JPS6254440A - Exposure of semiconductor wafer - Google Patents

Exposure of semiconductor wafer

Info

Publication number
JPS6254440A
JPS6254440A JP61164553A JP16455386A JPS6254440A JP S6254440 A JPS6254440 A JP S6254440A JP 61164553 A JP61164553 A JP 61164553A JP 16455386 A JP16455386 A JP 16455386A JP S6254440 A JPS6254440 A JP S6254440A
Authority
JP
Japan
Prior art keywords
mercury lamp
ultra
pressure mercury
exposure
high pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61164553A
Other languages
Japanese (ja)
Inventor
Giichi Suzuki
義一 鈴木
Hirohide Kishi
岸 広秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP61164553A priority Critical patent/JPS6254440A/en
Publication of JPS6254440A publication Critical patent/JPS6254440A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To sustain the stable exposure for a long time by a method wherein in case of opening a shutter, the power consumption of ultra-high pressure mercury lamp is controlled according to the fluctuation in the radiating light quantity of the mercury lamp while in case of closing the shutter, the mercury lamp is controlled to be supplied with specified level of power. CONSTITUTION:The exposed part of semiconductor wafer 2 is divided into multiple fine sections P arranged longitudinally and laterally so that individual section P of the fine sections may be successively shifted stepwise to the exposed position to be once stopped on the position for exposure. One time exposure is finished by opening and closing a shutter 11 to print a pattern on one fine section P of the semiconductor wafer 2. Through these procedures, in case of opening the shutter 11, the power consumption of ultra-high mercury lamp can be changed according to the fluctuation in the radiating light quantity of the mercury lamp while in case of closing the shutter 11, the fluctuation in the radiating light quantity of the mercury lamp can be automatically compensated to sustain the excellent exposure of the ultra-high pressure mercury lamp for a long time.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、超高圧水銀灯による半導体ウェハの露光方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of exposing a semiconductor wafer using an ultra-high pressure mercury lamp.

[従来の技術] 一般1.:IC,LSI、、1LsIiの半導体デバイ
スの製造においては、シリコン等からなる半導体ウェハ
にフォトマスクを介してパターンを焼付けることが必要
である。このようなパターンの焼付けは、例えばエツチ
ング用レジスト層の形成のために行なわれるものであり
、この場合には1通常、半導体ウェハ上に形成した紫外
線感光性のレジスト層にフォトマスクを介して超高圧水
銀灯の光を照射して露光する方法が広く採用されている
[Prior art] General 1. In the manufacture of semiconductor devices such as ICs, LSIs, and 1LsIi, it is necessary to print a pattern on a semiconductor wafer made of silicon or the like through a photomask. Baking of such a pattern is performed, for example, to form a resist layer for etching. A method of exposure using light from a high-pressure mercury lamp is widely used.

半導体ウェハは通常円形てその全面において縦横に配列
された微小区域に区画され、これらの微小区域が後に分
割されて各々が半導体デバイスを構成するチップとなる
。1枚の半導体ウェハの大きさは直径で3インチ、5イ
ンチ、6インチ程度のものが一般的であるが、半導体ウ
ェハの製造技術の進歩に伴ない大を化する傾向にある。
A semiconductor wafer is usually circular and its entire surface is divided into micro areas arranged vertically and horizontally, and these micro areas are later divided into chips, each of which constitutes a semiconductor device. The size of a single semiconductor wafer is generally about 3 inches, 5 inches, or 6 inches in diameter, but as semiconductor wafer manufacturing technology advances, the size tends to increase.

1枚の半導体ウェハの全面を同時に露光せしめて全微小
区域を一度に焼付ける露光方法においては、大きな面積
を一度で露光するために大出力の水銀灯が必要でありそ
のため露光装置か大型となること、しか−/J1回の露
光面積か大きいためそれたけ甲−導体ウェハの被露光部
における照度の均一化に相当高度な技術を要すること、
等の問題点があり、結局半導体ウェハの大型化傾向に適
応することが困難である。
In the exposure method that simultaneously exposes the entire surface of one semiconductor wafer and prints all minute areas at once, a high-output mercury lamp is required to expose a large area at once, which requires a large exposure device. However, since the exposed area for a single exposure is large, a fairly sophisticated technique is required to uniformize the illuminance in the exposed area of the conductor wafer.
As a result, it is difficult to adapt to the trend of increasing the size of semiconductor wafers.

