JPS6120322A - Method for exposing material of semiconductor wafer by mercury lamp - Google Patents

Method for exposing material of semiconductor wafer by mercury lamp

Info

Publication number
JPS6120322A
JPS6120322A JP59139773A JP13977384A JPS6120322A JP S6120322 A JPS6120322 A JP S6120322A JP 59139773 A JP59139773 A JP 59139773A JP 13977384 A JP13977384 A JP 13977384A JP S6120322 A JPS6120322 A JP S6120322A
Authority
JP
Japan
Prior art keywords
mercury lamp
power consumption
exposure
semiconductor wafer
shutter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59139773A
Other languages
Japanese (ja)
Inventor
Takehiro Kira
健裕 吉良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP59139773A priority Critical patent/JPS6120322A/en
Priority to FR8502941A priority patent/FR2567279B1/en
Priority to GB08506122A priority patent/GB2161283B/en
Priority to DE19853510522 priority patent/DE3510522A1/en
Priority to NL8501932A priority patent/NL8501932A/en
Publication of JPS6120322A publication Critical patent/JPS6120322A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70558Dose control, i.e. achievement of a desired dose

Abstract

PURPOSE:To restrain the decrease in a quantity of light emission with time by repeating the first step in which electric power consumption of a mercury lamp becomes a high level under the condition that the power consumption increases gradually according to the passage of lighting time of the mercury lamp. CONSTITUTION:In the first step A in which an electric power consumption becomes a high level, a shutter 4 is open for the predetermined time under the condition that a mercury lamp 1 has been lighted. In the second step B in which the power consumption becomes a low level, the condition is shifted to one that the mercury lamp 1 is lighted, during which the shutter 4 is closed. The exposure is effected by relatively combining the first and second steps A and B, opening and closing operations of the shutter 4, and a step shift of a semiconductor material 2. Under such condition that the power consumption in the first step A increases gradually according to the passage of lighting time of the mercury lamp 1 straight, curvedly or stepwise the first step A is repeated so as to prevent a decrease in a quantity of exposing light during the respective step A.

Description

【発明の詳細な説明】 し産業上の利用分野〕 本発明は水銀灯による半導体ウニ・・−材料の露光方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method of exposing semiconductor sea urchin material using a mercury lamp.

〔発明の背景〕[Background of the invention]

一般1cIc、LSI、超LSI′rLどの半導体デー
9イスの製造ににいては、シリコンなどよt)なる半導
体ウェハー材料にフォトマスクを介してパターン會焼付
けろことが心安でおる。このようなパターンの焼付げは
1例えばエツチング用レジスト層の形成のために行なわ
れるものであり、この場合には、通常、半導体ウェハー
上に形成した紫外緑感+性のレジスト層圧フォトマスク
を介して水銀灯の元金照射して露光する方法が広(採用
されている。
When manufacturing semiconductor devices such as general 1cIc, LSI, and ultra-LSI'rL, it is safe to print a pattern on a semiconductor wafer material such as silicon through a photomask. Baking of such a pattern is carried out, for example, to form a resist layer for etching, and in this case, an ultraviolet green-sensitive resist layer pressure photomask formed on a semiconductor wafer is usually used. A widely used method is to expose the material to light using a mercury lamp.

半導体ウェハーは通常円形でその全面に3いて縦横に配
列された微小区域に区画され、これらの微小区域が後圧
分割されて各々が半導体デバイス全構成するチップとな
る。1枚の半導体ウェハーの大きサバ[l[径で3イン
チ、5インチ、6インチ程度のものが一般的であるが、
半導体9エバーの製造技術の進歩に伴ない大型化する傾
向にある。
A semiconductor wafer is usually circular in shape and its entire surface is divided into micro-areas arranged vertically and horizontally, and these micro-areas are divided under pressure to form chips that each constitute an entire semiconductor device. Large mackerel of one semiconductor wafer (generally about 3 inches, 5 inches, or 6 inches in diameter,
As semiconductor 9ever manufacturing technology advances, there is a trend toward larger sizes.

