JPH0254654B2 - - Google Patents

Info

Publication number
JPH0254654B2
JPH0254654B2 JP59139775A JP13977584A JPH0254654B2 JP H0254654 B2 JPH0254654 B2 JP H0254654B2 JP 59139775 A JP59139775 A JP 59139775A JP 13977584 A JP13977584 A JP 13977584A JP H0254654 B2 JPH0254654 B2 JP H0254654B2
Authority
JP
Japan
Prior art keywords
mercury lamp
exposure
semiconductor wafer
power consumption
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59139775A
Other languages
Japanese (ja)
Other versions
JPS6120324A (en
Inventor
Takehiro Kira
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Original Assignee
Ushio Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK filed Critical Ushio Denki KK
Priority to JP59139775A priority Critical patent/JPS6120324A/en
Priority to US06/705,646 priority patent/US4605301A/en
Priority to FR8502942A priority patent/FR2567280B1/en
Priority to GB8506123A priority patent/GB2161284B/en
Priority to DE3510478A priority patent/DE3510478C2/en
Priority to NLAANVRAGE8501933,A priority patent/NL190495C/en
Publication of JPS6120324A publication Critical patent/JPS6120324A/en
Priority to GB888808723A priority patent/GB8808723D0/en
Priority to GB8810523A priority patent/GB2203849B/en
Publication of JPH0254654B2 publication Critical patent/JPH0254654B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70558Dose control, i.e. achievement of a desired dose
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Discharge-Lamp Control Circuits And Pulse- Feed Circuits (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は水銀灯による半導体ウエハー材料の露
光方法に関するものである。 〔発明の背景〕 一般にIC、LSI、超LSIなどの半導体デバイス
の製造においては、シリコンなどよりなる半導体
ウエハー材料にフオトマスクを介してパターンを
焼付けることが必要である。このようなパターン
の焼付けは、例えばエツチング用レジスト層の形
成のために行なわれるものであり、この場合に
は、通常、半導体ウエハー上に形成した紫外線感
光性のレジスト層にフオトマスクを介して水銀灯
の光を照射して露光する方法が広く採用されてい
る。 半導体ウエハーは通常円形でその全面において
縦横に配列された微小区域に区画され、これらの
微小区域が後に分割されて各々が半導体デバイス
を構成するチツプとなる。1枚の半導体ウエハー
の大きさは直径で3インチ、5インチ、6インチ
程度のものが一般的であるが、半導体ウエハーの
製造技術の進歩に伴ない大型化する傾向にある。 1枚の半導体ウエハー材料の全面を同時に露光
せしめて全微小区域を一度に焼付ける露光方法に
おいては、大きな面積を一度で露光するために大
出力の水銀灯が必要でありそのため露光装置が大
型となること、しかも1回の露光面積が大きいた
めそれだけ半導体ウエハー材料の被露光部におけ
る照度の均一化に相当高度な技術を要すること、
などの問題点があり、結局半導体ウエハーの大型
化傾向に適応することが困難である。 〔従来技術〕 このようなことから、最近1枚の半導体ウエハ
ー材料において、縦横に配列された微小区域の
各々を1個ずつ順次露光せしめてパターンを順次
焼付ける露光方式(以下単に「ステツプ露光方
式」ともいう。)が提案された。このようなステ
ツプ露光方式によれば、1回の露光においては、
微小区域1個分の面積を露光すればよく、このた
め小出力の水銀灯を用いることが可能となつて露
光装置が小型になること、しかも1回の露光面積
が小さいので半導体ウエハーの被露光部の照度の
均一化が容易であること、などの大きな利益が得
られ、結局高い精度でパターンの焼付けを行なう
ことができる。 而して水銀灯は、消灯時には封入された水銀ガ
スが凝縮するため、短い周期で点滅を繰返すこと
ができず、このため連続点灯せしめた状態で使用
されるが、この場合半導体ウエハー材料の露光を
所定の露光量で行なうため露光時間を制限するシ
ヤツターが用いられ、このシヤツターが閉じてい
る間に、水銀灯よりの光が照射される露光位置に
半導体ウエハー材料における次の露光を施すべき
微小区域が位置されるよう当該半導体ウエハー材
料をステツプ的に移動(以下単に「ステツプ移
動」ともいう。)せしめることが必要である。 しかしながら単にこのような従来の露光方法に
おいては、シヤツターが閉じている期間中は水銀
灯の光が露光には利用されないため電力の浪費が
大きく、しかもシヤツターが高温にさらされるた
め当該シヤツターの損傷が大きいという問題があ
る。 このようなことから、シヤツターが閉じられて
いる期間中は、水銀灯の消費電力がシヤツターが
開いている露光期間中の消費電力よりも小さくな
るような状態で水銀灯を点灯する方法が考えられ
る。 しかしながら、このような露光方法において新
たな問題点を有していることが判明した。即ち半
導体ウエハー材料の露光処理の高速化に伴ない、
水銀灯をその消費電力が短い時間間隔で変化する
ように繰返し多数回に亘つて連続点灯せしめる
と、水銀灯の点灯時間の経過に伴ない、電極の摩
耗により水銀灯の放射光量が減少し、結局当初の
露光量で安定した露光を長期間に亘り行なうこと
ができない問題点がある。 〔発明の目的〕 本発明は以上の如き事情に基いてなされたもの
であつて、その目的は、低いコストで、しかも水
銀灯の電極の摩耗を防止し、短い時間間隔で繰返
して行なわれる露光を長期間に亘り安定に実行す
ることができる水銀灯による半導体ウエハー材料
の露光方法を提供することにある。 〔発明の構成〕 以上の目的は、水銀灯を連続点灯した状態で前
記水銀灯の消費電力が高レベルとなる第1のステ
ツプと前記水銀灯の消費電力が低レベルとなる第
2のステツプとを交互に繰返し、前記第1のステ
ツプにおいて前記水銀灯から放射される光により
半導体ウエハー材料を露光する露光方法であつ
て、水銀灯において前記第2のステツプから前記
第1のステツプへの切換えを、水銀灯の消費電力
が1〜30msecの間に前記高レベルの95%に達す
る状態で行なうことを特徴とする水銀灯による半
導体ウエハー材料の露光方法によつて達成され
る。 以下本発明を図面を参照しながら詳細に説明す
る。 本発明の一実施例においては、例えば第1図に
示すように、半導体ウエハー材料の露光装置内に
組み込まれた水銀灯1を、これに電力を常時供給
して連続点灯状態としたうえで、第2図に消費電
