JPS6216526A - Projection exposure apparatus - Google Patents

Projection exposure apparatus

Info

Publication number
JPS6216526A
JPS6216526A JP60155349A JP15534985A JPS6216526A JP S6216526 A JPS6216526 A JP S6216526A JP 60155349 A JP60155349 A JP 60155349A JP 15534985 A JP15534985 A JP 15534985A JP S6216526 A JPS6216526 A JP S6216526A
Authority
JP
Japan
Prior art keywords
optical system
wafer
mark
slit
projection optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60155349A
Other languages
Japanese (ja)
Other versions
JPH0560254B2 (en
Inventor
Makoto Torigoe
真 鳥越
Hiroshi Sato
宏 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60155349A priority Critical patent/JPS6216526A/en
Publication of JPS6216526A publication Critical patent/JPS6216526A/en
Priority to US07/724,451 priority patent/US5114223A/en
Publication of JPH0560254B2 publication Critical patent/JPH0560254B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To enable the adjustment of focus quickly in a highly precise manner to be performed by a method wherein, when the first object is projected and exposed on the surface of the second object through the intermediary of a projection optical system, a light source is pulse-emitted when the first object reaches the focusing position. CONSTITUTION:When the image of an AF mark 5 is focussed and projected on the surface of a wafer, the image of the AF mark 5 on a slit 13 is clearly image-formed. The maximum quantity of light passing the slit 13 is obtained when the AF mark 5 is completely focused on the surface of the wafer 7 by having the size of the aperture of the slit 13 formed almost same as that of the AF mark 5. The quantity of light passing the slit 13 is detected by a light detector 14, it is converted to an electric signal and inputted to an arithmetic means 15. The stage 8 which retains the wafer 7 is shifted in the direction of optical axis of a projection optical system 6, and the condition of image formation of the AF mark 5 is changed. As a result, the Z-stage where the output signal obtained from the photo detector 14 becomes maximum can be positioned at the focusing position, namely, the position where the circuit pattern on the surface of a reticle 4 is projected and image-formed on the surface of the wafer 7.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は投影露光装置に関し、特にIC。[Detailed description of the invention] (Industrial application field) The present invention relates to a projection exposure apparatus, and in particular to an IC.

LSI等の微細なパターンが形成されているレチクル面
7上の回路パターンを投影光学系を介してウニ八面上に
投影露光する2に高精度にしかも自動的に投影露光させ
ることのできる投影露光装置に、関するものである。
2. Projection exposure that allows projection exposure to be carried out automatically and with high precision by projecting and exposing a circuit pattern on the reticle surface 7 on which a fine pattern such as an LSI is formed onto the eight surfaces of the sea urchin through a projection optical system. It is related to the device.

(従来の技術) 最近の半導体製造技術は電子回路の高集積化、微細化の
一途を辿り゛、光学的な露光方式も高解像力の投影光学
系の開発等でますますその領域を拡げつつある。このよ
うな半導体製造における露光装置いおいて、マスク又は
レチクルの回路パターンをウニ八面上に転写、焼付ける
場合には、ウニ八面上に焼付けられるパターンの解像線
幅をl、露光波長をλ、投影光学系の有効Fナンバーな
Fe%CIを定数としたとき一般に !=C1・λ・Fe となる。、この為最近、半導体製造においては従来の高
圧水銀灯の代わりに遠紫外領域を発振波長とする高出力
の光源であるエキシマレーザ−を適用することが種々研
究されている。このエキシマレーザ−は高輝度で、単色
性に優れ又可干渉性が比較的低い為に半導体製造用の投
影露光装置にとって大変有効であるこが指摘されている
(Conventional technology) Recent semiconductor manufacturing technology is progressing toward higher integration and miniaturization of electronic circuits, and optical exposure methods are also expanding their scope with the development of high-resolution projection optical systems. . In such exposure equipment for semiconductor manufacturing, when transferring and printing the circuit pattern of a mask or reticle onto the eight surfaces of the sea urchin, the resolution line width of the pattern printed on the eight surfaces of the sea urchin is set to l, and the exposure wavelength is In general, when λ is the effective F number of the projection optical system, Fe%CI, is a constant! =C1・λ・Fe. For this reason, various studies have recently been conducted on the use of excimer lasers, which are high-output light sources whose oscillation wavelength is in the far-ultraviolet region, in place of conventional high-pressure mercury lamps in semiconductor manufacturing. It has been pointed out that this excimer laser has high brightness, excellent monochromaticity, and relatively low coherence, and is therefore very effective in projection exposure apparatuses for semiconductor manufacturing.

