JPS62176129A - Exposure apparatus - Google Patents

Exposure apparatus

Info

Publication number
JPS62176129A
JPS62176129A JP61017072A JP1707286A JPS62176129A JP S62176129 A JPS62176129 A JP S62176129A JP 61017072 A JP61017072 A JP 61017072A JP 1707286 A JP1707286 A JP 1707286A JP S62176129 A JPS62176129 A JP S62176129A
Authority
JP
Japan
Prior art keywords
light
wafer
detecting means
amount
exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61017072A
Other languages
Japanese (ja)
Other versions
JPH0546694B2 (en
Inventor
Makoto Torigoe
真 鳥越
Terumasa Sakai
酒井 照正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61017072A priority Critical patent/JPS62176129A/en
Publication of JPS62176129A publication Critical patent/JPS62176129A/en
Publication of JPH0546694B2 publication Critical patent/JPH0546694B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Exposure In Printing And Copying (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To supply the adequate amount of exposing light on the surface of a wafer all the time in a simple structure, by providing an intermittent emission type light source for exposing a wafer through a mask pattern, and providing a light detecting means, which detects the peak value of light that is proportional to the amount of the light of the light source. CONSTITUTION:When a mask pattern is projected on a wafer and the wafer is exposed, at first a shutter 6 is closed. One or several light pulses are outputted from an excimer laser 1. The output energy of the pulse light at this time is detected by a detecting means 5. Thus, the degree of the deterioration of mixed gas sealed in the excimer laser 1 is found. Based on the output signal from the detecting means 5, the amount of the light projected on the surface of a mask 8 is controlled by a control means 14. When the specified amount of the light is detected by the detecting means 5, the detecting means 5 is removed from a light path. The shutter 6 is opened with a solenoid 13. The pulse light from the excimer laser 1 is projected on the mask pattern. The mask pattern is projected on the surface of the wafer 10 through a projecting system by the adequate amount of the exposing light and the exposure is carried out.

Description

【発明の詳細な説明】 (産業上の利用分腎) 本発明は電子回路等のパターンが形成されているマスク
パターンをウェハ面上に光源として間欠発光型光源を用
いて転写露光する際、ウェハ面上へ常に適切なる露光量
を供給することのできる露光装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application) The present invention provides a method for transferring a mask pattern on a wafer surface onto a wafer surface using an intermittent light source as a light source. The present invention relates to an exposure apparatus that can always supply an appropriate amount of exposure onto a surface.

(従来の技術) 最近の半導体製造技術には電子回路の高集積化に伴い、
高密度の回路パターンが形成可能のリングラフィ技術が
要求されている。
(Conventional technology) Recent semiconductor manufacturing technology includes high integration of electronic circuits.
There is a need for phosphorography technology that can form high-density circuit patterns.

一般にマスク又はレチクル面上の回路パターンを投影光
学系を介してウェハ面上に転写する場合、ウェハ面上に
転写される回路パターンの解像線幅は光源の波長に比例
してくる。またマスクとクエへとを密着あるいは数〜数
十ミクロン程度離して重ねて転写するいわゆるコンタク
ト法文プロキシミテイ法の場合は解像力は波長の平方根
に比例する。この為波長200〜300 rvの遠紫外
(ディープUV領域)の短い波長を発振する例えば高圧
水銀灯やキセノン水銀ランプ等が用いられている。しか
しながらこれらの光源は低輝度で指向性もなくしかもウ
ェハ面上に塗布するフォトレジストの感光性も低い為露
光時間が長くなりスルーブツトを低下させる原因となっ
ていた。
Generally, when a circuit pattern on a mask or reticle surface is transferred onto a wafer surface via a projection optical system, the resolved line width of the circuit pattern transferred onto the wafer surface is proportional to the wavelength of the light source. In addition, in the case of the so-called contact proximity method in which a mask and a square are transferred in close contact or overlappingly with a distance of several to several tens of microns, the resolution is proportional to the square root of the wavelength. For this purpose, for example, a high-pressure mercury lamp, a xenon mercury lamp, or the like, which oscillates a short wavelength of far ultraviolet (deep UV region) with a wavelength of 200 to 300 rv, is used. However, these light sources have low brightness and lack directivity, and the photoresist coated on the wafer surface has low photosensitivity, resulting in a long exposure time and a reduction in throughput.