力の波形の一例を示すように、水銀灯1へ供給す
る電力を制御することにより、水銀灯1の消費電
力が高レベル例えば定格消費電力の約1.3〜2.5倍
程度のレベルとなる第1のステツプAと、水銀灯
1の消費電力が低レベル例えば定格消費電力また
はこれに近いレベルとなる第2のステツプBとを
周期的に交互に繰返し、前記第1のステツプAに
おいて水銀灯1から放射される光により半導体ウ
エハー材料2を露光する。第1図において、3は
水銀灯1の駆動用電源回路部、4は水銀灯1の光
を遮断するためのシヤツター、5,6,7は反射
鏡、8はインテグレータ、9はフイルター、10
はコンデンサレンズ、11はフオトマスク、12
は縮小レンズであり、縮小度は通常1/10〜1/5と
される。 露光量の規制においては、シヤツター4の開い
ている時間を適宜設定することによつて、半導体
ウエハー材料2の被露光部における露光量を必要
な規定値に適合させる。即ち、消費電力が高レベ
ルとなる第1のステツプAによつて水銀灯1が点
灯されている状態においてシヤツター4を設定さ
れた時間だけ開いた状態とすることにより露光量
を規定されたものとする。そして消費電力が低レ
ベルとなる第2のステツプBによつて水銀灯が点
灯される状態に移行され、この間はずつとシヤツ
ター4が閉じている。 前記第1のステツプAと第2のステツプBの繰
返しは、半導体ウエハー材料2のステツプ移動の
態様との関連において互に連動するよう行なう。
即ち第3図に示すように半導体ウエハー材料2の
被露光部を縦横に並ぶ多数の微小区域Pに区画し
て、これらの微小区域Pの1個1個を順次露光位
置にステツプ的に移動してその位置に一旦静止せ
しめた状態で露光を行なう。シヤツター4が開閉
することによつて1回の露光が終了し、半導体ウ
エハー材料の1つの微小区域Pにパターンが焼付
けられる。そしてシヤツター4が閉じている期間
中に次に露光すべき微小区域Pを露光位置にまで
ステツプ移動せしめ、そして同様にして露光を繰
返す。 このようにして第1のステツプA及び第2のス
テツプBと、シヤツター4の開閉動作と、半導体
ウエハー材料2のステツプ移動とを連係させて露
光を行なうが、水銀灯1における第2のステツプ
Bから第1のステツプAへの切換えを第4図に拡
大して示すように水銀灯の消費電力が1〜30m
secの間に第1のステツプAにおける高レベルの
95%に達する状態で行なう。具体的には駆動用電
源回路部3において、水銀灯1の消費電力が低レ
ベルから高レベルへ立上るときに当該高レベルの
95%に達するまでのいわば立上がり時間Tが1〜
30msecの範囲内となるような従来公知の電源回
路を採用すればよい。 前記立上がり時間Tが30msecを越える場合に
は、シヤツター4の開閉動作は通常20〜30msec
程度の時間内で行なうことが可能であるところ、
このシヤツター4の高速開閉動作に対応して水銀
灯1の第2のステツプBから第1のステツプAへ
の切換えが追随できず、このため露光処理の高速
化が阻害され、一方立上がり時間Tが1msec未
満の場合には、消費電力の変化が急激すぎるため
水銀灯1の電極の摩耗が大きくなる。 第5図は、水銀灯1の具体的構成の一例を示
し、101は石英ガラス製の封体、102A,1
02Bは口金、103,104はそれぞれ電極
棒、105,106はそれぞれ陽極体、陰極体で
ある。封体101の内部には水銀が封入されてお
り、その封入量は、第2のステツプBにおいて水
銀灯1が点灯されているときに水銀が凝縮しない
程度の量である。 前記陽極体105は、第6図に拡大して示すよ
うに、大径円柱状の胴部51と、この胴部51か
らテーパ状に伸びてその先端面52が平坦面であ
る先端部53とにより構成され、一方陰極体10
6は、同じく第6図に拡大して示すように柱状部
61とこの柱状部61からコーン状に形成されて
伸びる先端部62とにより構成されている。 斯かる水銀灯1の具体的設計の一例を下記に示
す。 定格消費電力 500W(50V、10A) 陽極体形状 胴部51の外径D1 4.0mm 先端面52の直径D2 2.0mm 先端部53の開き角α 90度 陰極体形状 柱状部61の外径D3 2.0mm 電極間距離L 3.0mm 定格消費電力で点灯しているときの封体内圧力
13気圧 斯かる構成の水銀灯を用いて上記の如き方法に
基いて、半導体ウエハー材料の露光を下記の条件
で実際に行なつたところ、約600時間の長期間に
亘るまで初期の露光量が安定して得られ、しかも
1時間当たりウエハー60枚の露光を行なうことが
でき、結局半導体ウエハー材料の露光を高速でし
かも長期間に亘り良好に行なうことができた。 第1のステツプAの時間間隔 400msec 第2のステツプBの時間間隔 400msec 第1のステツプAにおける消費電力 初期から300時間経過するまでは750Wに一定に
維持し、300時間経過後から600時間経過するまで
は随時増加せしめて1KWまで上昇せしめた。 第2のステツプBにおける消費電力 初期から600時間経過するまで500Wに一定に維
持した。 第2のステツプBから第1のステツプAに切換わ
るときの立上がり時間T 20msec また第2のステツプBから第1のステツプAに
切換わるときの立上がり時間Tを下記第1表に示
すように種々の値に変えた他は上記と同様にして
露光実験を行なつたところ、立上がり時間Tが1
msec未満の場合は水銀灯の実用使用可能時間が
著しく短いものであつた。また立上がり時間Tが
30msecを越える場合には半導体ウエハー材料の
単位時間当たりの処理枚数が少ないものであつ
た。
[Industrial Application Field] The present invention relates to a method of exposing semiconductor wafer material using a mercury lamp. [Background of the Invention] Generally, in manufacturing semiconductor devices such as ICs, LSIs, and VLSIs, it is necessary to print patterns on semiconductor wafer materials made of silicon or the like using a photomask. Such pattern baking is performed, for example, to form a resist layer for etching, and in this case, a mercury lamp is usually applied to the ultraviolet-sensitive resist layer formed on the semiconductor wafer through a photomask. A method of exposing by irradiating light is widely used. A semiconductor wafer is usually circular and its entire surface is divided into minute areas arranged vertically and horizontally, and these minute areas are later divided into chips, each of which constitutes a semiconductor device. The size of a single semiconductor wafer is generally about 3 inches, 5 inches, or 6 inches in diameter, but there is a tendency for the size to increase as semiconductor wafer manufacturing technology advances. In the exposure method that simultaneously exposes the entire surface of a single semiconductor wafer material and prints all minute areas at once, a high-output mercury lamp is required to expose a large area at once, which requires a large exposure device. In addition, since the area exposed at one time is large, it requires a fairly sophisticated technique to equalize the illuminance in the exposed area of the semiconductor wafer material.