一方つエへ面上での回路パターンの解像線幅は投影光学
系の光学性能と共に回路パターンのウェハ面上での投影
結像状態即ちピント状態に大きく影響されてくる。例え
ば投影光学系の焦点深度dはC2を定数とすると d=C,・λ・Fe” の関係がある。即ち波長の短い程、焦点深度dは浅くな
7てくる。この為、投影光学系の周囲の気圧や温度等の
環境変化によるピント移動やウェハ等の半導体基板のそ
り等を考慮し投影露光する際には常に精密な焦点調節が
必要となっている。
On the other hand, the resolved line width of the circuit pattern on the wafer surface is greatly influenced by the optical performance of the projection optical system as well as the projection image formation state of the circuit pattern on the wafer surface, that is, the focus state. For example, the depth of focus d of the projection optical system has the following relationship when C2 is a constant: d=C,・λ・Fe''.In other words, the shorter the wavelength, the shallower the depth of focus d becomes.For this reason, the depth of focus d of the projection optical system Precise focus adjustment is always required when performing projection exposure, taking into account focus shifts due to environmental changes such as surrounding air pressure and temperature, and warping of semiconductor substrates such as wafers.

しかしながら回路パターンをウェハ面上に何度も繰り返
して投影露光する過程において、その都度焦点調節を厳
密に行うことは現実では大変困難となっている。
However, in the process of repeatedly projecting and exposing a circuit pattern onto a wafer surface, it is actually very difficult to precisely adjust the focus each time.

(発明が解決しようとする問題点) 本発明は回路パターンをウェハ面上に投影露光する際に
高蹟度にしかも自動的に投影露光させることのできる投
影露光装置の提供を目的とする。
(Problems to be Solved by the Invention) An object of the present invention is to provide a projection exposure apparatus that can perform projection exposure of a circuit pattern onto a wafer surface with high precision and automatically.

本発明の更なる目的はパルス発光する光源、例えばエキ
シマレーザ−を利用し高スループツト化を図った投影露
光装置の提供にある。
A further object of the present invention is to provide a projection exposure apparatus that utilizes a pulsed light source, such as an excimer laser, to achieve high throughput.

(問題点を解決するための手段) パルス光束を利用して第1物体を投影光学系を介して第
2物体面上に投影露光する際、前記第1物体の前記第2
物体面上での結像状態を検出する為の検出手段を設け、
前記第2物体又は第1物体を航記投影光学系の光軸方向
へ移動させたときに得られる前記検出手段からの出力信
号を利用してパルス発光させたことである。
(Means for solving the problem) When projecting and exposing a first object onto a second object surface via a projection optical system using a pulsed light beam, the second object surface of the first object
A detection means is provided to detect the state of image formation on the object plane,
Pulsed light is emitted using an output signal from the detection means obtained when the second object or the first object is moved in the optical axis direction of the navigation projection optical system.

この低木発明の特徴は実施例において記載されている。The features of this shrub invention are described in the Examples.