一方、最近間欠発光型光源例えば、エキシマ(exci
mer)レーザというディープUV領域に発振波長を有
する光源が開発され、その高輝度性、単色性、指向性等
の良さからリングラフィ技術として有効である旨が種々
報告されている。
On the other hand, recently, intermittent light sources such as excimer
A light source called a mer) laser having an oscillation wavelength in the deep UV region has been developed, and various reports have been made that it is effective as a phosphorography technique due to its high brightness, monochromaticity, directivity, etc.

現在市販されている多くのエキシマレーザはレーザ発振
用の混合ガスをガスチャンバー内に封じ込め、循環させ
て使用し、使用後は廃棄している。
Many excimer lasers currently on the market use a mixed gas for laser oscillation sealed in a gas chamber, circulated, and discarded after use.

混合ガスとしては例えばF2やHCJ2等の腐食性の強
いハロゲン系ガスが使用されている。この為励起時の放
電の影響も加わり、ハロゲン系ガスがレーザ放電管の内
壁や放電用の電極と反応して不純物を形成し、経時的に
レーザ出力を劣下させる原因となっている。このハロゲ
ン分子の反応はレーザ光を発振しない場合でも常に起っ
ている。
As the mixed gas, a highly corrosive halogen gas such as F2 or HCJ2 is used. For this reason, with the addition of the influence of discharge during excitation, the halogen-based gas reacts with the inner wall of the laser discharge tube and the discharge electrode to form impurities, causing the laser output to deteriorate over time. This reaction of halogen molecules always occurs even when laser light is not oscillated.

この為特にレーザ発振を長時間休止した後にレーザ光を
発振させる場合には前回のレーザ出力とは無関係の不確
定な出力エネルギーで発振してくる。
For this reason, especially when the laser beam is oscillated after the laser oscillation has been stopped for a long time, the laser beam oscillates with an uncertain output energy that is unrelated to the previous laser output.

そこでエキシマレーザを半導体製造用の露光装置に用い
る場合は、回路パターンの微細化に伴いウニへ面への露
光量の制御を厳密に行なう必要性からレーザ出力の変化
を常に掌握しておく必要がある。
Therefore, when using excimer lasers in exposure equipment for semiconductor manufacturing, it is necessary to constantly monitor changes in laser output because it is necessary to strictly control the amount of exposure to the surface as circuit patterns become finer. be.

(本発明の目的) 本発明は半導体製造用の露光装置に光源として出力が不
安定な光源を用いた場合、ウニ八面上へ常に適切なる露
光量を供給することのできる露光装置の提供を特徴とす
る 特に本発明においては間欠発光型光源の出力を簡易な構
成例えば積分回路を不要とする光検出手段例えばシリコ
ンフォトダイオードを用いてモニタが不可能な露光装置
を提供することを目的とする。
(Object of the present invention) The present invention provides an exposure apparatus for semiconductor manufacturing that can always supply an appropriate amount of exposure to the eight surfaces of the sea urchin when a light source with unstable output is used as a light source. Particularly, it is an object of the present invention to provide an exposure apparatus in which the output of an intermittent light source cannot be monitored by using a light detection means, such as a silicon photodiode, which has a simple configuration, for example, does not require an integrating circuit. .