1枚の半導体9エバー材料の全面を同時VcII!1元
せしめて全微小区域會一度Vc@付ける露光方法にどい
ては、大8な面8Wr一度で露光するために人出力の水
銀灯が必要でろクセのため露光装置が大型となること、
しかも1回のII元面槓が大きいためそれだけ半導体ウ
ェハー材料の破露光部における照度の均一化に相当高度
な技術’kL’J″ること、などの問題点がろり、結局
半導体ウェハーの大型化傾向VC:1Ili応すること
が困難である。
Simultaneously VcII on the entire surface of one semiconductor 9ever material! In the exposure method where Vc@ is applied once to all the microscopic areas at one time, a human-powered mercury lamp is required to expose a large 8 surface 8Wr at once, and the exposure equipment becomes large due to its slow nature.
Moreover, since one II element surface ejection is large, there are problems such as the need for considerably advanced technology to uniformize the illuminance at the exposed area where the semiconductor wafer material is exposed, resulting in larger semiconductor wafers. Trend VC: 1Ili is difficult to respond to.

〔従来技術〕[Prior art]

このようなことから、最近1枚の牛導体つニノ\−材料
[jcIいて、縦横に配列された微l」\区域の各々全
1個ずつ順次露光せしめてパターンkFI11次焼付け
る露光方式(以下単IC「ステップwL元方式」ともい
う。)が提案された。Cのようなステップ露光方式によ
れば、1回の1に元においては、微小区域1個分の面積
を露光丁ればよく、このため小出力の水銀灯を用いる・
ことが可能となって露光装置が小型になること、しかも
1回の露光面積が小さいので半導体9エバーの破露光部
の照度の均一化が容易でおること、tどの人8な利益が
得られ5結局高い精度でノeターンの焼付けt行なうこ
とができる。
For this reason, recently, an exposure method (hereinafter referred to as "kFI") in which one piece of conductor material [jcI, each of the microscopic areas arranged vertically and horizontally is sequentially exposed and printed as a pattern kFI11 (hereinafter referred to as A single IC (also referred to as the "step wL element method") was proposed. According to the step exposure method as shown in C, it is only necessary to expose the area of one minute area at a time, and for this reason, it is necessary to use a small output mercury lamp.
This makes it possible to reduce the size of the exposure equipment, and because the area exposed at one time is small, it is easy to equalize the illumination intensity at the exposed area of the semiconductor 9 ever, which brings many benefits to many people. 5. As a result, it is possible to print a turn with high accuracy.

而して水銀灯は、消灯時Kに封入された水銀ガスが凝縮
するため、短い周期で点滅を繰返すことができず、この
ため連続点灯せしめた状態で使用されるが、この場合半
導体ウェハー材料の露光會所定の露光量で行なうため露
光時間會制限するシャッターが用いられ、このシャッタ
ーが閉じている間に、水銀灯よりの元が照射される露光
位置く半導体ウェハー材料Kjt5ける次の露光を施丁
べき微小区域が位置されるよう当該牛導体つニノ・−材
料?ステップ的に移動(以下単に「ステップ移動」とも
いう。)せしめることが必要である。
When the mercury lamp is turned off, the mercury gas sealed in K condenses, so it is not possible to repeat blinking in a short period of time. In order to carry out the exposure with a predetermined amount of exposure, a shutter is used to limit the exposure time, and while this shutter is closed, the next exposure of the semiconductor wafer material is carried out at the exposure position where the source from the mercury lamp is irradiated. Where should the conductor material be located so that the micro-areas should be located? It is necessary to move in steps (hereinafter also simply referred to as "step movement").

しかしながら単にこのような従来の露光方法に?いては
、シャッターが閉じている期間中は水銀灯の党が露光に
は利用されないため電力の浪費が大きく、シかもシャッ
ターが高温VCさらされるため白眼シャッターの損傷が
大きいという問題点がある。
However simply due to traditional exposure methods like this? However, when the shutter is closed, the mercury lamp is not used for exposure, which wastes a lot of power, and the shutter is exposed to high-temperature VC, which causes serious damage to the white of the eye shutter.

このようなことから、シャッターが閉じられている期間
中は、水銀灯の消費電力がシャンターが開いている露光
期間中の消費電力よりも小さくなるような状態で水銀灯
全点灯する方法が考えられる。
For this reason, it is conceivable to consider a method in which the mercury lamp is fully turned on in such a manner that the power consumption of the mercury lamp during the period when the shutter is closed is smaller than the power consumption during the exposure period when the shunter is open.