(実施例) 第1図は本発明の一実施例の概略図である。同図におい
て1はパルス発光する光源で例えばエキシマレーザ−か
ら成っている。2は光源1からの光束を反射させるミラ
ー、3は光束を所定の開口数NAの光束に変換し後述す
るレチクル4面上を均一照明する為の照明光学系、4は
第1物体である電子回路等の微細パターンが形成されて
いるレチクルであり、その面上の一部には回路パターン
と同様な微細のヌキパターン等・から成る自動焦点検出
用のオートフォーカスマーク(以下AFマーク)5が設
けられている。6は投影光学系でありレチクル4面上の
回路パターンを第2物体であるウェハ7面上に投影して
いる。この投影は一般に1八、l/1゜等の縮少投影で
ある。ウェハ7は焦点調節の為に投影光学系6の光軸方
向へ移動する2ステージ8とレチクル4との相対位置合
わせの為のXYステージ9上に保持されている。又投影
光学系は射出テレセン系になっており、投影面即ちウェ
ハ7の光軸方向の移動によって投影倍率が変化しないよ
うになっている。ウニハフ、2ステージ8そしてXYス
テージ9は定盤10上に配置され防振対策がなされてい
る。11はハーフミラ−12は焦点検出用の光学系で例
えば顕微鏡等から成っている。13はスリット、14は
光検出器、光学系12.スリット13.光検出器14は
検出手段の一部を構成している。15は処理手段であり
光検出器14からの信号に応じて内部に有するトリガー
パルス発生回路からトリガーパルスを発生させて光I1
1をパルス発光させるようになっている。
(Embodiment) FIG. 1 is a schematic diagram of an embodiment of the present invention. In the figure, reference numeral 1 denotes a light source that emits pulsed light and is composed of, for example, an excimer laser. 2 is a mirror that reflects the light beam from the light source 1; 3 is an illumination optical system that converts the light beam into a light beam with a predetermined numerical aperture NA to uniformly illuminate the 4 surfaces of the reticle, which will be described later; 4 is the first object, which is an electron It is a reticle on which a fine pattern such as a circuit is formed, and on a part of its surface there is an autofocus mark (hereinafter referred to as AF mark) 5 for automatic focus detection consisting of a fine blank pattern similar to the circuit pattern. It is provided. Reference numeral 6 denotes a projection optical system that projects the circuit pattern on the 4th surface of the reticle onto the 7th surface of the wafer, which is the second object. This projection is generally a reduced projection of 18, l/1°, etc. The wafer 7 is held on an XY stage 9 for relative positioning of the reticle 4 and two stages 8 that move in the optical axis direction of the projection optical system 6 for focus adjustment. The projection optical system is an exit telecentric system, so that the projection magnification does not change due to movement of the projection surface, that is, the wafer 7 in the optical axis direction. The Unihuff, 2nd stage 8, and XY stage 9 are placed on a surface plate 10, and anti-vibration measures are taken. Reference numeral 11 denotes a half mirror. 12 is an optical system for detecting a focus, and is comprised of, for example, a microscope. 13 is a slit, 14 is a photodetector, and optical system 12. Slit 13. The photodetector 14 constitutes a part of the detection means. 15 is a processing means that generates a trigger pulse from an internal trigger pulse generation circuit in response to a signal from the photodetector 14 to generate the light I1.
1 to emit pulsed light.

この低木実施例ではレチクル4とウェハ7との相対的位
置合わせな行う為のアライメント光学系が配置されてい
るが簡単の為に同図では省略しである。
In this shrub embodiment, an alignment optical system for relative positioning of the reticle 4 and the wafer 7 is provided, but it is omitted in the figure for the sake of simplicity.

本実施例においてはレチクル4面上の回路パターンと共
にレチクル4面上の一部に設けたAFマーク5を投影光
学系6によりウニハフ面上に投影させている。ウェハ7
面上のAFマーク5の像は反射し投影光学系6とハーフ
ミラ−11を介して第1次結像面16に形成し、更に焦
点検出用の光学系12によりスリット13の近傍に再結
像している。スリット13とレチクル4とは光学的に共
役位置に配置しである。この為AFマーク5の像がウェ
ハ7面上に合焦して投影されているときはスリット13
上のAFマーク5の像は鮮明に結像される。
In this embodiment, the AF mark 5 provided on a part of the reticle 4 surface together with the circuit pattern on the reticle 4 surface is projected onto the UniHaf surface by the projection optical system 6. wafer 7
The image of the AF mark 5 on the surface is reflected and formed on the primary imaging surface 16 via the projection optical system 6 and half mirror 11, and then re-imaged near the slit 13 by the focus detection optical system 12. are doing. The slit 13 and the reticle 4 are arranged at optically conjugate positions. Therefore, when the image of the AF mark 5 is focused and projected onto the surface of the wafer 7, the slit 13
The image of the upper AF mark 5 is clearly formed.