(実施例) 第1図は本発明露光装置の一例の概略図で、1は間欠発
光型光源で例えばエキシマレーザ、2は光学濃度が数段
階に切替可能となっている切換式NDフィルター、3は
開口径を任意に変化させることのできる可変開口部材、
4は反射鏡、5は光路中の一部に配置され光量を検出す
る検出手段、例えば一般のシリコンフォトダイオードで
成る光電変換素子が好ましい。6はシャッター、7はエ
キシマレーザ1から出力された光束によりレチクルやマ
スク8を照明する照明系、9はマスク8面上のマスクパ
ターンをウェハ10面上に投影する為の投影系、11は
ウェハ1oを載置し、不図示の駆動手段により駆動可能
となフているXYステージ、12は定盤、13はシャッ
ター6を駆動させる為のソレノイド、14は制御手段で
ある。
(Example) FIG. 1 is a schematic diagram of an example of an exposure apparatus of the present invention, in which 1 is an intermittent light source, for example, an excimer laser, 2 is a switchable ND filter whose optical density can be switched to several levels, and 3 is a variable aperture member whose aperture diameter can be arbitrarily changed;
4 is a reflecting mirror, and 5 is a detection means arranged in a part of the optical path to detect the amount of light, preferably a photoelectric conversion element made of a general silicon photodiode, for example. 6 is a shutter; 7 is an illumination system that illuminates the reticle and mask 8 with the light beam output from the excimer laser 1; 9 is a projection system for projecting the mask pattern on the mask 8 onto the wafer 10; 11 is the wafer 1o is mounted on an XY stage which can be driven by a drive means (not shown); 12 is a surface plate; 13 is a solenoid for driving the shutter 6; and 14 is a control means.

尚本実施例においてはマスク8とウェハ1oとの相対的
関係を整合する為のアライメント光学系が設けられてい
るが、同図では省略しである。
In this embodiment, an alignment optical system for adjusting the relative relationship between the mask 8 and the wafer 1o is provided, but it is omitted in the figure.

本実施例においてマスクパターンをウニ凸面上に投影露
光する際はまずシャッター6を閉じておきエキシマレー
ザ1からパルス光を1つ若しくは数個出力させ、そのと
きのパルス光の出力エネルギーを検出手段5で検出する
。これによりエキシマレーザ1に封入されている混合ガ
スの劣下の程度を知ることができる。そして検出手段5
からの出力信号に基づいて制御手段14によりマスク8
面上への照射光量を制御している。このときの制御はエ
キシマレーザlの放電電圧を可変とする不図示の電圧調
整手段により若しくは切換式NDフィルター2により光
学濃度を変えるか若しくは可変開口部材3の開口径を変
えて又はこれらの各要素を重複させて行うようにした露
光量制御手段により行っている。検出手段5が所定量の
光量を検出したとき、検出手段5を光路外に逃がし、第
2図に示すようにソレノイド13によりシャッター6を
開き、エキシマレーザ1からのパルス光でマスクパター
ンを照射し投影系によりマスクパターンをウェハ10面
上へ適切なる露光量で投影露光している。
In this embodiment, when projecting and exposing a mask pattern onto the convex surface of a sea urchin, the shutter 6 is first closed, one or several pulsed lights are output from the excimer laser 1, and the output energy of the pulsed light at that time is detected by the detection means 5. Detect with. This makes it possible to know the degree of deterioration of the mixed gas sealed in the excimer laser 1. and detection means 5
The control means 14 controls the mask 8 based on the output signal from the
Controls the amount of light irradiated onto the surface. Control at this time is performed by using a voltage adjusting means (not shown) that varies the discharge voltage of the excimer laser 1, by changing the optical density by using the switching type ND filter 2, by changing the aperture diameter of the variable aperture member 3, or by using each of these elements. This is performed by an exposure amount control means that performs the following operations in duplicate. When the detection means 5 detects a predetermined amount of light, the detection means 5 is moved out of the optical path, the shutter 6 is opened by the solenoid 13 as shown in FIG. 2, and the mask pattern is irradiated with pulsed light from the excimer laser 1. A mask pattern is projected and exposed onto the surface of the wafer 10 at an appropriate exposure amount using a projection system.