このようなことから、最近1枚の半導体ウェハにおいて
、縦横に配列された微小区域の各々を1個ずつ順次露光
すしめ゛Cパターンを順次焼付ける露光方式(以下単に
「ステップ露光方式」ともいう)が提案された。このよ
うなステップ露光方式によれば、1回の露光においては
微小区域1個分の面積を露光すればよく、このため小出
力の水銀灯を用いることか可濠となって露光装置が小型
になること、しかも1回の露光面積が小さいので半導体
ウェハの被露光部の照度の均一化が容易であること、等
の大きな利益が得られ、結局高い精度でパターンの焼f
fけを行うことかできる。
For this reason, recently an exposure method (hereinafter also simply referred to as "step exposure method") has been developed, in which each of the minute areas arranged vertically and horizontally on a single semiconductor wafer is sequentially exposed one by one to form a C pattern. ) was proposed. According to such a step exposure method, it is only necessary to expose an area corresponding to one microscopic area in one exposure, which makes it possible to use a low-output mercury lamp or to make the exposure equipment more compact. In addition, since the area exposed at one time is small, it is easy to equalize the illuminance of the exposed area of the semiconductor wafer, which provides great benefits such as the ability to print patterns with high accuracy.
It is possible to perform f-cutting.

ところで 超高圧水銀灯は消灯蒔には封入された水銀ガ
スが凝縮するため、短い周期で点滅を繰返ずことがてき
ず、このため連続点灯せしめた状態で使用されるが、こ
の場合半導体ウェハの露光を所定の霧光驕て行うため露
光時間を制限するシャッターが用いられ、このシャッタ
ーが閉じている間に、超高圧水銀灯からの光が照射され
る露光位置に半導体ウェハにおける次の露光を施すべき
微小区域が位置されるよう半導体ウェハをステップ移動
させることが必要である。
By the way, ultra-high-pressure mercury lamps do not blink repeatedly in short periods because the mercury gas enclosed in them condenses when turned off, so they are used in a state where they are kept on continuously. A shutter is used to limit the exposure time in order to carry out exposure with a predetermined foggy light, and while this shutter is closed, the next exposure of the semiconductor wafer is performed at the exposure position that is irradiated with light from the ultra-high pressure mercury lamp. It is necessary to step the semiconductor wafer so that the desired micro-area is located.

しかしながら中にこのような従来の露光方法に3いては
、シャッターか閉じている期間中は超高圧水銀灯の光が
露光には利用されないため電力の浪費が大きく、しかも
シャッターが高温にさらされるためにシャッターの損傷
が太き・ぐなる。
However, in this conventional exposure method, the light from the ultra-high pressure mercury lamp is not used for exposure while the shutter is closed, which wastes a lot of power, and the shutter is exposed to high temperatures. The damage to the shutter is thick and rough.

このようなことから、シャッターが閉じられている期間
中は、超高圧水銀灯の消費電力がシャッターが開いてい
る露光期間中の消費電力よりも小さくなるような状態で
超高圧水銀灯を点灯する方法も考えられている。
For this reason, there is a method of lighting an ultra-high-pressure mercury lamp in such a way that the power consumption of the ultra-high-pressure mercury lamp during the period when the shutter is closed is lower than the power consumption during the exposure period when the shutter is open. It is considered.

この方法においては、半導体ウェハの露光処理の高速化
に伴い、超高圧水銀灯をその消費電力か短い時間間隔で
変化するように繰返し多数回に亘って連続点灯せしめる
と、超高圧水銀灯の点灯時間の経過に伴ない、電極の摩
耗、7FSFjA¥III質の管壁付着による光透過率
の低rなどの原因により超高圧水銀灯の放射光量が減少
し、当初の露光量での露光を行なうことができなくなる
In this method, as the exposure processing of semiconductor wafers becomes faster, if the ultra-high pressure mercury lamp is repeatedly turned on many times in succession so that its power consumption changes at short time intervals, the lighting time of the ultra-high pressure mercury lamp can be reduced. As time passes, the amount of light emitted by the ultra-high pressure mercury lamp decreases due to factors such as wear of the electrodes and low light transmittance due to 7FSFjA\III adhesion to the tube wall, making it no longer possible to carry out exposure at the original exposure amount. It disappears.

[発明か解決しようとする問題点コ このように、従来の半導体ウェハの露光方法においては
、超高圧水銀灯から放射される光を用いて半導体ウェハ
を露光する場合に、超高圧水銀灯の放射光量の変化を補
償するには、手動でもって放射光量を測定し、超高圧水
銀灯への入力電力を調整しなければならず、操作が面倒
であった。
[Problems to be Solved by the Invention] As described above, in the conventional semiconductor wafer exposure method, when exposing a semiconductor wafer using light emitted from an ultra-high pressure mercury lamp, the amount of light emitted from the ultra-high pressure mercury lamp is In order to compensate for changes, the amount of emitted light had to be measured manually and the input power to the ultra-high pressure mercury lamp had to be adjusted, which was cumbersome to operate.