スリット13の開口の大きさをAFマーク5の大きさと
同程度にしておくことによりAFマーク5がウニハフ面
上に完全に合焦したときにスリット13を通過する光量
が最大となるようにしている。それ以外のときはスリッ
ト13面上のAFマーク5の像がボケるのでスリット1
3を通過する光量は減少する。スリット13を通過する
光量を光検出器14で検出し、電気信号に変換して演算
手段15に入力している。このとき本実施例ではウェハ
7を保持している2ステージ8を投影光学系6の光軸方
向に移動させウニハフ面上に投影されるAFマーク5の
結像状悪な変化させている。これにより光検出器14よ
り得られる出力信号は横軸に2ステージ8の移動量を採
ると第2図に示すようになる。光検出Wk14から得ら
れる出力信号が最大となる2ステージの位aFが合焦位
置、即ちレチクル4面上の回路パターンがウェハ7面上
に最も良好に投影結像されている位置となる0本実施例
ではこのときの位置Fを検出することにより合焦調節を
行っている。そして演算手段15により位置F若しくは
位rtFでの光検出器14からの出力信号を記憶して右
き、再度Zステージ8を移動させウェハ7が位置Fにき
たときにトリガーパルス発生回路からトリガーパルスを
発生させ光源1をパルス発光させている。これによりレ
チクル4面上の回路パターンをウェハ7面上に投影露光
している。
By setting the opening size of the slit 13 to be approximately the same as the size of the AF mark 5, the amount of light passing through the slit 13 is maximized when the AF mark 5 is completely focused on the Unihaf surface. . In other cases, the image of the AF mark 5 on the slit 13 surface will be blurred, so the slit 1
The amount of light passing through 3 decreases. The amount of light passing through the slit 13 is detected by a photodetector 14, converted into an electrical signal, and inputted to the calculation means 15. At this time, in this embodiment, the two stages 8 holding the wafer 7 are moved in the direction of the optical axis of the projection optical system 6 to adversely change the imaging condition of the AF mark 5 projected onto the Uniform surface. As a result, the output signal obtained from the photodetector 14 becomes as shown in FIG. 2, when the horizontal axis represents the amount of movement of the two stages 8. The position aF of the second stage where the output signal obtained from the photodetector Wk14 is maximum is the focus position, that is, the position where the circuit pattern on the 4th surface of the reticle is projected and imaged best on the wafer 7th surface. In the embodiment, focus adjustment is performed by detecting the position F at this time. Then, the calculation means 15 stores the output signal from the photodetector 14 at position F or position rtF, moves the Z stage 8 again, and when the wafer 7 reaches position F, a trigger pulse is generated from the trigger pulse generation circuit. is generated to cause the light source 1 to emit pulsed light. As a result, the circuit pattern on the 4th surface of the reticle is projected and exposed onto the 7th surface of the wafer.

尚本実施例において光学系12を用いずにスリット13
を直接第1次結像面16の位置に配置するようにしても
良い。
In this embodiment, the optical system 12 is not used and the slit 13 is
may be arranged directly at the position of the primary imaging plane 16.

又本実施例において第2物体であるウェハ7の代わりに
第1物体であるレチクル4を投影光学系6の光軸方向へ
移動させるようにしても良い。
Further, in this embodiment, instead of the wafer 7, which is the second object, the reticle 4, which is the first object, may be moved in the optical axis direction of the projection optical system 6.

