JPH0546694B2 - - Google Patents

Info

Publication number
JPH0546694B2
JPH0546694B2 JP61017072A JP1707286A JPH0546694B2 JP H0546694 B2 JPH0546694 B2 JP H0546694B2 JP 61017072 A JP61017072 A JP 61017072A JP 1707286 A JP1707286 A JP 1707286A JP H0546694 B2 JPH0546694 B2 JP H0546694B2
Authority
JP
Japan
Prior art keywords
exposure
wafer
light
output
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61017072A
Other languages
Japanese (ja)
Other versions
JPS62176129A (en
Inventor
Makoto Torigoe
Terumasa Sakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61017072A priority Critical patent/JPS62176129A/en
Publication of JPS62176129A publication Critical patent/JPS62176129A/en
Publication of JPH0546694B2 publication Critical patent/JPH0546694B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電子回路等のパターンが形成されてい
るマスクパターンをウエハ面上に光源として間欠
発光型光源を用いて転写露光する際、ウエハ面上
へ常に適切なる露光量を供給することのできる露
光装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention provides a method for transferring and exposing a mask pattern on which a pattern of an electronic circuit or the like is formed onto the wafer surface using an intermittent light source as a light source. The present invention relates to an exposure apparatus that can always supply an appropriate amount of exposure light to the top.

(従来の技術) 最近の半導体製造技術には電子回路の高集積化
に伴い、高密度の回路パターンが形成可能のリソ
グラフイ技術が要求されている。
(Prior Art) Recent semiconductor manufacturing technology requires lithography technology that can form high-density circuit patterns as electronic circuits become highly integrated.

一般にマスク又はレチクル面上の回路パターン
を投影光学系を介してウエハ面上に転写する場
合、ウエハ面上に転写される回路パターンの解像
線幅は光源の波長に比例してくる。またマスクと
ウエハとを密着あるいは数〜数十ミクロン程度離
して重ねて転写するいわゆるコンタクト法又プロ
キシミテイ法の場合は解像力は波長の平方根に比
例する。この為波長200〜300nmの遠紫外(デイ
ープUV領域)の短い波長を発振する例えば高圧
水銀灯やキセノン水銀ランプ等が用いられてい
る。しかしながらこれらの光源は低輝度で指向性
もなくしかもウエハ面上に塗布するフオトレジス
トの感光性も低い為露光時間が長くなりスールプ
ツトを低下させる原因となつていた。
Generally, when a circuit pattern on a mask or reticle surface is transferred onto a wafer surface via a projection optical system, the resolved line width of the circuit pattern transferred onto the wafer surface is proportional to the wavelength of the light source. In addition, in the case of the so-called contact method or proximity method, in which a mask and a wafer are transferred in close contact with each other or overlaid with a distance of several to several tens of microns, the resolution is proportional to the square root of the wavelength. For this purpose, high-pressure mercury lamps, xenon mercury lamps, etc., which oscillate short wavelengths in the far ultraviolet (deep UV region) of 200 to 300 nm, are used. However, these light sources have low brightness and lack directivity, and the photoresist coated on the wafer surface has low photosensitivity, resulting in a long exposure time and a reduction in the overall output.

一方、最近間欠発光型光源例えば、エキシマ
(excimer)レーザというデイープUV領域に発振
波長を有する光源が開発され、その高輝度性、単
色性、指向性等の良さからリソグラフイ技術とし
て有効である旨が種々報告されている。
On the other hand, recently, an intermittent light source, for example, an excimer laser, which has an oscillation wavelength in the deep UV region, has been developed, and it is said that it is effective as a lithography technology due to its high brightness, monochromaticity, and directivity. There have been various reports.

現在市販されている多くのエキシマレーザはレ
ーザ発振用の混合ガスをガスチヤンバー内に封じ
込め、循環させて使用し、使用後は破棄してい
る。
Many excimer lasers currently on the market use a mixed gas for laser oscillation sealed in a gas chamber, circulated, and discarded after use.