この発明は、こうした問題点に鑑みて、超高圧水銀灯の
放射光量の変動を自動的に補償し、長期にわたり安定し
た露光を行うことかできる半導体ウェハの露光方法を提
供することを目的とするものである。
In view of these problems, it is an object of the present invention to provide a semiconductor wafer exposure method that automatically compensates for fluctuations in the amount of emitted light from an ultra-high pressure mercury lamp and allows stable exposure over a long period of time. It is.

[問題点を解決するための手吹] この目的を連成するために、この発明では、超高圧水銀
灯から放射される光を開閉するシャッターの開時には、
超高圧水銀灯の放射光量の変動に応じて、この変動を補
償するように超高圧水銀灯の消費電力を増減し、シャッ
ターの閉時には、一定の電力を超高圧水銀灯に加えるよ
うに制御する。
[Hand blowing to solve the problem] In order to achieve this objective, in this invention, when the shutter for opening and closing the light emitted from the ultra-high pressure mercury lamp is opened,
The power consumption of the ultra-high-pressure mercury lamp is increased or decreased to compensate for the fluctuations in the amount of light emitted by the ultra-high-pressure mercury lamp, and when the shutter is closed, a constant amount of power is applied to the ultra-high-pressure mercury lamp.

[作用] この発明によると、シャウターの開時には、超高圧水銀
灯の放射光量の変動に応じて超高圧水銀灯の消費電力を
変化させることにより、放射J 量が経時的に変化した
場合にも、この変化を補償するように超高圧水銀灯への
入力電力を:A整し、その消費電力か調整され、一定の
光量て放射される。
[Function] According to the present invention, when the shouter is opened, the power consumption of the ultra-high pressure mercury lamp is changed in accordance with the fluctuation in the amount of emitted light from the ultra-high pressure mercury lamp, so that even when the amount of radiation J changes over time, this The input power to the ultra-high-pressure mercury lamp is adjusted by A to compensate for the change, and the power consumption is adjusted to emit a constant amount of light.

また、シャッターの閉時には、超高圧水銀灯の点灯か維
持されればよいので、超高圧水銀灯の点灯か維持される
一定の電力て超高圧水銀灯を駆動するように制御される
Further, when the shutter is closed, since it is only necessary to keep the ultra-high pressure mercury lamp turned on, the ultra-high pressure mercury lamp is controlled to be driven using a constant electric power that keeps the ultra-high pressure mercury lamp turned on.

[実施例] 以下1図面に基づいて、この発明の詳細な説明する。第
1図は、この発明による半導体ウェハの露光方法の一ア
施例な説明するための露光装置を示す図゛Cある。この
図において、lは超高圧水銀灯、2は半導体ウェハ、3
は光検出器、10はランプハウス、itはシャッター、
12は冷却用ファン、13はファンモータである。20
は光学系で、21.22はミラー、23はインテグレー
タ、24はフィルター、25はコンデンサレンズ、26
はフォトマスク、27は縮小レンズてあり、縮小度はl
/10〜115とされる。30は超高圧水銀灯lの点灯
回路部で、Eは商用の交流電源、31は整流・平滑回路
、32はスイッチング回路、33はドライブ回路、34
はパルス幅変調回路、35は増幅回路、36は基1$電
圧源、VRは基準電圧可変用の可変抵抗器、37aはイ
ンパーク)・ランス、37bは整流・平滑回路、37c
はスタータ、3日は電力rit算回路、39は超高圧水
銀灯lの電圧・電流検出回路である。
[Example] The present invention will be described in detail below based on one drawing. FIG. 1C is a diagram showing an exposure apparatus for explaining an embodiment of the semiconductor wafer exposure method according to the present invention. In this figure, l is an ultra-high pressure mercury lamp, 2 is a semiconductor wafer, and 3
is a photodetector, 10 is a lamp house, it is a shutter,
12 is a cooling fan, and 13 is a fan motor. 20
is an optical system, 21.22 is a mirror, 23 is an integrator, 24 is a filter, 25 is a condenser lens, 26
is a photomask, 27 is a reduction lens, and the reduction degree is l.
/10 to 115. 30 is a lighting circuit for the ultra-high pressure mercury lamp l, E is a commercial AC power supply, 31 is a rectifier/smoothing circuit, 32 is a switching circuit, 33 is a drive circuit, 34
35 is a pulse width modulation circuit, 35 is an amplifier circuit, 36 is a base 1$ voltage source, VR is a variable resistor for varying the reference voltage, 37a is an impark lance, 37b is a rectifier/smoothing circuit, 37c
3 is a starter, 3 is a power calculation circuit, and 39 is an ultra-high pressure mercury lamp voltage/current detection circuit.