しかしながら、このような!llll法において新たな
問題点會有していることが判明した。即)牛導体ワエハ
ー材料の露光処理の高速化に伴ない、水銀灯t−+:の
消費電力が短い時間間隔で変化するように繰返し多数回
に亘って連続点1.灯せしめると、水銀【jの点灯時間
の経過に伴ない、tt@にの摩耗、電極@質の管壁付着
による元透過率の低下などの原因により水銀灯の放射光
量が減少し、当初の露光量での露光を行なうことができ
なくなる問題点である。
However, like this! It has been discovered that the llll method has new problems. (Immediately) With the speeding up of the exposure process for cow conductor wafer materials, continuous points 1. When the mercury lamp is turned on, the amount of light emitted by the mercury lamp decreases due to factors such as wear on the tt@ and a decrease in the original transmittance due to the adhesion of the electrode@ material to the tube wall, and the amount of light emitted from the mercury lamp decreases as the lighting time of the mercury lamp increases. This is a problem that makes it impossible to perform exposure with a certain amount of light.

〔発明の目的〕[Purpose of the invention]

本発明は以上の如き事情に基いてなされたものであって
、その目的は、低いコストで、しかも水銀灯の放射光量
の経時的減少を抑止し、短い時間間隔で繰返して行なわ
れる露光を長期間に亘り安定に実行することができる水
銀灯による半導体ウェハー材料の露光方法を提供するこ
とKある。
The present invention has been made based on the above-mentioned circumstances, and its purpose is to suppress the decrease in the amount of emitted light from a mercury lamp over time at a low cost, and to prevent exposure that is repeatedly performed at short time intervals for a long period of time. It is an object of the present invention to provide a method for exposing a semiconductor wafer material using a mercury lamp, which can be stably performed over a period of time.

〔発明の構成〕[Structure of the invention]

以上の目的は、水銀灯を連Vc点灯した状態で前記水銀
灯の消費電力が高レベルとなる第1のステップと前記水
銀灯の消費電力が低レベルとなる第2のステップとt交
互に繰返し、前記第1のステップにおい℃前記水銀灯か
ら放射さrする光により半導体9エバー材料を露光する
露光方法でろって。
The above purpose is to alternately repeat the first step in which the power consumption of the mercury lamp is at a high level and the second step in which the power consumption of the mercury lamp is at a low level while the mercury lamp is lit continuously at Vc, and In step 1, an exposure method is used in which the semiconductor material is exposed to light emitted from the mercury lamp.

前記第1のステップt、水銀灯の照灯時間の経過に応じ
1徐々に消費電力が増加する状態で繰返すことを特徴と
する水銀灯による牛導体ワエハー材料の露光方法によっ
て達成される。
This is achieved by a method of exposing a conductive wafer material using a mercury lamp, which is characterized in that the first step t is repeated with the power consumption gradually increasing 1 as the illumination time of the mercury lamp passes.

以下本発明會図面會参照しながら詳細に説明する。The present invention will be described in detail below with reference to the drawings.