As a result, it is difficult to adapt to the trend toward larger semiconductor wafers. [Prior Art] For these reasons, recently an exposure method (hereinafter simply referred to as "step exposure method") has been developed in which each of micro areas arranged vertically and horizontally on a single semiconductor wafer is sequentially exposed one by one to form a pattern. ) was proposed. According to such a step exposure method, in one exposure,
It is only necessary to expose the area of one minute area, which makes it possible to use a low-output mercury lamp, making the exposure apparatus more compact.Moreover, since the area exposed per time is small, the area to be exposed on the semiconductor wafer can be reduced. Great benefits such as the ease of uniformizing the illuminance can be obtained, and as a result, patterns can be printed with high precision. When the mercury lamp is turned off, the mercury gas contained in it condenses, so it is not possible to repeat blinking in a short period of time, so it is used in a state where it is kept on continuously, but in this case, it is difficult to expose semiconductor wafer materials. A shutter is used to limit the exposure time in order to perform exposure at a predetermined amount. While the shutter is closed, a minute area of the semiconductor wafer material to be exposed next is located at the exposure position where light from the mercury lamp is irradiated. It is necessary to move the semiconductor wafer material in steps (hereinafter simply referred to as "step movement") so that the semiconductor wafer material is positioned. However, in this conventional exposure method, the light from the mercury lamp is not used for exposure while the shutter is closed, which wastes a lot of power, and the shutter is exposed to high temperatures, which can cause significant damage to the shutter. There is a problem. For this reason, a method can be considered in which the mercury lamp is turned on in such a way that the power consumption of the mercury lamp during the period when the shutter is closed is smaller than the power consumption during the exposure period when the shutter is open. However, it has been found that such an exposure method has new problems. That is, as the exposure processing of semiconductor wafer materials becomes faster,
If a mercury lamp is repeatedly turned on many times in a row so that its power consumption changes at short time intervals, the amount of light emitted by the mercury lamp will decrease due to wear of the electrodes as the lighting time of the mercury lamp passes, and the amount of light emitted by the mercury lamp will eventually decrease to There is a problem in that it is not possible to perform exposure with a stable exposure amount over a long period of time. [Object of the Invention] The present invention has been made based on the above-mentioned circumstances, and its object is to prevent the electrodes of a mercury lamp from being worn out at a low cost, and to eliminate repeated exposures at short time intervals. An object of the present invention is to provide a method for exposing semiconductor wafer materials using a mercury lamp, which can be stably performed over a long period of time. [Structure of the Invention] The above object is to