この露光装置ては、超高圧水銀灯lに電力を常時供給し
て連続へ灯させ、第2図に−・例を示すような消費電力
波形となるように、点灯回路部30により超高圧水銀灯
lに供給する電力を制御する。即ち、超高圧水銀灯1の
消費電力が高レベル、例えば定格消費電力の約1.3〜
2,5fご程度のレベルとなる第1のステップAと1超
高圧水銀灯lの消費電力が低レベル、例えば定格消費電
力またはこれより低いレベルとなる第2のステップBと
を周期的に交互に繰返す。この第1のステップAにおい
て超高圧水銀灯lから放射される光によって半導体ウェ
ハを露光する。
In this exposure apparatus, power is constantly supplied to the ultra-high-pressure mercury lamp l to cause it to light continuously, and a lighting circuit section 30 is used to control the ultra-high-pressure mercury lamp l so that it has a power consumption waveform as shown in FIG. control the power supplied to the That is, the power consumption of the ultra-high pressure mercury lamp 1 is at a high level, for example, about 1.3 to 1.3 of the rated power consumption.
The first step A, in which the power consumption of one ultra-high pressure mercury lamp is at a level of about 2.5 f, is at a low level, for example, the rated power consumption or lower, which is periodically alternated. Repeat. In this first step A, the semiconductor wafer is exposed to light emitted from an ultra-high pressure mercury lamp l.

点灯回路部30については、小型軽量化が可能なスイッ
チングレギュレータ方式をこの実施例では採用している
。このX準電圧源36の電圧レベルに対応する電力か超
高圧水銀灯lに入力されるように、スイッチング回路3
2の動作か負帰還制御される。、IQIち、第1のステ
ップAと第2のステップBの繰返1ノは、基準電圧源3
6a、36bの電圧レベルを交互にステップ変化させる
ことによって行われる。もちろん、負帰還回路も高レベ
ル用の光フィードバックと低レベル用の定電力とに切換
ねる、 この基準電圧源36の出力信号は増幅回路35を介して
パルス幅変調回路34に入力されて、パルス幅変調され
、ドライブ回路33を介して、スイッチング回路32を
基準電圧源36の出力信号に応じたスイッチング動作を
行わせる。このスイッチング回路32の出力は、インバ
ータトランス37aによっ゛C所定の電圧比で昇圧され
、整流・平滑回路37bを介して超高圧水銀灯1に印加
される。なお、スタータ37cは、点灯開始時に超高圧
水銀灯lに高電圧を印加して、放電を開始させるための
ものである。
Regarding the lighting circuit section 30, this embodiment employs a switching regulator system that can be made smaller and lighter. The switching circuit 3 is configured so that the power corresponding to the voltage level of the X quasi-voltage source 36 is input to the ultra-high pressure mercury lamp l.
The second operation is controlled by negative feedback. , IQI, the repetition of the first step A and the second step B is based on the reference voltage source 3.
This is done by alternately changing the voltage levels of 6a and 36b in steps. Of course, the negative feedback circuit also switches between optical feedback for high levels and constant power for low levels.The output signal of this reference voltage source 36 is inputted to the pulse width modulation circuit 34 via the amplifier circuit 35, and The width is modulated, and the switching circuit 32 is caused to perform a switching operation according to the output signal of the reference voltage source 36 via the drive circuit 33. The output of this switching circuit 32 is boosted at a predetermined voltage ratio by an inverter transformer 37a, and is applied to the ultra-high pressure mercury lamp 1 via a rectifier/smoothing circuit 37b. The starter 37c is for applying a high voltage to the ultra-high pressure mercury lamp l at the time of starting lighting to start discharging.

また、電圧・Ti、流検出回路39と電力演算回路38
とは、基準電圧1;j 36 aの電圧レベルに対応す
る電力が超高圧水銀灯lに入力されるように負帰還制御
するために用いられると超高圧水銀灯1から放射される
光は光検出器3によって検出され、増幅回路35に入力
される。この*+X回路35では、第1のステップAに
おいて、光検出器3の出力信号と基準電圧源36bの出
力信号である高レベル用基準電圧vHとか比較され、超
高圧水銀灯1からの放射光驕か一定値に保持されるよう
に負帰還制御される。
In addition, voltage/Ti, current detection circuit 39 and power calculation circuit 38
is used for negative feedback control so that the power corresponding to the voltage level of the reference voltage 1; 3 and input to the amplifier circuit 35. In this *+X circuit 35, in the first step A, the output signal of the photodetector 3 is compared with the high level reference voltage vH which is the output signal of the reference voltage source 36b, and the emitted light from the ultra-high pressure mercury lamp 1 is compared. Negative feedback control is performed to maintain the value at a constant value.