混合ガスとしては例えばF2やHCl等の腐食性の
強いハロゲン系ガスが使用されている。この為励
起時の放電の影響も加わり、ハロゲン系ガスがレ
ーザ放電菅の内壁や放電用の電極と反応して不純
物を形成し、経時的にレーザ出力を劣化させる原
因となつている。このハロゲン分子の反応はレー
ザ光を発振しない場合でも常に起つている。この
為特にレーザ発振を長時間休止した後にレーザ光
を発振させる場合には前回のレーザ出力とは無関
係の不確実な出力エネルギーで発振してくる。
As the mixed gas, for example, a highly corrosive halogen gas such as F 2 or HCl is used. For this reason, the influence of discharge during excitation is added, and the halogen-based gas reacts with the inner wall of the laser discharge tube and the discharge electrode to form impurities, which causes the laser output to deteriorate over time. This reaction of halogen molecules always occurs even when laser light is not oscillated. For this reason, especially when the laser beam is oscillated after the laser oscillation has been stopped for a long time, the laser beam oscillates with uncertain output energy that is unrelated to the previous laser output.

そこでエキシマレーザを半導体製造用の露光装
置に用いる場合は、回路パターンの微細化に伴い
ウエハ面への露光量の制御を厳密に行なう必要性
からレーザ出力の変化を常に掌握しておく必要が
ある。
Therefore, when using excimer lasers in exposure equipment for semiconductor manufacturing, it is necessary to constantly monitor changes in laser output because it is necessary to strictly control the amount of exposure to the wafer surface as circuit patterns become finer. .

(本発明の目的) 本発明は、このように事情に鑑みなされたもの
で、その目的は、エキシマレーザを露光光源とし
て使用する場合にも、正確な露光制御を可能にし
て、マスクのパターンをウエハに高精度に転写す
ることのできる露光装置を提供することにある。
(Objective of the Present Invention) The present invention was made in view of the above circumstances, and its purpose is to enable accurate exposure control and control the pattern of a mask even when an excimer laser is used as an exposure light source. An object of the present invention is to provide an exposure device that can transfer images onto a wafer with high precision.

(目的を達成するための手段及び作用) 上記目的を達成するため、本発明の露光装置
は、マスクのパターンをウエハに転写するのに役
立つ露光光をナノ秒オーダーの発光時間でパルス
状に発光するエキシマレーザと、前記露光光の一
部を検出して前記露光光の1パルス分の光量に比
例した値を出力する検出手段と、前記検出手段の
出力を利用して前記マスクのパターンを前記ウエ
ハに転写する際の露光量を制御する制御手段を備
え、前記検出手段は応答速度がマイクロ秒オーダ
ーのシリコンフオトダイオードを有することを特
徴としている。
(Means and Actions for Achieving the Object) In order to achieve the above object, the exposure apparatus of the present invention emits exposure light in a pulsed manner with an emission time on the order of nanoseconds, which is useful for transferring a mask pattern onto a wafer. an excimer laser that detects a portion of the exposure light and outputs a value proportional to the amount of light for one pulse of the exposure light; The apparatus is characterized in that it includes a control means for controlling the amount of exposure when transferring onto a wafer, and the detection means includes a silicon photodiode with a response speed on the order of microseconds.

このような本発明の露光装置では、エキシマレ
ーザの発光時間に比して検出手段(シリコンフオ
トダイオード)の応答速度が充分に遅くなるの
で、検出手段自身がエキシマレーザの1パルス分
の露光光に対して積分効果を有することになる。
このため、検出手段にパルス光ごとの光量を積分
する積分回路等を設けなくとも、簡単な構成でエ
キシマレーザの1パルス分の露光光の光量を正確
に検出することが可能となり、エキシマレーザを
露光光源とした半導体製造用の露光装置におい
て、高精度な露光量制御が可能となる。
In such an exposure apparatus of the present invention, the response speed of the detection means (silicon photodiode) is sufficiently slow compared to the emission time of the excimer laser, so that the detection means itself can absorb exposure light for one pulse of the excimer laser. This will have an integral effect on the
Therefore, it is possible to accurately detect the amount of exposure light for one pulse of the excimer laser with a simple configuration without providing an integrating circuit or the like to integrate the amount of light for each pulsed light in the detection means. In an exposure apparatus for semiconductor manufacturing using an exposure light source, highly accurate exposure control becomes possible.

