Proximity exposure apparatus, exposure light forming method for proximity exposure apparatus, and display panel substrate manufacturing method
JP2012220619A (en) Exposure apparatus, exposure method, and method for manufacturing display panel substrate
JP2011134932A (en) Light source unit, exposure light irradiating device, exposure device, method of manufacturing display panel substrate, device and method of inspecting semiconductor light emitting element section
JP4879085B2 (en) Exposure equipment
JP2011242563A (en) Exposure apparatus, method for positioning lamp of exposure apparatus, and method of manufacturing display panel substrate
JP5184767B2 (en) Exposure equipment
JP5394320B2 (en) Light source unit, optical axis adjustment method of light source unit, proximity exposure apparatus, exposure light irradiation method of proximity exposure apparatus, and manufacturing method of display panel substrate
JP2011237596A (en) Exposure apparatus, exposure method, and manufacturing method of display panel substrate
JP5306020B2 (en) Proximity exposure apparatus, substrate moving method of proximity exposure apparatus, and display panel substrate manufacturing method
JP2012252296A (en) Proximity exposure apparatus, method for applying exposure light of proximity exposure apparatus, and method for manufacturing display panel substrate
JP5281987B2 (en) Exposure apparatus, exposure method using the same, and manufacturing method of display panel substrate
JP2014149392A (en) Pattern forming apparatus and pattern forming method
JP2013064896A (en) Proximity exposure device, substrate positioning method of proximity exposure device, and manufacturing method of display panel substrate
JP2012048115A (en) Proximity exposure apparatus, exposure light emitting method of proximity exposure apparatus and manufacturing method of display panel substrate
JP2011186310A (en) Proximity exposure device, gap control method thereof, and method for manufacturing display panel substrate
JP2013200529A (en) Proximity exposure device, exposure light irradiation method of the same, and manufacturing method of display panel substrate
JP2014149391A (en) Pattern forming apparatus and pattern forming method
JP2013024986A (en) Proximity exposure apparatus and mask holding mechanism thereof

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140701