また、第2のステップBにおいては、増幅回路35では
電力演算回路38の出力と低レベル用基準電圧VLとか
比較され、超高圧水銀灯lにおける消費電力が一定値に
保持されるように負帰還制御される。
In the second step B, the amplifier circuit 35 compares the output of the power calculation circuit 38 with the low-level reference voltage VL, and performs negative feedback control to maintain the power consumption in the ultra-high pressure mercury lamp l at a constant value. be done.

半導体ウェハ2への露光量を規制するために、ランプハ
ウスlOの下端にはシャッター11か設けられている。
In order to regulate the amount of exposure to the semiconductor wafer 2, a shutter 11 is provided at the lower end of the lamp house IO.

このシャッター11が開いている時間を適宜設定するこ
とによって、幹導体ウェハ2の被露光部における露光量
を必要な規定値に適合させる。即ち、消費電力が高レベ
ルとなる第1のステップAによって超高圧水銀灯lが点
灯されている状態においてシャッター11を設定された
時間たけ開いた状態とすることにより露光量な規定され
たものとする。そして消費電力が低レベルとなる第2の
ステップBによって超高圧水銀灯lが最低限1点灯され
る状態に移行され、この間シャッター11は閉じている
By appropriately setting the time period during which the shutter 11 is open, the amount of exposure at the exposed portion of the main conductor wafer 2 is adjusted to a required specified value. That is, in the state where the ultra-high-pressure mercury lamp 1 is turned on in the first step A in which the power consumption is at a high level, the exposure amount is regulated by keeping the shutter 11 open for a set time. . Then, in the second step B in which the power consumption is reduced to a low level, a state is entered in which at least one ultra-high pressure mercury lamp 1 is lit, and the shutter 11 is closed during this time.

第1のステップAと第2のステップBの繰返しは、半導
体ウェハ2のステップ移動と互に11@シて行う。即ち
、第3図に示すように、半導体ウェハ2の被露光部を縦
横に並ぶ多数の微小区域Pに区画して、これらの微小区
域Pのimt個を順次露光位置にステップ的に移動しC
その位置に一旦静1卜せしめた状態で露光を行う、シャ
ッター11が開閉することによって1回の露光が終了し
、半導体ウェハ2の1つの微小区域Pにパターンが焼付
けられる。そしてシャツ−ター11が閉じている期間中
に次に露光すべき微小区域Ptt露光位置にまでステッ
プ移動せしめ、そして同様にして露光を繰返す。
The first step A and the second step B are repeated at 11 times the step movement of the semiconductor wafer 2. That is, as shown in FIG. 3, the exposed portion of the semiconductor wafer 2 is divided into a large number of micro areas P arranged in rows and columns, and imt of these micro areas P are sequentially moved stepwise to the exposure position C.
Exposure is performed while the wafer is held still at that position. One exposure is completed by opening and closing the shutter 11, and a pattern is printed in one minute area P of the semiconductor wafer 2. Then, while the shirt tartar 11 is closed, the micro area Ptt is moved stepwise to the exposure position of the next minute area Ptt to be exposed, and the exposure is repeated in the same manner.

このように、:4S1のステップA及び第2のステップ
Bと、シャッター11の開閉動作と、半導体ウェハ2の
ステップ移動とを連係させて露光を行うが、超高圧水銀
灯lの点灯時間の経過に伴って、その放射光量か減少す
ることに関しては、既に説明した如く、光検出器3の出
力信号を介して、点灯回路部30によって、放射光量が
一定値に保持されるように制御される0例えば、第4図
に示されるように、第1のステップAにおける消費電力
が徐々に増加するように超高圧水銀灯lか点灯制御され
る結果、その放射光量が一定値に保持され、放射光量の
経時的減少が防止される。
In this way, exposure is performed by linking step A and second step B of :4S1, the opening/closing operation of the shutter 11, and the step movement of the semiconductor wafer 2. Accordingly, regarding the decrease in the amount of emitted light, as described above, the amount of emitted light is controlled by the lighting circuit section 30 to be maintained at a constant value via the output signal of the photodetector 3. For example, as shown in FIG. 4, as a result of controlling the lighting of the ultra-high pressure mercury lamp l so that the power consumption gradually increases in the first step A, the amount of emitted light is maintained at a constant value, and the amount of emitted light decreases. Decrease over time is prevented.