alternately perform a first step in which the power consumption of the mercury lamp is at a high level and a second step in which the power consumption of the mercury lamp is at a low level when the mercury lamp is continuously lit. An exposure method that repeatedly exposes a semiconductor wafer material with light emitted from the mercury lamp in the first step, wherein switching from the second step to the first step in the mercury lamp is performed by reducing the power consumption of the mercury lamp. This is achieved by a method of exposing a semiconductor wafer material using a mercury lamp, which is characterized in that exposure is carried out in such a manner that the exposure time reaches 95% of the above-mentioned high level within 1 to 30 msec. The present invention will be explained in detail below with reference to the drawings. In one embodiment of the present invention, as shown in FIG. 1, for example, a mercury lamp 1 built into an exposure apparatus for semiconductor wafer materials is constantly supplied with power to be in a continuous lighting state, and then As shown in Fig. 2, an example of the power consumption waveform, by controlling the power supplied to the mercury lamp 1, the power consumption of the mercury lamp 1 can be brought to a high level, for example, about 1.3 to 2.5 times the rated power consumption. The first step A and the second step B, in which the power consumption of the mercury lamp 1 is at a low level, for example, the rated power consumption or a level close to this, are periodically and alternately repeated. The semiconductor wafer material 2 is exposed to light. In FIG. 1, 3 is a power supply circuit for driving the mercury lamp 1, 4 is a shutter for cutting off light from the mercury lamp 1, 5, 6, and 7 are reflectors, 8 is an integrator, 9 is a filter, and 10
is a condenser lens, 11 is a photomask, 12
is a reduction lens, and the reduction degree is usually 1/10 to 1/5. In regulating the exposure amount, by appropriately setting the time during which the shutter 4 is open, the exposure amount at the exposed portion of the semiconductor wafer material 2 is adjusted to a required specified value. In other words, the exposure amount is determined by keeping the shutter 4 open for a set time while the mercury lamp 1 is turned on in the first step A in which the power consumption is at a high level. . Then, in the second step B in which the power consumption is reduced to a low level, the mercury lamp is turned on, and during this time the shutter 4 is gradually closed. The repetition of the first step A and the second step B takes place in conjunction with each other in relation to the manner of step movement of the semiconductor wafer material 2.
That is, as shown in FIG. 3, the exposed portion of the semiconductor wafer material 2 is divided into a large number of minute areas P arranged in rows and columns, and each of these minute areas P is sequentially moved stepwise to the exposure position. Exposure is performed while the object is held stationary at that position. One exposure is completed by opening and closing the shutter 4, and a pattern is printed in one minute area P of the semiconductor wafer material. Then, while the shutter 4 is closed, the minute area P to be exposed next is moved step by step to the exposure position, and the exposure is repeated in the same manner. In this way, exposure is performed by linking the first step A and the second step B, the opening/closing operation of the shutter 4, and the step movement of the semiconductor wafer material 2. As shown in Fig. 4, which shows the switching to the first step A, the power consumption of the mercury lamp is 1 to 30m.