不発明の一実施例ににいては、例えばji1図に示すよ
うに、半導体ウェハー材料の露光装置内に組み込1tt
た水銀灯lt、これに電力を常時供給して連続点灯状態
としたうえで、第2図に消費電力の波形の一例を示すよ
うに、水銀灯1へ供給する電力全制御することlCより
、水銀灯lの消費電力が高レベル例えば定格消費電力の
約13〜2.5倍程度のノベルとなる第1のステップA
と、水銀灯1の消費電力が低レベル例えば定格消費電力
またはこれに近いレベルとなる第2のステップBとt周
期的に交互罠繰返し、前記尾lのステップAK3いて水
銀灯lから放射される元にLり半導体ウェハー材料2’
kl1元する。第1図において、3は水銀灯lの駆動用
電源回路部、4は水銀灯lの元l蓮1ffijるための
シャッター、5,6.7は反射鏡、8はインテグレータ
% 9はフィルター、1Otlコンデンサレンズ、II
Hフォトマスク、12tl縮小レンズであり、ia小度
は通常10”=5とされる。
In one embodiment of the invention, for example, as shown in FIG.
After constantly supplying power to the mercury lamp lt to keep it in a continuous lighting state, the power supplied to the mercury lamp 1 is fully controlled as shown in Figure 2, an example of the power consumption waveform. The first step A is when the power consumption is high, for example, about 13 to 2.5 times the rated power consumption.
Then, the power consumption of the mercury lamp 1 is at a low level, for example, the rated power consumption or a level close to this, and the second step B and t are periodically alternately repeated, and the source radiated from the mercury lamp 1 in step AK3 of the tail 1 is L-shaped semiconductor wafer material 2'
It costs 1 yuan. In Figure 1, 3 is a power supply circuit for driving the mercury lamp l, 4 is a shutter for driving the mercury lamp l, 5, 6.7 are reflectors, 8 is an integrator, 9 is a filter, and 1 Otl condenser lens. , II
It is an H photomask and a 12 tl reduction lens, and the ia degree is usually 10''=5.

露光量の規制においては、シャッター4の開いている時
間を適宜設定することKよつ℃、半導体ウェハー材料2
の被露元部にKける露光量を心安な規定値に適合させる
。即ち、消費電力が高レベルとなる第1のステップAK
工って水銀灯lが点灯されている状態においてシャッタ
ー41i−B@された時間だけ開いた状態とすることに
より露光量を規定されたものとする。そして消費電力が
低レベルとなる第2のステップB&Cよって水銀灯が点
灯される状態に移行され、この間はずっとシャッター4
が閉じている。
In regulating the exposure amount, the opening time of the shutter 4 should be set appropriately.℃, semiconductor wafer material 2
The amount of exposure applied to the exposed part of the body is adjusted to a safe prescribed value. That is, the first step AK where the power consumption is at a high level
It is assumed that the amount of exposure is regulated by keeping the shutter 41i-B open for the time period in which the mercury lamp 1 is lit. Then, in the second step B&C, in which the power consumption is at a low level, the mercury lamp is turned on, and during this time the shutter remains on.
is closed.

前記第1のステップAと第2のステップBの繰返しは、
半導体9エバー材料2のステップ移動の態様との関連V
cXいて互に連動するよう行なう。
The repetition of the first step A and the second step B is
Relationship with the mode of step movement of semiconductor 9 ever material 2 V
cX and interlock with each other.

即′P)第3図に示すように半導体9エバー材料2の被
露光部全縦横に並ぶ多数の微小区域Pに区画して、これ
らの微小区域Pの1個1ik順次露元位置にステップ的
に移動してその位置に一旦静止せしめた状態で露光?行
なう。シャッター4が開閉することによって1回の露光
が終了し、半導体9エバー材料の1つの微小区域Pにノ
にターンが焼付けられる。そしてシャッター4が閉じて
いる期間中に次忙露光丁べき微小区域phgK元位置に
’ffiでステップ移動せしめ、そして同様にしてM九
會繰返丁。
P) As shown in FIG. 3, the exposed area of the semiconductor 9 material 2 is divided into a large number of micro-areas P arranged vertically and horizontally, and one of these micro-areas P is sequentially placed at the exposure position in a stepwise manner. Is it possible to move the camera to a position and then expose it while it is still at that position? Let's do it. One exposure is completed by opening and closing the shutter 4, and a turn is printed on one minute area P of the semiconductor material 9. Then, while the shutter 4 is closed, the minute area to be exposed next is moved step by step to the original position of phgK, and in the same manner M is repeated nine times.