又第1.第2物体を固定させ投影光学系6を構成してい
る一部の光学部材を光軸方向へ移動させることにより結
像状態を変化させるようにしても良い。
Also, number 1. The imaging state may be changed by fixing the second object and moving some of the optical members constituting the projection optical system 6 in the optical axis direction.

本実施例における投影光学系6の焦点深度及びピント位
置変動量は各々数μm程度なので2ステージ8の駆動ス
トロークは20μm程度で十分となる。従って焦点検出
精度を向上させる為に2ステージを繰り返し数回移動さ
せても短時間で完了するので高精度にしかも迅速に焦点
検出を行うことができる。尚2ステージは連続的に移動
させても良く又段階的に移動させるようにしても良い0
本実施例に右いて光源としてエキシマレーザ−を用いれ
ば、エキシマレーザ−のパルス幅は一般にlO〜20n
sec程度と非常に短いので発光時間内でステージを停
止させないで露光しても2ステージの移動量が少なくピ
ントずれを無視することが出来る。この為エキシマレー
ザ−を用いれば高スループツト化が可能となる。
In this embodiment, the depth of focus and the amount of variation in focus position of the projection optical system 6 are each about several micrometers, so a driving stroke of the two stages 8 of about 20 micrometers is sufficient. Therefore, even if the two stages are repeatedly moved several times in order to improve the focus detection accuracy, the process can be completed in a short time, so that focus detection can be performed with high precision and quickly. The two stages may be moved continuously or may be moved in stages.
If an excimer laser is used as the light source in this embodiment, the pulse width of the excimer laser is generally lO~20n.
Since it is very short, on the order of seconds, even if exposure is performed without stopping the stage within the light emission time, the amount of movement of the two stages is small and the out-of-focus can be ignored. Therefore, if an excimer laser is used, high throughput is possible.

本実施例において処理手段から光源へ合焦信号を送り光
源をパルス発光させるまでに電気回路上の理由から時間
的な遅れが生ずる場合は予めその時間を見込んだ補正回
路を設は光源のパルス発光時間を早めるように構成する
のが好ましい。本実施例において合焦位置の検出方法と
してはどのような方法を用いても良く、例えば光量分布
の重心位置を評価量にとっても良く又2ステージの移動
変位に対する光量変化の微分値を評価量にとり微分値が
0になったところな合焦位置Fに選ぶようにしても良い
、微分値を利用すれば2ステージの送りを基準位置から
位glFまでの片道だけ行ってやれば良・いので、より
高速に合焦検出が可能となる。
In this embodiment, if there is a time delay between sending a focusing signal from the processing means to the light source and causing the light source to emit pulses due to electrical circuit reasons, a correction circuit that takes into account that time is installed in advance to cause the light source to emit pulses. Preferably, it is configured to advance the time. In this embodiment, any method may be used to detect the in-focus position. For example, the center of gravity position of the light intensity distribution may be used as the evaluation quantity, or the differential value of the change in light intensity with respect to the displacement of the two stages may be used as the evaluation quantity. You can choose the focus position F where the differential value becomes 0. If you use the differential value, you only need to move the two stages one way from the reference position to position glF. Focus detection becomes possible faster.

本実施例ではAPマークを有する検出手段を投影光学系
の画面内に複数個設けても良く、これによればウェハの
清白や傾き等を考慮したより高精度の焦点検出が可能と
なる。
In this embodiment, a plurality of detecting means having AP marks may be provided within the screen of the projection optical system, which allows for more accurate focus detection taking into account the brightness and inclination of the wafer.

又検出手段をレチクルと投影光学系との間に配置する代
わりに投影光学系とウェハとの間に配置するようにして
も良い。
Furthermore, instead of arranging the detection means between the reticle and the projection optical system, it may be arranged between the projection optical system and the wafer.

本実施例ではパルス発光する光源の代わりに水銀灯等の
通常の連続発振する光源と高速シセッターとを組み合わ
せたものを用いるようにしても本発明の目的を達成する
ことが出来る。
In this embodiment, the object of the present invention can also be achieved by using a combination of a conventional continuous wave light source such as a mercury lamp and a high-speed scissor instead of a light source that emits pulsed light.