尚本実施例において切換式NDフィルター2、検出手段
5、シャッター6等はいずれもエキシマレーザ1からウ
ェハ10に至る光路中の任意の位置に配置しても本発明
の目的を達成することができる。また可変開口部材3は
、ウェハの瞳位置或いはその光学的共役面ならいずれの
位置に配置しても本発明の目的を達成するこができる。
In this embodiment, the object of the present invention can be achieved even if the switchable ND filter 2, the detection means 5, the shutter 6, etc. are placed at any position in the optical path from the excimer laser 1 to the wafer 10. . Further, the object of the present invention can be achieved even if the variable aperture member 3 is placed at any position as long as it is located at the pupil position of the wafer or at its optical conjugate surface.

また検出手段5は4をハーフミラ−として5′の位置に
配置しても良い。このとき露光中でもモニタてきる。
Further, the detection means 5 may be arranged at the position 5' by using 4 as a half mirror. At this time, you can monitor even during exposure.

本実施例においてシャッター6は特に設けないくても良
い。ただしこのときはエキシマレーザlを出力させる際
ウェハ10をXYステージから外しCおく必要がある。
In this embodiment, the shutter 6 does not need to be provided. However, in this case, it is necessary to remove the wafer 10 from the XY stage and set it aside when outputting the excimer laser l.

本実施例のように光源としてエキシマレーザを用い、所
謂ステップアントリビード方式により繰り換えし露光を
行う場合エキシマレーザの出力パルス時間が例えば10
〜20 n5ecと短いことを利用すればXYステージ
を停止せずに連続送りしながら転写露光することが可能
となる。このような場合1回の露光を1個のパルス光で
行うようにすれば容易に高スループツト化を図ることが
できる。本発明はこのような場合、露光用の1個のパル
ス状出力を正確に制御するので正確な露光ができる。
When an excimer laser is used as a light source as in this embodiment and exposure is repeatedly performed by the so-called step-and-rebead method, the output pulse time of the excimer laser is, for example, 10
By taking advantage of the short length of ~20 n5ec, it is possible to perform transfer exposure while continuously feeding the XY stage without stopping it. In such cases, high throughput can be easily achieved by performing one exposure with one pulse of light. In such a case, the present invention accurately controls one pulse-like output for exposure, so that accurate exposure can be performed.

尚本発明をマスクとウェハを密着させるいわゆるコンタ
クト法或いはマスクとウェハを数〜数十ミクロン程度の
僅かの空間を隔てて配置したプロキシミテイ方式にも適
用できる。またスラブ(slab)カラスを用いた固体
レーザ装置等でも良い。
The present invention can also be applied to a so-called contact method in which a mask and a wafer are brought into close contact with each other, or a proximity method in which a mask and a wafer are placed apart from each other by a small space of several to several tens of microns. Alternatively, a solid-state laser device using a slab glass may be used.

第2図は第1図の動作説明用タイミングチャートである
。 (A)例の場合、長期間停止の後に電源が投入され
、出力されるレーザパルスを複数例えば4個を露光量検
出用として用いる例を示す。
FIG. 2 is a timing chart for explaining the operation of FIG. 1. In the example (A), the power is turned on after a long-term stop, and a plurality of output laser pulses, for example, four, are used for exposure detection.

この4個のパルス出力期間はシャッター6は閉じておき
、制御手段14内のコンピュータが4個のパルスの平均
値を算出し、これにより前述の如くレーザ出力を調整し
、5個目の出力から露光を始める。
During these four pulse output periods, the shutter 6 is closed, and the computer in the control means 14 calculates the average value of the four pulses, adjusts the laser output as described above, and starts from the fifth output. Start exposure.