第5図は、超高圧水銀灯1の具体的構成の−・例を示し
、101は石英ガラス製の封体、102A、102Bは
口金、103,104はそれぞれ電極体、105,10
6はそれぞれ陽極体、陰極体である。封体lotの内部
には水銀が封入されており、その封入量は、第2のステ
ップBに3いて超高圧水銀灯lが点灯されているときに
IRが7JI縮しない程度の量である。
FIG. 5 shows an example of a specific configuration of the ultra-high pressure mercury lamp 1, in which 101 is a quartz glass enclosure, 102A and 102B are bases, 103 and 104 are electrode bodies, and 105 and 10
6 are an anode body and a cathode body, respectively. Mercury is sealed inside the enclosure lot, and the amount of mercury sealed is such that the IR does not shrink by 7JI when the ultra-high pressure mercury lamp 1 is turned on in the second step B.

陽極体105は、第6図に拡大して示すように、大径円
柱状の胴部51と、この胴部51からテーパ状に伸びて
その先端面52が平坦面である先端部53とにより構成
され、一方陰極体10dは1回じ〈第6図に拡大して示
すように柱状部61とこの柱状部61からコーン状に形
成されて沖びる先端部62とにより構成されている。
As shown in an enlarged view in FIG. 6, the anode body 105 includes a large-diameter cylindrical body 51 and a tip 53 that extends from the body 51 in a tapered shape and has a flat tip surface 52. On the other hand, the cathode body 10d is composed of a columnar part 61 and a tip part 62 extending from the columnar part 61 in the shape of a cone.

このような超高圧水銀灯lの具体的設計の一例を下記に
示す。
An example of a specific design of such an ultra-high pressure mercury lamp l is shown below.

(定格消’ff電力)       500W(50V
 、10A)(陽極体形状) 胴部51の外径り、          4.0−1先
端面52の直径p22.Omm 先端部53の開き角α        90度(陰極体
形状) 柱状fi61の外径D3        2.1111
■(電極間圧#)             コ、Og
tm(定格消費電力で点灯しているときの 封体内圧力)13気圧 このような構成の超高圧水銀灯を用いて上記の如き方法
に基いて、半導体ウェハの露光を下記の条件で実際に行
ったところ、約400時間の長期間にわたって所期の露
光量が安定して得られ、半導体ウェハの良好な露光処理
を行うことができた。
(Rated power consumption) 500W (50V
, 10A) (Anode body shape) Outer diameter of body 51, 4.0-1 Diameter of tip surface 52 p22. Omm Opening angle α of tip 53 90 degrees (cathode body shape) Outer diameter D3 of columnar fi61 2.1111
■(Interelectrode pressure #) Ko, Og
tm (pressure inside the envelope when lit at rated power consumption) 13 atmospheres Semiconductor wafers were actually exposed using the above-mentioned method using an ultra-high pressure mercury lamp configured as described above under the following conditions. However, the desired exposure amount was stably obtained over a long period of about 400 hours, and the semiconductor wafer was successfully exposed.

(第1のステップAの時間間wI)   約400重5
eC(第2のステップBの時間間隔)  約400m5
ec(第1のステップAに葛ける消費電力)初期は70
0Wて400時間経過したときにIKWとなるようにほ
ぼ直線的に増加した。
(Time interval wI of first step A) Approximately 400 times 5
eC (time interval of second step B) approximately 400m5
ec (power consumption for the first step A) initially is 70
After 400 hours at 0W, it increased almost linearly to reach IKW.

(第2のステップBにおける消費電力)初期から400
時間経過するまで500Wに一定に維持した。
(Power consumption in second step B) 400 from the beginning
The power was kept constant at 500W until the time elapsed.

以上の実施例によれば、次のような作用効果が奏される
According to the above embodiment, the following effects are achieved.