又投影光学系6が入射テレセン系である場合には、ウェ
ハ7を固定して、レチクル4を上下移動させることによ
って合焦を行っても良い。この場合は、レチクル4近傍
では、ウェハ7近傍に比べ焦点深度が投影光学系6の縮
少率の2乗倍に増える(例えば115投影系なら25倍
)ので、より高精度の合焦が行える。
Furthermore, when the projection optical system 6 is an incident telecentric system, focusing may be performed by fixing the wafer 7 and moving the reticle 4 up and down. In this case, the depth of focus near the reticle 4 increases by the square of the reduction rate of the projection optical system 6 (for example, 25 times for a 115 projection system) compared to near the wafer 7, so more accurate focusing can be achieved. .

(発明の効果) 本発明によれば第1物体を投影光学系を介して第2物体
面上に投影露光する際、合焦位置に達したときに光源を
パルス発光させることにより高精度にしかも迅速に焦点
調節を行った投影露光装置を達成することができる。
(Effects of the Invention) According to the present invention, when projecting and exposing a first object onto a second object surface via a projection optical system, the light source emits pulse light when the in-focus position is reached, thereby achieving high precision and A projection exposure apparatus with rapid focus adjustment can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

7jS1図は本発明の一実施例の概略図、第2図は本発
明において焦点検出を行ったときの光検出器からの出力
信号の説明図である。 図中1は光源、3は照明光学系、4は第1物体としての
レチクル、5はAFマーク、6は投影光学系、7は第2
物体としてのウェハ、8はZステージ、11はハーフミ
ラ−112は焦点検出用の光学系、13はスリット、1
4は光検出器、15は処理手段である。
7jS1 is a schematic diagram of an embodiment of the present invention, and FIG. 2 is an explanatory diagram of an output signal from a photodetector when focus detection is performed in the present invention. In the figure, 1 is a light source, 3 is an illumination optical system, 4 is a reticle as a first object, 5 is an AF mark, 6 is a projection optical system, and 7 is a second object.
A wafer as an object, 8 a Z stage, 11 a half mirror, 112 an optical system for focus detection, 13 a slit, 1
4 is a photodetector, and 15 is a processing means.

Claims (3)

【特許請求の範囲】[Claims] (1)パルス光束を利用して第1物体を投影光学系を介
して第2物体面上に投影露光する際、前記第1物体の前
記第2物体面上での結像状態を検出する為の検出手段を
設け、前記第2物体若しくは前記第1物体を前記投影光
学系の光軸方向へ移動させたときに得られる前記検出手
段からの出力信号を利用してパルス発光させたことを特
徴とする投影露光装置。
(1) To detect the imaging state of the first object on the second object surface when projecting and exposing the first object onto the second object surface via the projection optical system using a pulsed light flux. A detection means is provided, and a pulse is emitted using an output signal from the detection means obtained when the second object or the first object is moved in the optical axis direction of the projection optical system. Projection exposure equipment.
(2)前記検出手段による前記第1物体の前記第2物体
面上での結像状態の検出を前記投影光学系を介して行っ
たことを特徴とする特許請求の範囲第1項記載の投影露
光装置。
(2) The projection according to claim 1, wherein the detection means detects the image formation state of the first object on the second object plane via the projection optical system. Exposure equipment.
(3)前記第2物体若しくは前記第1物体を前記投影光
学系の光軸方向へ連続的に往復移動させたことを特徴と
する特許請求の範囲第2項記載の投影露光装置。
(3) The projection exposure apparatus according to claim 2, wherein the second object or the first object is continuously moved back and forth in the optical axis direction of the projection optical system.
JP60155349A 1985-07-15 1985-07-15 Projection exposure apparatus Granted JPS6216526A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60155349A JPS6216526A (en) 1985-07-15 1985-07-15 Projection exposure apparatus
US07/724,451 US5114223A (en) 1985-07-15 1991-07-03 Exposure method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60155349A JPS6216526A (en) 1985-07-15 1985-07-15 Projection exposure apparatus