(B)例はこのモニタ用パルスが1個の場合を示す。検
出手段5の具体例としては前述の如くシリコンフォトダ
イオードが好ましい。なぜならばP I N (Pos
itive Intrinsic Negative)
フォトダイオードのように応答速度が速い素子であると
、第3図(C)に示すように第3図(A)のエキシマレ
ーザパルスとほぼ同様な出力電流となる。ここでレーザ
パルス(A)の波形形状が常に一定である場合は(C)
のピーク値が(A)の面積とほぼ比例するので、(C)
のピーク値を(A)のエネルギーとみなすことができる
。しかしエキシマレーザの場合、その出力波形は一般に
不定なので(A)の面積に比例した値を検出するには積
分回路が必要となる。しかるに(B)として示す如くシ
リコンフォトダイオードは応答速度が遅いため、自身が
積分効果、を有しており、したがって2のピーク値Sは
(A)の面積に比例することになり、このSを検出すれ
ば積分回路を用いずどもレーザ出力エネルギーを測定で
きる。第4図はウェハ上の各n 光領域CI、C2−−
−一のみでレーザか出力され、ウェハが連続移動しなが
ら露光する例を示す。
Example (B) shows a case where the number of this monitoring pulse is one. As a specific example of the detection means 5, a silicon photodiode is preferably used as described above. Because P I N (Pos
tive (intrinsic)
If the element has a fast response speed, such as a photodiode, the output current will be approximately the same as the excimer laser pulse shown in FIG. 3(A), as shown in FIG. 3(C). Here, if the waveform shape of the laser pulse (A) is always constant, (C)
Since the peak value of is almost proportional to the area of (A), (C)
The peak value of can be regarded as the energy of (A). However, in the case of an excimer laser, its output waveform is generally unstable, so an integrating circuit is required to detect a value proportional to the area of (A). However, as shown in (B), since the response speed of the silicon photodiode is slow, it has an integral effect. Therefore, the peak value S of 2 is proportional to the area of (A), and this S can be Once detected, the laser output energy can be measured without using an integrating circuit. Figure 4 shows each n optical area CI, C2-- on the wafer.
- An example is shown in which the laser is output only at one time and the wafer is exposed while continuously moving.

すなわちまず第1露光領域C1の露光がレーザ光束によ
り行なわれる。次いで第2露光領域c2を01の位置ま
で移動させ、2回目の露光を行なう。この移動中はレー
ザ1の出力は当然休止している。
That is, first, the first exposure area C1 is exposed with a laser beam. Next, the second exposure area c2 is moved to position 01, and a second exposure is performed. During this movement, the output of the laser 1 is of course stopped.

また、2回目の露光中はウェハ10を停止させず移動中
に露光を行なう。以後ウェハ10は露光領域C5まで連
続移動させたままC3,C4゜C5の露光を行なう。こ
れが終了するとウェハ10は1行分上方に送られ、次行
の06〜C12を連続移動しながら露光を行なう。
Furthermore, during the second exposure, the wafer 10 is not stopped but is exposed while it is moving. Thereafter, the wafer 10 is continuously moved to the exposure area C5 and exposed at C3, C4°C5. When this is completed, the wafer 10 is sent upward by one row, and exposure is performed while continuously moving through the next rows 06 to C12.

以下同様に処理されていく。このようにウェハを連続露
光するのでスループットが向上する。
The following processing is performed in the same manner. Since the wafer is exposed continuously in this way, throughput is improved.

(効 果) 以上の如く本発明は極めて簡易な回路構成で露光量モニ
タが不能となり、小型化、安価に多大に寄与し得る。
(Effects) As described above, the present invention makes it impossible to monitor the exposure amount with an extremely simple circuit configuration, and can greatly contribute to miniaturization and cost reduction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一例の概略図、第2図〜第4図は作動
説明用タイミングチャート図である。 1−一一一エキシマレーザ源
FIG. 1 is a schematic diagram of an example of the present invention, and FIGS. 2 to 4 are timing charts for explaining the operation. 1-111 excimer laser source

Claims (2)