更に、前記制御手段は前記露光光の複数パルス
分の前記出力を利用して前記露光量を制御するこ
ととすれば、より高精度な露光量制御が可能とな
る。
Further, if the control means controls the exposure amount by using the output of a plurality of pulses of the exposure light, it becomes possible to control the exposure amount with higher precision.

(実施例) 第1図は本発明露光装置の一例の概略図で、1
は間欠発光型光源で例えばエキシマレーザ、2は
光学濃度が数段階に切替可能となつている切換式
NDフイルター、3は開口径を任意に変化させる
ことのできる可変開口部材、4は反射鏡、5は光
路中の一部に配置され光量を検出する検出手段、
例えば一般のシリコンフオトダイオードで成る光
電変換素子が好ましい。6はシヤツター、7はエ
キシマレーザ1から出力された光束によりレチク
ルやマスク8を照明する照明系、9はマスク8面
上のマスクパターンをウエハ10面上に投影する
為の投影系、11はウエハ10を載置し、不図示
の駆動手段により駆動可能となつているXYステ
ージ、12は定盤、13はシヤツター6を駆動さ
せる為のソレノイド、14は制御手段である。
(Example) FIG. 1 is a schematic diagram of an example of the exposure apparatus of the present invention.
2 is an intermittent light source, such as an excimer laser, and 2 is a switchable type whose optical density can be switched to several levels.
ND filter; 3 is a variable aperture member capable of arbitrarily changing the aperture diameter; 4 is a reflecting mirror; 5 is a detection means disposed in a part of the optical path to detect the amount of light;
For example, a photoelectric conversion element made of a general silicon photodiode is preferable. 6 is a shutter; 7 is an illumination system that illuminates the reticle and mask 8 with the light beam output from the excimer laser 1; 9 is a projection system for projecting the mask pattern on the mask 8 onto the wafer 10; 11 is the wafer 10 is mounted on an XY stage which can be driven by a drive means (not shown); 12 is a surface plate; 13 is a solenoid for driving the shutter 6; and 14 is a control means.

尚本実施例においてはマスク8とウエハ10と
の相対的関係を整合する為のアライメント光学系
が設けられているが、同図では省略してある。
In this embodiment, an alignment optical system for adjusting the relative relationship between the mask 8 and the wafer 10 is provided, but it is omitted in the figure.

本実施例においてマスクパターンをウエハ面上
に投影露光する際はまずシヤツター6を閉じてお
きエキシマレーザ1からパルス光を1つ若しくは
数個出力させ、そのときのパルス光の出力エネル
ギーを検出手段5で検出する。これによりエキシ
マレーザ1に封入されている混合ガスの劣化の程
度を知ることができる。そして検出手段5からの
出力信号に基づいて制御手段14によりマスク8
面上への照射光量を制御している。このときの制
御はエキシマレーザ1の放電電圧を可変とする不
図示の電圧調整手段により若しくは切換式NDフ
イルター2により光学濃度を変えるか若しくは可
変開口部材3の開口径を変えて又はこれらの各要
素を重複させて行うようにした露光量制御手段に
より行つている。検出手段5が所定量の光量を検
出したとき、検出手段5を光路外に逃がし、第2
図に示すようにソレノイド13によりシヤツター
6を開き、エキシマレーザ1からのパルス光でマ
スクパターンを照射し投影系によりマスクパター
ンをウエハ10面上へ適切なる露光量で投影露光
している。
In this embodiment, when projecting and exposing a mask pattern onto a wafer surface, the shutter 6 is first closed and one or several pulsed lights are output from the excimer laser 1, and the output energy of the pulsed light at that time is detected by the detection means 5. Detect with. This makes it possible to know the degree of deterioration of the mixed gas sealed in the excimer laser 1. The mask 8 is then controlled by the control means 14 based on the output signal from the detection means 5.
Controls the amount of light irradiated onto the surface. Control at this time is performed by using a voltage adjusting means (not shown) that varies the discharge voltage of the excimer laser 1, by changing the optical density by using the switching type ND filter 2, by changing the aperture diameter of the variable aperture member 3, or by changing each of these elements. This is performed by an exposure amount control means that performs the following operations in duplicate. When the detection means 5 detects a predetermined amount of light, the detection means 5 is moved out of the optical path and the second
As shown in the figure, the shutter 6 is opened by the solenoid 13, the mask pattern is irradiated with pulsed light from the excimer laser 1, and the mask pattern is projected and exposed onto the surface of the wafer 10 by a projection system with an appropriate exposure amount.