超高圧水銀灯の放射光が露光に利用されない期間におい
ては、超高圧水銀灯の消費電力が低レベルとなる第2の
ステップにより超高圧水銀灯lを点灯するため、超高圧
水銀灯による電力の浪費を大幅に小さくすることができ
、シャッターの過熱損傷を防止することができる。しか
も超高圧水銀灯は第1のステ・・lブにおける高レベル
の消費電力と第2のステップにおける低レベルの消費電
力のモ均値に応じて設計される大きさのものを用いるこ
とがてき、第1のステップでは超高圧水銀灯の消費電力
か高レベルとなるため、このとき必要な露光量を得るこ
とができる。従って半導体ウェハの露光をより小型な超
高圧水銀灯で行うことができ、この結果露光装置の占有
容積が小さくなりクリーンルームなどのメンテナンスに
必要なコストか小さく、結局半導体デバイスの製造コス
トを大幅に減小することが可能となる。
During the period when the synchrotron radiation of the ultra-high pressure mercury lamp is not used for exposure, the ultra-high pressure mercury lamp is turned on in the second step in which the power consumption of the ultra-high pressure mercury lamp is at a low level, thereby significantly reducing the power wasted by the ultra-high pressure mercury lamp. It can be made smaller and can prevent overheating damage to the shutter. Moreover, the ultra-high-pressure mercury lamp can be designed in a size that corresponds to the average value of the high-level power consumption in the first step and the low-level power consumption in the second step. In the first step, the power consumption of the ultra-high pressure mercury lamp is at a high level, so that the necessary exposure amount can be obtained at this time. Therefore, exposure of semiconductor wafers can be performed using a smaller ultra-high pressure mercury lamp, and as a result, the volume occupied by the exposure equipment is reduced, and the cost required for maintenance of clean rooms and the like is reduced, resulting in a significant reduction in the manufacturing cost of semiconductor devices. It becomes possible to do so.

以−L第1図に示した構成例に基いてこの発明による半
導体ウェハの露光方法について説明したが、この方法に
おいては、この実施例に限定されず、超高圧水銀灯lを
点灯するための点灯回路部30の構成、露光用光学系2
0の構成については種々変更が可能である。例えば、 !高圧水渓灯の放射光量の変動を補償し、一定の光源を
得るには、光検出器を用いないで、第1のステップAに
3ける高レベル用基準電圧V、lを経時的に変動させて
もよい。この方法は超高圧水銀灯の放射光量が経時的に
減少することを防止する場合に有効な方法である。
Hereinafter, the semiconductor wafer exposure method according to the present invention has been described based on the configuration example shown in FIG. Configuration of circuit section 30, exposure optical system 2
Various changes can be made to the configuration of 0. for example, ! In order to compensate for fluctuations in the amount of emitted light from the high-pressure water lamp and obtain a constant light source, the high-level reference voltages V and l in Step A 3 are varied over time without using a photodetector. You may let them. This method is effective in preventing the amount of emitted light from an ultra-high pressure mercury lamp from decreasing over time.

また、この半導体ウェハの露光方法はステップ露光方式
以外の露光方式を採用する場合にも適用することができ
る。
Furthermore, this semiconductor wafer exposure method can also be applied to cases where exposure methods other than the step exposure method are employed.