【特許請求の範囲】[Claims] (1)ウェハ上へマスクのパターンを露光するための間
欠発光型光源と前記光源の光量に比例したピーク値を検
出する光検出手段とを備えた露光装置。
(1) An exposure apparatus comprising an intermittent light source for exposing a pattern of a mask onto a wafer and a light detection means for detecting a peak value proportional to the amount of light from the light source.
(2)前記光源は紫外線レーザ発生源を含み、前記光検
出手段はシリコンフォトダイオードを含む第(1)項記
載の露光装置。
(2) The exposure apparatus according to item (1), wherein the light source includes an ultraviolet laser source, and the photodetector includes a silicon photodiode.
JP61017072A 1986-01-29 1986-01-29 Exposure apparatus Granted JPS62176129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61017072A JPS62176129A (en) 1986-01-29 1986-01-29 Exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61017072A JPS62176129A (en) 1986-01-29 1986-01-29 Exposure apparatus

Publications (2)

Publication Number Publication Date
JPS62176129A true JPS62176129A (en) 1987-08-01
JPH0546694B2 JPH0546694B2 (en) 1993-07-14

Family

ID=11933779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61017072A Granted JPS62176129A (en) 1986-01-29 1986-01-29 Exposure apparatus

Country Status (1)

Country Link
JP (1) JPS62176129A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01111321A (en) * 1987-10-26 1989-04-28 Matsushita Electric Ind Co Ltd Apparatus and method for aligning by excimer laser contraction and projection
US6736928B2 (en) 2001-08-24 2004-05-18 Canon Kabushiki Kaisha Exposure apparatus and semiconductor device manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60169136A (en) * 1984-02-14 1985-09-02 Canon Inc Exposure controlling method and unit therefor
JPS61111529A (en) * 1984-11-06 1986-05-29 Canon Inc Exposure amount controller

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60169136A (en) * 1984-02-14 1985-09-02 Canon Inc Exposure controlling method and unit therefor
JPS61111529A (en) * 1984-11-06 1986-05-29 Canon Inc Exposure amount controller

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01111321A (en) * 1987-10-26 1989-04-28 Matsushita Electric Ind Co Ltd Apparatus and method for aligning by excimer laser contraction and projection
US6736928B2 (en) 2001-08-24 2004-05-18 Canon Kabushiki Kaisha Exposure apparatus and semiconductor device manufacturing method

Also Published As

Publication number Publication date
JPH0546694B2 (en) 1993-07-14

Similar Documents

Publication Publication Date Title
US6252650B1 (en) Exposure apparatus, output control method for energy source, laser device using the control method, and method of producing microdevice
US4711568A (en) Exposure apparatus
US6721039B2 (en) Exposure method, exposure apparatus and device producing method
US4947047A (en) Exposure system with exposure controlling acoustooptic element
JP2862477B2 (en) Exposure apparatus and method for manufacturing device using the exposure apparatus
JPH09148216A (en) Method of exposure control
JP2005506684A (en) Lithography system and device manufacturing method
KR20030036254A (en) Scanning exposure method and scanning exposure system, and device production method
NL8600303A (en) METHOD FOR EXPOSURE OF A SEMICON OF SEMICONDUCTOR MATERIAL.
US6219367B1 (en) Method for determining life of laser light source
JP3363532B2 (en) Scanning exposure equipment
JP2503495B2 (en) Exposure apparatus and exposure method
JPS62176129A (en) Exposure apparatus
US7023885B1 (en) Laser apparatus and method for controlling the same
US20110123934A1 (en) Scanning exposure apparatus
JP2001326159A (en) Laser, aligner, and device manufacturing method using the same aligner
JP2004186234A (en) Aligner
JP2001223148A (en) Cleaning method, method and device for exposure, and method of manufacturing device
JP2526983B2 (en) Exposure equipment
JPH1012957A (en) Beam controller and aligner employing the same
JPH0715875B2 (en) Exposure apparatus and method
JP2001023888A (en) Laser device, control method therefor, aligner and exposure method
JPS6216526A (en) Projection exposure apparatus
JPH11186160A (en) Substrate aligner and substrate edge exposing method by using the same
JP2000331915A (en) Exposure control method, aligner and laser beam outputting device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term