The high level in the first step A during sec
Do this when it reaches 95%. Specifically, in the driving power supply circuit section 3, when the power consumption of the mercury lamp 1 rises from a low level to a high level,
The so-called rise time T until reaching 95% is 1~
A conventionally known power supply circuit that is within the range of 30 msec may be used. When the rise time T exceeds 30 msec, the opening/closing operation of the shutter 4 is normally 20 to 30 msec.
Where it is possible to do this within a certain amount of time,
In response to this high-speed opening/closing operation of the shutter 4, the switching of the mercury lamp 1 from the second step B to the first step A cannot follow, and this impedes the speeding up of the exposure process, while the rise time T is 1 msec. If it is less than 1, the change in power consumption will be too rapid, and the electrodes of the mercury lamp 1 will wear out significantly. FIG. 5 shows an example of a specific configuration of the mercury lamp 1, in which 101 is a quartz glass envelope, 102A, 1
02B is a base, 103 and 104 are electrode rods, and 105 and 106 are an anode body and a cathode body, respectively. Mercury is sealed inside the envelope 101, and the amount of mercury sealed is such that it will not condense when the mercury lamp 1 is turned on in the second step B. As shown in an enlarged view in FIG. 6, the anode body 105 includes a large-diameter cylindrical body 51, and a tip 53 that extends from the body 51 in a tapered shape and has a flat tip surface 52. On the other hand, the cathode body 10
6 is composed of a columnar portion 61 and a cone-shaped tip portion 62 extending from the columnar portion 61, as shown in an enlarged view in FIG. An example of a specific design of such a mercury lamp 1 is shown below. Rated power consumption 500W (50V, 10A) Outer diameter D of anode body shape body 51 1 4.0mm Diameter of tip face 52 D 2 2.0mm Opening angle α of tip 53 90 degrees Outer diameter D of cathode body shape columnar part 61 3 2.0mm Distance between electrodes L 3.0mm Pressure inside the enclosure when lighting at rated power consumption
When a semiconductor wafer material was actually exposed under the following conditions using a mercury lamp with such a configuration and the method described above, the initial exposure amount remained stable for a long period of about 600 hours. Furthermore, 60 wafers could be exposed per hour, and semiconductor wafer materials could be successfully exposed at high speed and over a long period of time. Time interval of 1st step A: 400 msec Time interval of 2nd step B: 400 msec Power consumption in 1st step A: Maintained constant at 750W from the initial stage until 300 hours have elapsed, and after 300 hours have passed, 600 hours have elapsed. Until then, the power was increased from time to time to 1KW. Power consumption in the second step B: The power consumption was kept constant at 500 W from the initial stage until 600 hours had passed. The rise time T when switching from the second step B to the first step A is 20 msec.The rise time T when switching from the second step B to the first step A is varied as shown in Table 1 below. When an exposure experiment was conducted in the same manner as above except that the value was changed to , the rise time T was 1.
When it was less than msec, the practical usable time of the mercury lamp was extremely short. Also, the rise time T
When the time exceeded 30 msec, the number of semiconductor wafer materials processed per unit time was small.