[発明の効果] 以−J二の説明から明らかなように、この発明によれば
、シャッターの開時には、超高圧水銀灯の放射光量のf
97hに応じて超高圧水銀灯の消費電力を変化させると
共に、シャッターの閉時には、一定の電力で超高圧水銀
灯を駆動することにより、超高圧水銀灯を連続点灯する
ことがてき、シマツタ−の開時には超高圧水銀灯の放射
光量の変化を自動的に補正することが可能となるので、
超高圧水銀灯の良好な露光な長詩間にわたって行うこと
かできる。
[Effects of the Invention] As is clear from the explanation in J-2, according to the present invention, when the shutter is opened, f of the amount of emitted light from the ultra-high pressure mercury lamp is reduced.
By changing the power consumption of the ultra-high-pressure mercury lamp according to 97 hours, and driving the ultra-high-pressure mercury lamp with constant power when the shutter is closed, the ultra-high-pressure mercury lamp can be lit continuously, and when the shutter is open, the ultra-high-pressure mercury lamp can be turned on continuously. Since it is possible to automatically correct changes in the amount of radiation from high-pressure mercury lamps,
It can be carried out over long periods with good exposure using an ultra-high pressure mercury lamp.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明による半導体ウェハの露光方法の一
実施例を説明するための露光?L置を示す図、第2図は
超高圧水銀灯の消費電力波形の一例を示す図、第3図は
半導体ウェハの被露光部の一部を示す説明図、第4図は
高レベル蒔における超高圧水銀灯の消費電力が経時的に
徐々に増加する状態を示す図、第5図は超高圧水銀灯の
一例を示す図、第6図はその要部を拡大して示す図であ
る。 図中。 l:超高圧水銀灯  2:半導体ウェハ3:光検出器 
   10:ランプハウス20:光学系     30
:点灯回路部、10:ファンモータ駆動回路部 代理人 弁理上 1)北 嵩 晴 第 2 図 第 3 図
FIG. 1 is an exposure diagram for explaining an embodiment of a semiconductor wafer exposure method according to the present invention. Figure 2 is a diagram showing an example of the power consumption waveform of an ultra-high pressure mercury lamp, Figure 3 is an explanatory diagram showing a part of the exposed area of a semiconductor wafer, and Figure 4 is a diagram showing an example of the power consumption waveform of an ultra-high pressure mercury lamp. FIG. 5 is a diagram showing how the power consumption of a high-pressure mercury lamp gradually increases over time, FIG. 5 is a diagram showing an example of an ultra-high-pressure mercury lamp, and FIG. 6 is an enlarged view of the main part thereof. In the figure. l: Ultra-high pressure mercury lamp 2: Semiconductor wafer 3: Photodetector
10: Lamp house 20: Optical system 30
:Lighting Circuit Department, 10:Fan Motor Drive Circuit Department Agent For Patent Attorney 1) Haru Kitatake Figure 2 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)超高圧水銀灯を連続点灯した状態で超高圧水銀灯
から放射される光により半導体ウェハを露光する方法で
あって、超高圧水銀灯から放射される光を開閉するシャ
ッターの開時には、超高圧水銀灯の放射光量の変動に応
じて、この変動を補償するように超高圧水銀灯の消費電
力を増減し、シャッターの閉時には、一定の電力を超高
圧水銀灯に加えるように制御することを特徴とする半導
体ウェハの露光方法。
(1) A method in which a semiconductor wafer is exposed to light emitted from an ultra-high-pressure mercury lamp while the ultra-high-pressure mercury lamp is continuously lit. A semiconductor device characterized in that the power consumption of the ultra-high pressure mercury lamp is increased or decreased to compensate for the fluctuation in the amount of emitted light of Wafer exposure method.
(2)超高圧水銀灯の放射光量の変動を光検出器により
検出し、この検出結果に応じて超高圧水銀灯の消費電力
を増減することを特徴とする特許請求の範囲第(1)項
記載の半導体ウェハの露光方法。
(2) A photodetector detects fluctuations in the amount of emitted light from the ultra-high pressure mercury lamp, and the power consumption of the ultra-high pressure mercury lamp is increased or decreased in accordance with the detection result. Exposure method for semiconductor wafers.
JP61164553A 1986-07-15 1986-07-15 Exposure of semiconductor wafer Pending JPS6254440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61164553A JPS6254440A (en) 1986-07-15 1986-07-15 Exposure of semiconductor wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61164553A JPS6254440A (en) 1986-07-15 1986-07-15 Exposure of semiconductor wafer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP59139779A Division JPS6120328A (en) 1984-07-07 1984-07-07 Method for exposing material of semiconductor wafer by extra-high pressure mercury lamp

Publications (1)

Publication Number Publication Date
JPS6254440A true JPS6254440A (en) 1987-03-10

Family

ID=15795346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61164553A Pending JPS6254440A (en) 1986-07-15 1986-07-15 Exposure of semiconductor wafer

Country Status (1)

Country Link
JP (1) JPS6254440A (en)

Similar Documents

Publication Publication Date Title
US4732842A (en) Exposure method of semiconductor wafer by rare gas-mercury discharge lamp
WO2002103766A1 (en) Scanning exposure method and scanning exposure system, and device production method
EP0831517A2 (en) Dielectric barrier discharge device
JP2000181075A (en) Lamp illumination control method of exposure device
JPS6254440A (en) Exposure of semiconductor wafer
KR0167385B1 (en) Scanning exposure apparatus and method for manufacturing devices using the same
JPH0254654B2 (en)
JPS6146023A (en) Exposure of semiconductor wafer material by superhigh pressure mercury-arc lamp
JPS6120327A (en) Method for exposing material of semiconductor water by extra-high pressure mercury lamp
JPH0160913B2 (en)
JPS6120323A (en) Method for exposing material of semiconductor wafer by mercury lamp
US4605301A (en) Exposure method of semiconductor wafer by mercury-vapor lamp
JPS6254439A (en) Exposure of semiconductor wafer
JPS6120326A (en) Method for exposing material of semiconductor wafer by mercury lamp
JPS6120322A (en) Method for exposing material of semiconductor wafer by mercury lamp
JPS6120328A (en) Method for exposing material of semiconductor wafer by extra-high pressure mercury lamp
US10840096B2 (en) Method for processing substrate
JPS6120325A (en) Method for exposing material of semiconductor wafer by mercury lamp
JPS6320828A (en) Exposure method for semiconductor wafer
JP3138372B2 (en) Substrate processing equipment
JP2615687B2 (en) Excimer laser reduction projection exposure method
JPH0636984A (en) Aligner
JP2024516632A (en) Electronic module for a magnetic switching network for generating pulses of a pulsed output light beam
JP2842908B2 (en) Plasma process equipment
JPS62176129A (en) Exposure apparatus