尚本実施例において切換式NDフイルター2、
検出手段5、シヤツター6等はいずれもエキシマ
レーザ1からウエハ10に至る光路中の任意の位
置に配置しても本発明の目的を達成することがで
きる。また可変開口部材3は、ウエハの瞳位置或
いはその光学的共役面ならいずれの位置に配置し
ても本発明の目的を達成するこができる。また検
出手段5は4をハーフミラーとして5′の位置に
配置しても良い。このとき露光中でもモニタでき
る。
In this embodiment, the switchable ND filter 2,
The object of the present invention can be achieved even if the detection means 5, shutter 6, etc. are placed at any position in the optical path from the excimer laser 1 to the wafer 10. Further, the object of the present invention can be achieved even if the variable aperture member 3 is placed at any position as long as it is at the pupil position of the wafer or at its optical conjugate surface. Further, the detection means 5 may be arranged at the position 5' by using 4 as a half mirror. At this time, it can be monitored even during exposure.

本実施例においてシヤツター6は特に設けない
くても良い。ただしこのときはエキシマレーザ1
を出力させる際ウエハ10をXYステージから外
しておく必要がある。
In this embodiment, the shutter 6 does not need to be provided. However, in this case, excimer laser 1
When outputting the image, it is necessary to remove the wafer 10 from the XY stage.

本実施例のように光源としてエキシマレーザを
用い、所謂ステツプアンドリピード方式により繰
り返し露光を行う場合エキシマレーザの出力パル
ス時間が例えば10〜20nsec(+)秒オーダーと短
いことを利用すればXYステージを停止せずに連
続送りしながら転写露光することが可能となる。
このような場合1回の露光を1個のパルス光で行
うようにすれば容易に高スループツト化を図るこ
とができる。本発明はこのような場合、露光用の
1個のパルス状出力を正確に制御するので正確な
露光ができる。
When using an excimer laser as a light source as in this embodiment and performing repeated exposure using the so-called step-and-repeat method, the XY stage can be Transfer exposure can be performed while continuously feeding without stopping.
In such cases, high throughput can be easily achieved by performing one exposure with one pulse of light. In such a case, the present invention accurately controls one pulse-like output for exposure, so that accurate exposure can be performed.

尚本発明をマスクとウエハを密着させるいわゆ
るコンタクト法或いはマスクとウエハを数〜数十
ミクロン程度の僅かの空間を隔てて配置したプロ
キシミテイ方式にも適用できる。
The present invention can also be applied to a so-called contact method in which a mask and a wafer are brought into close contact with each other, or a proximity method in which a mask and a wafer are placed apart from each other by a small space of several to several tens of microns.

第2図は第1図の動作説明用タイミングチヤー
トである。A例の場合、長時間停止の後に電源が
投入され、出力されるレーザパルスを複数例えば
4個を露光量検出用として用いる例を示す。この
4個のパルス出力期間はシヤツター6は閉じてお
き、制御手段14内のコンピユータが4個のパル
スの平均値を算出し、これにより前述の如くレー
ザ出力を調整し、5個目の出力から露光を始め
る。
FIG. 2 is a timing chart for explaining the operation of FIG. 1. In the case of Example A, the power is turned on after a long period of stoppage, and a plurality of output laser pulses, for example four, are used for exposure detection. During these four pulse output periods, the shutter 6 is closed, and the computer in the control means 14 calculates the average value of the four pulses, adjusts the laser output as described above, and starts from the fifth output. Start exposure.