〔発明の作用効果〕[Function and effect of the invention]

以上詳細に説明したように、本発明方法によれ
ば、次のような作用効果が奏される。 (1) 水銀灯の放射光が露光に利用されない期間に
おいては、水銀灯の消費電力が低レベルとなる
第2のステツプにより当該水銀灯を点灯するた
め、水銀灯による電力の浪費を大幅に小さくす
ることができるうえシヤツターの過熱損傷を防
止することができ、しかも水銀灯は第2のステ
ツプにおける低レベルの消費電力に応じて設計
される大きさのものを用いることができるうえ
第1のステツプでは水銀灯の消費電力が高レベ
ルとなるためこのとき必要な露光量を得ること
ができ従つて半導体ウエハー材料の露光をより
小型な水銀灯で行なうことができ、この結果露
光装置の占有容積が小さくなりクリーンルーム
などのメンテナンスに必要なコストが小さく、
結局半導体デバイスの製造コストを大幅に低減
化することが可能となる。 (2) そして、水銀灯において、第2のステツプか
ら第1のステツプへの切換えを、水銀灯の消費
電力が1〜30msecの間に第1のステツプにお
ける高レベルの95%に達する状態で行なうた
め、水銀灯の電極の早期摩耗を防止することが
でき、しかも第2のステツプから第1のステツ
プへの移行を短い時間間隔で行なうことがで
き、この結果第1のステツプと第2のステツプ
とを短い時間間隔で繰返しながら、長期間に亘
り安定した放射光量で半導体ウエハーの材料の
露光を行なうことができる。
As described above in detail, the method of the present invention provides the following effects. (1) During the period when the synchrotron radiation of the mercury lamp is not used for exposure, the mercury lamp is turned on in a second step in which the power consumption of the mercury lamp is at a low level, so the power wasted by the mercury lamp can be significantly reduced. Moreover, overheating damage to the shutter can be prevented, and the mercury lamp can be sized to accommodate the low level of power consumption in the second step. Since the level of light is high, the necessary exposure amount can be obtained at this time, and semiconductor wafer materials can be exposed using a smaller mercury lamp.As a result, the volume occupied by the exposure equipment is reduced, making it easy to maintain in clean rooms, etc. The required cost is small,
In the end, it becomes possible to significantly reduce the manufacturing cost of semiconductor devices. (2) In the mercury lamp, the switching from the second step to the first step is performed while the power consumption of the mercury lamp reaches 95% of the high level in the first step within 1 to 30 msec. Premature wear of the electrodes of the mercury lamp can be prevented, and the transition from the second step to the first step can be carried out in a short time interval, resulting in a short transition between the first and second steps. By repeating this method at time intervals, it is possible to expose the material of the semiconductor wafer with a stable amount of emitted light over a long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は露光装置の一例の概略を模式的に示す
説明図、第2図は第1のステツプと第2のステツ
プの繰返しによつて変化する水銀灯の消費電力の
波形の一例を示す説明図、第3図は半導体ウエハ
ー材料の被露光部の一部を示す説明図、第4図は
水銀灯の消費電力の第2のステツプにおける低レ
ベルから第1のステツプにおける高レベルへ達す
るまでの立上がり状態を示す説明図、第5図は水
銀灯の一例を示す説明図、第6図は第5図に示し
た水銀灯の要部を拡大して示す説明図である。 1……水銀灯、2……半導体ウエハー材料、3
……駆動用電源回路部、4……シヤツター、5,
6,7……反射鏡、8……インテグレータ、9…
…フイルター、10……コンデンサレンズ、11
……フオトマスク、12……縮小レンズ、101
……封体、102A,102B……口金、10
3,104……電極棒、105……陽極体、51
……胴部、52……先端面、53……先端部、1
06……陰極体、61……柱状部、62……先端
部。
Fig. 1 is an explanatory diagram schematically showing an example of an exposure apparatus, and Fig. 2 is an explanatory diagram showing an example of the waveform of power consumption of a mercury lamp that changes as the first step and second step are repeated. , FIG. 3 is an explanatory diagram showing a part of the exposed part of the semiconductor wafer material, and FIG. 4 is a rising state of the power consumption of the mercury lamp from the low level in the second step to the high level in the first step. FIG. 5 is an explanatory diagram showing an example of a mercury lamp, and FIG. 6 is an explanatory diagram showing an enlarged main part of the mercury lamp shown in FIG. 1...Mercury lamp, 2...Semiconductor wafer material, 3
...Drive power supply circuit section, 4...Shutter, 5,
6, 7...Reflector, 8...Integrator, 9...
...Filter, 10...Condenser lens, 11
... Photomask, 12 ... Reducing lens, 101
... Enclosure, 102A, 102B ... Cap, 10
3,104... Electrode rod, 105... Anode body, 51
...Body part, 52...Tip surface, 53...Tip part, 1
06...Cathode body, 61...Columnar part, 62...Tip part.