Publications (2)

Publication Number Publication Date
JPS6216526A true JPS6216526A (en) 1987-01-24
JPH0560254B2 JPH0560254B2 (en) 1993-09-01

Family

ID=15603946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60155349A Granted JPS6216526A (en) 1985-07-15 1985-07-15 Projection exposure apparatus

Country Status (1)

Country Link
JP (1) JPS6216526A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5117254A (en) * 1988-05-13 1992-05-26 Canon Kabushiki Kaisha Projection exposure apparatus
JPH056906U (en) * 1991-06-28 1993-01-29 太陽誘電株式会社 Dielectric filter
US5489966A (en) * 1988-05-13 1996-02-06 Canon Kabushiki Kaisha Projection exposure apparatus
CN103309169A (en) * 2012-03-05 2013-09-18 佳能株式会社 Detection apparatus, exposure apparatus, and method of manufacturing device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5117254A (en) * 1988-05-13 1992-05-26 Canon Kabushiki Kaisha Projection exposure apparatus
US5489966A (en) * 1988-05-13 1996-02-06 Canon Kabushiki Kaisha Projection exposure apparatus
JPH056906U (en) * 1991-06-28 1993-01-29 太陽誘電株式会社 Dielectric filter
CN103309169A (en) * 2012-03-05 2013-09-18 佳能株式会社 Detection apparatus, exposure apparatus, and method of manufacturing device
CN103309169B (en) * 2012-03-05 2016-03-02 佳能株式会社 The method of pick-up unit, exposure device and manufacture device
US9523927B2 (en) 2012-03-05 2016-12-20 Canon Kabushiki Kaisha Exposure apparatus with detection apparatus for detection of upper and lower surface marks, and device manufacturing method

Also Published As

Publication number Publication date
JPH0560254B2 (en) 1993-09-01

Similar Documents

Publication Publication Date Title
JP2893778B2 (en) Exposure equipment
US6252650B1 (en) Exposure apparatus, output control method for energy source, laser device using the control method, and method of producing microdevice
KR0139309B1 (en) Exposure apparatus and manufacuring method for device using the same
JP2946950B2 (en) Illumination apparatus and exposure apparatus using the same
JP3057998B2 (en) Illumination device and projection exposure apparatus using the same
TW200305928A (en) Exposure apparatus and method
KR20040081014A (en) Lithographic apparatus and device manufacturing method
US6151121A (en) Position detecting system and device manufacturing method using the same
US6639677B1 (en) Position measuring method and position measuring system using the same
JP2001257157A (en) Device and method for alignment and device and method for exposure
JPS6216526A (en) Projection exposure apparatus
JPS62188316A (en) Projection exposure device
KR100549780B1 (en) An Alignment tool, A Lithographic Apparatus, An Alignment Method, A Device Manufacturing Method and Device Manufactured thereby
JP2006332480A (en) Position measurement method, exposure method, device-manufacturing method, position-measurement apparatus, and exposure apparatus
JP2005311198A (en) Aligner and focusing position detecting device and method thereof, and device manufacturing method
KR100781297B1 (en) Method of determining a best focus in a substrate exposure process and substrate exposure apparatus capable of performing the same
JP2003318095A (en) Flame measuring method and flare measuring device, aligning method and aligner, and method for adjusting aligner
JP3667009B2 (en) Exposure apparatus and device manufacturing method using the same
JP3049911B2 (en) Alignment scope having focus detection means
JPS62269315A (en) Device and method for exposure
JP2005209926A (en) Mark detecting method and apparatus thereof, exposure method and apparatus thereof, and device manufacturing method
JP2780302B2 (en) Exposure equipment
JPH02126629A (en) Production aligner
KR20230150342A (en) Optical systems, mounting devices, and methods for measuring the position of a measurement object
JPS62241330A (en) Position-alignment in exposure device