このよう圧して第1のステップA及び第2のステップB
と、シャッター4の開閉動作と、半導体ウェハー材料2
のステップ移動とを連係させて露光を行なうが、水銀灯
lの点灯時間の経過釦応じて徐々に例えば第4図に示す
ように第1QステツプAVcgける消費電力が[Mi的
、或いに曲−的または段階的に増加する状態でilのス
テップAの各々に8ける露光量の減少が防止されるよう
第1のステップAt−繰返す。この消費電力の増加の程
度は、半導体ウニノ・−材料の焼付結果によって経験的
に定めるようにしてもよいし、或いは、元センサーによ
り水銀灯の放射元を直接検出して、この検出値°に基い
て放射光量が一定になるよう圧電源回路部3iCより制
御するようにしてもよい。
With this pressure, the first step A and the second step B
, the opening/closing operation of the shutter 4, and the semiconductor wafer material 2
Exposure is performed in conjunction with the step movement of the mercury lamp 1, but as the lighting time of the mercury lamp 1 elapses, the power consumption of the 1st Q step AVcg gradually increases as shown in FIG. The first step At- is repeated so that a decrease in the exposure amount in each step A of il is prevented with a gradual or stepwise increase. The degree of increase in power consumption may be determined empirically based on the baking results of the semiconductor material, or the radiation source of the mercury lamp may be directly detected using a source sensor and based on this detected value. Alternatively, the piezoelectric power circuit section 3iC may control the amount of emitted light to be constant.

第5図は、水銀灯lの具体的構成の一例を示し、101
は石英ガラス製の封体、102A、102Bは口金、1
03.104にそれぞれ電極棒、 105,106はそ
れぞれ陽極体、陰極体でおる。封体101の内部には水
銀が刺入されてにす、その封入量は、WJ2のステップ
Bにおいて水銀灯1が点灯されているときに水銀が凝縮
しない程度の量である。
FIG. 5 shows an example of a specific configuration of a mercury lamp l, 101
is a quartz glass enclosure, 102A and 102B are caps, 1
03 and 104 are electrode rods, respectively, and 105 and 106 are an anode body and a cathode body, respectively. The inside of the envelope 101 is filled with mercury, and the amount of mercury sealed is such that the mercury does not condense when the mercury lamp 1 is turned on in step B of WJ2.

前記陽極体105は、累6図に拡大して示”fLうに5
大径円柱状の胴部51と、この胴部51からテーパ状に
伸びてその先端面52が平坦面である先端部53とVc
より構成され、−万陰極体106は、同じく第6図に拡
大して示−fよう圧柱状部61とこの柱状部61からコ
ーン状に形成されて伸びる先端部62とにより構成され
て(・る。
The anode body 105 is shown enlarged in FIG.
A large diameter cylindrical body portion 51, a tip portion 53 extending from the body portion 51 in a tapered shape and having a flat tip surface 52, and Vc.
The cathode body 106, as shown in FIG. Ru.

斯かる水銀灯lの具体的設計の一例會下記に示すO 定格Mtt力    500W  (50V、l0A)
陽極体形状 胴部51の外径D14.0m 先端面52の直径D22.0圏 先端部53の開き角α       90度陰極体形状 柱状部61の外径D5        2.Olol電
極間距離L            3.0調定格消費
電力で点灯している ときの封体内圧力         13気圧斯かる構
成の水銀灯?用いて上記の如き方法に基いて、半導体ウ
エハー材料の縛元を下記の条件で実際に行なったところ
、約600時間の長期間に亘る1で初期の露光量が安定
して得られ、半導体ウェハー材料の艮好な露光処理を行
なうことができた。
An example of a specific design of such a mercury lamp is shown below. Rated Mtt power 500W (50V, 10A)
Outer diameter D of anode body shape body 51 14.0 m Diameter of tip surface 52 D 22.0 Opening angle α of tip 53 90 degrees Outer diameter D5 of cathode body shape columnar part 61 2. Olol Distance between electrodes L 3.0 Pressure inside the envelope when lit at rated power consumption 13 atm Mercury lamp with such a configuration? When we actually carried out binding of semiconductor wafer materials under the following conditions using the method described above, the initial exposure amount was stably obtained at 1 for a long period of about 600 hours, and the semiconductor wafer material We were able to perform an excellent exposure process on the material.

第1のステップAの時間間隔   400m5ec第2
のステップBの時間間隔   400m5ec纂lのス
テップAKにける消費電力 初期は750Wで600時間経過したときにIKWとな
るようにほぼ111w的に増加せしめた。
First step A time interval 400m5ec2nd
The initial power consumption in step AK of step B of 400 m5ec compilation was 750 W, and the power consumption was increased to approximately 111 w so that it would reach IKW after 600 hours.