Claims (1)

【特許請求の範囲】 1 水銀灯を連続点灯した状態で前記水銀灯の消
費電力が高レベルとなる第1のステツプと前記水
銀灯の消費電力が低レベルとなる第2のステツプ
とを交互に繰返し、前記第1のステツプにおいて
前記水銀灯から放射される光により半導体ウエハ
ー材料を露光する露光方法であつて、 水銀灯において前記第2のステツプから前記第
1のステツプへの切換えを、水銀灯の消費電力が
1〜30msecの間に前記高レベルの95%に達する
状態で行なうことを特徴とする水銀灯による半導
体ウエハー材料の露光方法。
[Scope of Claims] 1. A first step in which the power consumption of the mercury lamp is at a high level while the mercury lamp is continuously lit, and a second step in which the power consumption of the mercury lamp is at a low level are alternately repeated, An exposure method in which a semiconductor wafer material is exposed to light emitted from the mercury lamp in a first step, wherein switching from the second step to the first step in the mercury lamp is performed when the power consumption of the mercury lamp is 1 to 1. A method for exposing a semiconductor wafer material using a mercury lamp, characterized in that the exposure is carried out in a state where the high level reaches 95% within 30 msec.
JP59139775A 1984-07-07 1984-07-07 Method for exposing material of semiconductor wafer by mercury lamp Granted JPS6120324A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP59139775A JPS6120324A (en) 1984-07-07 1984-07-07 Method for exposing material of semiconductor wafer by mercury lamp
US06/705,646 US4605301A (en) 1984-07-07 1985-02-26 Exposure method of semiconductor wafer by mercury-vapor lamp
FR8502942A FR2567280B1 (en) 1984-07-07 1985-02-28 PROCESS FOR EXPOSING A SEMICONDUCTOR PELLET BY A MERCURY VAPOR LAMP
GB8506123A GB2161284B (en) 1984-07-07 1985-03-08 Method of exposing a semiconductor wafer to light from a mercury-vapor lamp
DE3510478A DE3510478C2 (en) 1984-07-07 1985-03-22 Method for successively exposing small sections of a semiconductor wafer
NLAANVRAGE8501933,A NL190495C (en) 1984-07-07 1985-07-05 Illumination system for successively exposing semiconductor wafers.
GB888808723A GB8808723D0 (en) 1984-07-07 1988-04-13 Method of exposing semiconductor wafer to light from mercury-vapour lamp
GB8810523A GB2203849B (en) 1984-07-07 1988-05-04 Method of exposing a semiconductor wafer to light from a mercury-vapor lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59139775A JPS6120324A (en) 1984-07-07 1984-07-07 Method for exposing material of semiconductor wafer by mercury lamp