B例はこのモニタ用パルスが1個の場合を示
す。検出手段5の具体例としては前述の如くシリ
コンフオトダイオードが好ましい。なぜならば
PIN(Positive Intrinsic Negative)フオトダイ
オードのように応答速度が速い素子であると、第
3図Cに示すように第3図Aのエキシマレーザパ
ルスとほぼ同様な出力電流となる。ここでレーザ
パルスAの波形形状が常に一定である場合はCの
ピーク値がAの面積とほぼ比例するので、Cのピ
ーク値をAのエネルギーとみなすことができる。
しかしエキシマレーザの場合、その出力波形は一
般に不定なのでAの面積に比例した値を検出する
には積分回路が必要となる。しかるに、第3図に
Bとして示す如く、シリコンフオトダイオードは
応答速度が数μsec(マイクロ秒オーダー)と遅い
ため、自身が積分効果を有しており、従つて、こ
のピーク値Sは第3図のAのエキシマレーザの出
力波形の面積に比例することになり、このSを検
出すれば積分回路を用いずともレーザ出力エネル
ギーを測定できる。第4図はウエハ上の各露光領
域C1,C2……のみでレーザが出力され、ウエハ
が連続移動しながら露光する例を示す。
Example B shows a case where the number of this monitoring pulse is one. As a specific example of the detection means 5, a silicon photodiode is preferably used as described above. because
If the element has a fast response speed, such as a PIN (Positive Intrinsic Negative) photodiode, the output current will be almost the same as the excimer laser pulse in FIG. 3A, as shown in FIG. 3C. Here, if the waveform shape of laser pulse A is always constant, the peak value of C is approximately proportional to the area of A, so the peak value of C can be regarded as the energy of A.
However, in the case of an excimer laser, its output waveform is generally unstable, so an integrating circuit is required to detect a value proportional to the area of A. However, as shown as B in Figure 3, silicon photodiodes have a slow response speed of several microseconds (on the order of microseconds), so they themselves have an integral effect, and therefore, this peak value S is as shown in Figure 3. It is proportional to the area of the excimer laser output waveform of A, and by detecting this S, the laser output energy can be measured without using an integrating circuit. FIG. 4 shows an example in which the laser is output only in each exposure area C1, C2, . . . on the wafer, and the wafer is exposed while continuously moving.

すなわちまず第1露光領域C1の露光がレーザ
光束により行なわれる。次いで第2露光領域C2
をC1の位置まで移動させ、2回目の露光を行な
う。この移動中はレーザ1の出力は当然休止して
いる。
That is, first, the first exposure area C1 is exposed with a laser beam. Next, the second exposure area C2
Move to position C1 and perform the second exposure. During this movement, the output of the laser 1 is of course stopped.

また、2回目の露光中はウエハ10を停止させ
ず移動中に露光を行なう。以後ウエハ10は露光
領域C5まで連続移動させたままC3,C4,C5の露
光を行なう。これが終了するとウエハ10は1行
分上方に送られ、次行のC6〜C12を連続移動しな
がら露光を行なう。
Furthermore, during the second exposure, the wafer 10 is not stopped but is exposed while it is moving. Thereafter, the wafer 10 is continuously moved to the exposure area C5, and exposures of C3, C4, and C5 are performed. When this is completed, the wafer 10 is moved upward by one line, and exposure is performed while continuously moving C6 to C12 of the next line.

以下同様に処理されていく。このようにウエハ
を連続露光するのでスループツトが向上する。
The following processing is performed in the same manner. Since the wafer is exposed continuously in this way, the throughput is improved.

(効果) 以上詳述した如く、本発明によれば、エキシマ
レーザの1パルス分の露光光の光量を正確に検出
することが可能となるので、エキシマレーザを露
光光源とした半導体製造用の露光装置において、
高精度な露光量制御を可能にできる。更に、斯か
る露光量制御を簡単な構成で実施できる。
(Effects) As described in detail above, according to the present invention, it is possible to accurately detect the amount of exposure light for one pulse of an excimer laser, so it is possible to accurately detect the amount of exposure light for one pulse of an excimer laser. In the device,
Highly accurate exposure control is possible. Furthermore, such exposure amount control can be implemented with a simple configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一例の概略図、第2図〜第4
図は作動説明用タイミングチヤート図である。 1……エキシマレーザ源、5……シリコンフオ
トダイオード。
Figure 1 is a schematic diagram of an example of the present invention, Figures 2 to 4
The figure is a timing chart for explaining the operation. 1...excimer laser source, 5...silicon photodiode.

Claims (1)

【特許請求の範囲】 1 マスクのパターンをウエハに転写するのに役
立つ露光光をナノ秒オーダーの発光時間でパルス
状に発光するエキシマレーザと、前記露光光の一
部を検出して前記露光光の1パルス分の光量に比
例した値を出力する検出手段と、前記検出手段の
出力を利用して前記マスクのパターンを前記ウエ
ハに転写する際の露光量を制御する制御手段を備
え、前記検出手段は応答速度がマイクロ秒オーダ
ーのシリコンフオトダイオードを有することを特
徴とする露光装置。 2 前記制御手段は前記露光光の複数パルス分の
前記出力を利用して前記露光量を制御することを
特徴とする特許請求の範囲第1項記載の露光装
置。
[Scope of Claims] 1. An excimer laser that emits exposure light useful for transferring a mask pattern onto a wafer in a pulsed manner with an emission time on the order of nanoseconds; a detection means for outputting a value proportional to the amount of light for one pulse of the detection means; and a control means for controlling the exposure amount when transferring the pattern of the mask onto the wafer using the output of the detection means; An exposure apparatus characterized in that the means includes a silicon photodiode whose response speed is on the order of microseconds. 2. The exposure apparatus according to claim 1, wherein the control means controls the exposure amount using the output of a plurality of pulses of the exposure light.
JP61017072A 1986-01-29 1986-01-29 Exposure apparatus Granted JPS62176129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61017072A JPS62176129A (en) 1986-01-29 1986-01-29 Exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61017072A JPS62176129A (en) 1986-01-29 1986-01-29 Exposure apparatus

Publications (2)

Publication Number Publication Date
JPS62176129A JPS62176129A (en) 1987-08-01
JPH0546694B2 true JPH0546694B2 (en) 1993-07-14

Family

ID=11933779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61017072A Granted JPS62176129A (en) 1986-01-29 1986-01-29 Exposure apparatus

Country Status (1)

Country Link
JP (1) JPS62176129A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2615687B2 (en) * 1987-10-26 1997-06-04 松下電器産業株式会社 Excimer laser reduction projection exposure method
JP2003068611A (en) 2001-08-24 2003-03-07 Canon Inc Aligner and manufacturing method for semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60169136A (en) * 1984-02-14 1985-09-02 Canon Inc Exposure controlling method and unit therefor
JPS61111529A (en) * 1984-11-06 1986-05-29 Canon Inc Exposure amount controller

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60169136A (en) * 1984-02-14 1985-09-02 Canon Inc Exposure controlling method and unit therefor
JPS61111529A (en) * 1984-11-06 1986-05-29 Canon Inc Exposure amount controller

Also Published As

Publication number Publication date
JPS62176129A (en) 1987-08-01

Similar Documents

Publication Publication Date Title
US6252650B1 (en) Exposure apparatus, output control method for energy source, laser device using the control method, and method of producing microdevice
US4711568A (en) Exposure apparatus
US6721039B2 (en) Exposure method, exposure apparatus and device producing method
US4947047A (en) Exposure system with exposure controlling acoustooptic element
US6496247B2 (en) Exposure apparatus and exposure method
JP2005506684A (en) Lithography system and device manufacturing method
JPH09148216A (en) Method of exposure control
JPH0774092A (en) Aligner and manufacture of device using the same
JPH08250402A (en) Method and device for scanning exposure
JP2001345245A (en) Method and device for exposure and method of manufacturing device
JP3363532B2 (en) Scanning exposure equipment
JP2503495B2 (en) Exposure apparatus and exposure method
JPWO2002065597A1 (en) Light source device, light irradiation device, and device manufacturing method
JPH0546694B2 (en)
US7023885B1 (en) Laser apparatus and method for controlling the same
JP2001326159A (en) Laser, aligner, and device manufacturing method using the same aligner
JP2004186234A (en) Aligner
JPH1012957A (en) Beam controller and aligner employing the same
JP4268364B2 (en) Lithographic apparatus, device manufacturing method, and device manufactured thereby
JP2005005407A (en) Light source device, aligner, and control method thereof
JP2001023888A (en) Laser device, control method therefor, aligner and exposure method
JPH0715875B2 (en) Exposure apparatus and method
JP2000331915A (en) Exposure control method, aligner and laser beam outputting device
JPS6216526A (en) Projection exposure apparatus
JP2001203141A (en) Aligner and light source device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term