第2のステップBICgける消費電力 初期から600時間経過する1で500WK一定に維持
した。
In the second step, 600 hours have passed since the initial power consumption in BICg, and the power consumption was maintained constant at 500WK.

〔発明の作用効果〕[Function and effect of the invention]

以上詳細Vci!52明したように、本発明方法によれ
ば、次のような作用効果が奏される。
More details Vci! As explained above, the method of the present invention provides the following effects.

fil水銀灯の放射光が露光に利用されない期間におい
て蝶、水銀灯の消費電力が低レベルとなる第2のステッ
プにより当課水銀灯を点灯するため、水銀灯による電力
の浪費を大幅に小さくすることができるうえシャッター
の過熱損傷全防止することができ、しかも水銀灯は纂2
のステップに’Mける低レベルの消費電力に応じて設計
芒れる大きさのものt用いることができるうえ第1のス
テップでは水銀灯の消費電力が高レベルとなるため二の
とき必要な露光量を得ることができ従って半導体ウェハ
ー材料の露光tより小型な水銀灯で行なうことができ、
この結果露光装置の占有容積が小さくなりクリーンルー
ムなどのメンテナンスに必要なコストが小さく、結局半
導体デバイスの製造コストを大幅に低減化することが可
能となる。
The power consumption of the mercury lamp is at a low level during the period when the synchrotron radiation of the mercury lamp is not used for exposure.Since the mercury lamp is turned on in the second step, the power wasted by the mercury lamp can be significantly reduced, and the shutter It can completely prevent overheating damage, and the mercury lamp is
In addition, in the first step, the power consumption of the mercury lamp is at a high level, so in the second step, the necessary exposure amount can be used. exposure of semiconductor wafer materials can therefore be carried out with a smaller mercury lamp,
As a result, the volume occupied by the exposure apparatus becomes smaller, the cost required for maintenance of a clean room, etc. is reduced, and as a result, it becomes possible to significantly reduce the manufacturing cost of semiconductor devices.

(匂そして、水銀灯の点灯時間の経過に応じて徐々に消
費電力を増加せしめた状態で第1のステップ全繰返しこ
の第1のステップに3いて半導体ウェハー材料の露光?
行なうため、水銀灯において電極の摩耗、電極物質の管
壁付着による光透過率の低下などが住じたときに3いて
も、消費電力の増加VCよって光量不足が補償されるた
め依然として第1のステップに8ける水銀灯の放射光量
を初期と1′8j様に維持することができ、この狛未第
1のステップと第2のステップと1c短い時間間隔で繰
返しながら、長期間に亘り安定した放射光量で半導体ウ
ェハー材料の露5’1行なうことができる0
(Then, the entire first step is repeated while the power consumption is gradually increased as the lighting time of the mercury lamp passes.) This first step is followed by exposure of the semiconductor wafer material.
Therefore, even if a mercury lamp suffers from wear of the electrodes or a decrease in light transmittance due to electrode material adhering to the tube wall, the lack of light intensity will be compensated for by the increased power consumption VC, so the first step will still be effective. It is possible to maintain the amount of radiation of the mercury lamp at 1'8j as the initial value, and by repeating the first step and the second step at short time intervals, the amount of radiation of the mercury lamp can be maintained stable for a long period of time. Deposition of semiconductor wafer material at 5'1 can be carried out at 0

【図面の簡単な説明】[Brief explanation of the drawing]

@1図は露光装置の一例の概略を模式的に示す説明図、
第2図は第1のステップと第2のステップの繰返し釦よ
って変化する水銀灯の消費電力の波形の一例會示す説明
図、纂3図は半導体ウェハー材料の被露光部の一部七示
す説明図、第4図は第1のステップにおける消費電力が
水銀灯の点灯時間の経過に応じて徐々に増加する状Nk
示す説明図、第5図は水銀灯の一例を示す説明図、第6
図は第5図に示した水銀灯の要部を拡大して示す説明図
でおる。 l・・・水銀灯       2・・・半導体ウェハー
材料3・・・駆動用電源回路部  4・・・シャッター
5.6.7・・・反射鏡   8・・・インテグV−タ
9・・・フィルター     lO・・・コンデンサレ
ンズ11・・・フォトマスク   12・・・縮小レン
ズ101・・封体      102A、102B・9
1口金103.104・・・電極棒  105・・・I
II極体51・・・胴部      52・・・先端面
53・・・先端部     106・・・陰極体61・
・・柱状部     62・・・先端部9p1図 y2囮 羊3囮 第4図 B’faI(hour)
@1 Figure is an explanatory diagram schematically showing an example of an exposure device,
Fig. 2 is an explanatory diagram showing an example of the waveform of the power consumption of a mercury lamp that changes depending on the repetition button of the first step and the second step, and Fig. 3 is an explanatory diagram showing a part of the exposed portion of the semiconductor wafer material. , Figure 4 shows a state in which the power consumption in the first step gradually increases as the lighting time of the mercury lamp passes.
Figure 5 is an explanatory diagram showing an example of a mercury lamp, Figure 6 is an explanatory diagram showing an example of a mercury lamp.
The figure is an explanatory diagram showing an enlarged view of the main parts of the mercury lamp shown in FIG. 5. l...Mercury lamp 2...Semiconductor wafer material 3...Drive power supply circuit section 4...Shutter 5.6.7...Reflector 8...Integrator 9...Filter lO ... Condenser lens 11 ... Photomask 12 ... Reduction lens 101 ... Envelope 102A, 102B 9
1 base 103.104...electrode rod 105...I
II pole body 51...Body part 52...Tip face 53...Tip part 106...Cathode body 61.
...Columnar part 62... Tip part 9p1 figure y2 decoy sheep 3 decoy 4th figure B'faI (hour)

Claims (1)

【特許請求の範囲】[Claims] 1)水銀灯を連続点灯した状態で前記水銀灯の消費電力
が高レベルとなる第1のステップと前記水銀灯の消費電
力が低レベルとなる第2のステップとを交互に繰返し、
前記第1のステップにおいて前記水銀灯から放射される
光により半導体ウェハー材料を露光する露光方法であつ
て、前記第1のステップを、水銀灯の点灯時間の経過に
応じて徐々に消費電力が増加する状態で繰返すことを特
徴とする水銀灯による半導体ウエハー材料の露光方法。
1) Alternately repeating a first step in which the power consumption of the mercury lamp is at a high level and a second step in which the power consumption of the mercury lamp is at a low level while the mercury lamp is continuously lit;
An exposure method in which a semiconductor wafer material is exposed to light emitted from the mercury lamp in the first step, wherein the first step is performed in a state in which power consumption gradually increases as the lighting time of the mercury lamp passes. A method for exposing a semiconductor wafer material using a mercury lamp, characterized by repeatedly exposing a semiconductor wafer material to
JP59139773A 1984-07-07 1984-07-07 Method for exposing material of semiconductor wafer by mercury lamp Pending JPS6120322A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59139773A JPS6120322A (en) 1984-07-07 1984-07-07 Method for exposing material of semiconductor wafer by mercury lamp
FR8502941A FR2567279B1 (en) 1984-07-07 1985-02-28 PROCESS FOR EXPOSING A SEMICONDUCTOR PELLET BY A MERCURY VAPOR LAMP
GB08506122A GB2161283B (en) 1984-07-07 1985-03-08 Method of exposing a semiconductor wafer to light from a mercury-vapor
DE19853510522 DE3510522A1 (en) 1984-07-07 1985-03-22 METHOD FOR EXPOSURE A SEMICONDUCTOR WAX BY MEANS OF A MERCURY VAPOR LAMP
NL8501932A NL8501932A (en) 1984-07-07 1985-07-05 METHOD FOR EXPOSING A SEMICONDUCTOR PLATE BY MEANS OF A MERCURY VAPOR LAMP AND APPARATUS FOR CARRYING OUT THE METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59139773A JPS6120322A (en) 1984-07-07 1984-07-07 Method for exposing material of semiconductor wafer by mercury lamp

Publications (1)

Publication Number Publication Date
JPS6120322A true JPS6120322A (en) 1986-01-29

Family

ID=15253074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59139773A Pending JPS6120322A (en) 1984-07-07 1984-07-07 Method for exposing material of semiconductor wafer by mercury lamp

Country Status (5)

Country Link
JP (1) JPS6120322A (en)
DE (1) DE3510522A1 (en)
FR (1) FR2567279B1 (en)
GB (1) GB2161283B (en)
NL (1) NL8501932A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0143814B1 (en) * 1995-03-28 1998-07-01 이대원 Semiconductor exposure equipment
JP3517583B2 (en) 1998-03-27 2004-04-12 キヤノン株式会社 Exposure apparatus, device manufacturing method, and discharge lamp

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51143411A (en) * 1975-05-19 1976-12-09 Optical Ass Exposure device
JPS5450270A (en) * 1977-09-09 1979-04-20 Shii Hoiraa Koubarii Constant intensity light source
JPS54108478A (en) * 1978-02-14 1979-08-25 Ushio Electric Inc Printing or transcribing method of semiconductor and discharge lamp suitable for printing or transcription
JPS5858730A (en) * 1981-10-05 1983-04-07 Hitachi Ltd Projection alligner

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2422280A (en) * 1944-07-24 1947-06-17 Curtis Helene Ind Inc Fluorescent illumination
US3813576A (en) * 1972-07-21 1974-05-28 Rca Corp Series regulated power supply for arc discharge lamps utilizing incandescent lamps
GB2014335B (en) * 1978-02-14 1982-06-03 Kasper Instruments Apparatus for prolonging lamp life by minimizing power requirement levels

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51143411A (en) * 1975-05-19 1976-12-09 Optical Ass Exposure device
JPS5450270A (en) * 1977-09-09 1979-04-20 Shii Hoiraa Koubarii Constant intensity light source
JPS54108478A (en) * 1978-02-14 1979-08-25 Ushio Electric Inc Printing or transcribing method of semiconductor and discharge lamp suitable for printing or transcription
JPS5858730A (en) * 1981-10-05 1983-04-07 Hitachi Ltd Projection alligner

Also Published As

Publication number Publication date
GB2161283B (en) 1988-09-07
FR2567279A1 (en) 1986-01-10
GB2161283A (en) 1986-01-08
FR2567279B1 (en) 1990-12-28
DE3510522A1 (en) 1986-02-27
NL8501932A (en) 1986-02-03
GB8506122D0 (en) 1985-04-11

Similar Documents

Publication Publication Date Title
TW518913B (en) Radiation source, lithographic apparatus, and semiconductor device manufacturing method
JPS61189636A (en) Exposure method for semiconductor wafer with xenon-mercury vapor discharge lamp
TW200413860A (en) Radiation source, lithographic apparatus, and device manufacturing method.
KR970003593A (en) UV irradiation apparatus for substrates, substrate processing system and method for irradiating substrate with ultraviolet rays
JPH05109674A (en) Method and device for ashing resist film
CN102484045A (en) Plasma light source system
KR20000057050A (en) A method for controlling lamp used in an exposing apparatus
JPS6120322A (en) Method for exposing material of semiconductor wafer by mercury lamp
JP2001185089A (en) Excimer irradiation device
KR101248274B1 (en) Light irradiation device
US4704346A (en) Process for the exposure of semiconductor wafer
GB2203849A (en) Method of exposing a semiconductor water to light from a mercury-vapor lamp
JPS6120323A (en) Method for exposing material of semiconductor wafer by mercury lamp
JPS6146023A (en) Exposure of semiconductor wafer material by superhigh pressure mercury-arc lamp
JPS6120325A (en) Method for exposing material of semiconductor wafer by mercury lamp
JPS6120326A (en) Method for exposing material of semiconductor wafer by mercury lamp
WO2018055881A1 (en) Method for processing substrate
JPS6254439A (en) Exposure of semiconductor wafer
US4605301A (en) Exposure method of semiconductor wafer by mercury-vapor lamp
JPS6059733A (en) Device for exposing semiconductor
JPS6120327A (en) Method for exposing material of semiconductor water by extra-high pressure mercury lamp
JPS6120328A (en) Method for exposing material of semiconductor wafer by extra-high pressure mercury lamp
JP3324428B2 (en) Photoresist surface treatment equipment
JP3138372B2 (en) Substrate processing equipment
JP3142608B2 (en) Photochemical reaction treatment method