Publications (2)

Publication Number Publication Date
JPS6120324A JPS6120324A (en) 1986-01-29
JPH0254654B2 true JPH0254654B2 (en) 1990-11-22

Family

ID=15253123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59139775A Granted JPS6120324A (en) 1984-07-07 1984-07-07 Method for exposing material of semiconductor wafer by mercury lamp

Country Status (2)

Country Link
JP (1) JPS6120324A (en)
GB (2) GB8808723D0 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0679107B2 (en) * 1986-07-04 1994-10-05 オリンパス光学工業株式会社 Light source device for electronic scope
JPH0679108B2 (en) * 1988-07-28 1994-10-05 オリンパス光学工業株式会社 Light source for electronic scope
JPH0679109B2 (en) * 1988-07-28 1994-10-05 オリンパス光学工業株式会社 Light source for electronic scope
DE4402611A1 (en) * 1994-01-28 1995-08-10 Wack O K Chemie Gmbh Motor cycle washing assembly applies cleaning agent and rinses with jets
JP4897397B2 (en) * 2005-12-27 2012-03-14 ハリソン東芝ライティング株式会社 UV irradiation equipment
JP2008281934A (en) * 2007-05-14 2008-11-20 Harison Toshiba Lighting Corp Ultraviolet radiation device
JP5736989B2 (en) * 2011-06-15 2015-06-17 ウシオ電機株式会社 Light source device and lamp lighting method
JP2022167503A (en) * 2021-04-23 2022-11-04 株式会社ブイ・テクノロジー Control method of luminaire and exposure device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54108478A (en) * 1978-02-14 1979-08-25 Ushio Electric Inc Printing or transcribing method of semiconductor and discharge lamp suitable for printing or transcription

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54108478A (en) * 1978-02-14 1979-08-25 Ushio Electric Inc Printing or transcribing method of semiconductor and discharge lamp suitable for printing or transcription

Also Published As

Publication number Publication date
GB2203849A (en) 1988-10-26
GB8810523D0 (en) 1988-06-08
GB2203849B (en) 1989-05-24
GB8808723D0 (en) 1988-05-18
JPS6120324A (en) 1986-01-29

Similar Documents

Publication Publication Date Title
US4732842A (en) Exposure method of semiconductor wafer by rare gas-mercury discharge lamp
US4532427A (en) Method and apparatus for performing deep UV photolithography
JPH0254654B2 (en)
KR0183727B1 (en) Deformed aperture projection exposure apparatus using it
JPH0254653B2 (en)
JPH0260051B2 (en)
JPH10270330A (en) Method and device for forming pattern
JPS6120325A (en) Method for exposing material of semiconductor wafer by mercury lamp
JPS6146023A (en) Exposure of semiconductor wafer material by superhigh pressure mercury-arc lamp
US4704346A (en) Process for the exposure of semiconductor wafer
JPS6049630A (en) Manufacture of semiconductor device
JPS6120322A (en) Method for exposing material of semiconductor wafer by mercury lamp
DE3510478C2 (en) Method for successively exposing small sections of a semiconductor wafer
JP2006227609A (en) Exposure method, method for forming irregular pattern, and method for manufacturing optical element
JPS6120327A (en) Method for exposing material of semiconductor water by extra-high pressure mercury lamp
JPS6254440A (en) Exposure of semiconductor wafer
JP4202962B2 (en) Substrate processing method and semiconductor device manufacturing method
JPH0251224A (en) Method for implanting impurity
SU871232A1 (en) Method of film nesistor adjustment
JPS62115717A (en) Treater
JP2005203597A (en) Resist development method and device
JPH0239419A (en) Manufacture of semiconductor device
JPH0777190B2 (en) Resist pattern resistance improvement method
JPS6120328A (en) Method for exposing material of semiconductor wafer by extra-high pressure mercury lamp
KR20020054658A (en) Exposuring method of E-beam

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees