JPS61111529A - Exposure amount controller - Google Patents

Exposure amount controller

Info

Publication number
JPS61111529A
JPS61111529A JP59233583A JP23358384A JPS61111529A JP S61111529 A JPS61111529 A JP S61111529A JP 59233583 A JP59233583 A JP 59233583A JP 23358384 A JP23358384 A JP 23358384A JP S61111529 A JPS61111529 A JP S61111529A
Authority
JP
Japan
Prior art keywords
wavelength
laser
exposure
oscillation
excimer laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59233583A
Other languages
Japanese (ja)
Inventor
Makoto Torigoe
真 鳥越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59233583A priority Critical patent/JPS61111529A/en
Publication of JPS61111529A publication Critical patent/JPS61111529A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To yield the titled device capable of controlling the effective exposure amount to a photosensitive material at suitable values for a long time, by using an excimer laser of injection locking type which can vary the wavelength and control the spread angle and the line width of beams. CONSTITUTION:If the wavelength of the excimer laser 1 is varied by producing control signals transmitted to a wavelength-variable mechanism 2 by mans of a comparator and microprocessor 10 in such a manner that the amount of light coming into a photo receptor 8 with a wavelength of oscillation efficiency other than the maximum becomes constant, the stabilization of output energy is enabled for a long period. Such a variation in oscillation wavelength a very small range of wavelength at 1nm or less can largely vary the oscillation efficiency of laser and vary the laser output in proportion to this. As a result, it is made possible to arbitrarily control exposure energy to the wafer surface 6.

Description

【発明の詳細な説明】 本発明は露光量制御装置に関し、特にIC。[Detailed description of the invention] The present invention relates to an exposure control device, and particularly to an IC.

LSI等の半導体の1子回路パター7をウェハ面上に投
影露光する際、ウェハ面上への露光蓋を適切に維持しf
c露光量制御装置に関するものであるO 最近の半導体技術は成子回路の高集積化、微細化の一途
を辿り、光学的な露光方式も高解像力のレンズの開発等
でますますその領域を拡げつつある。このような半導体
製造における露光装置において、マスク又はレチクルの
回路パターンをウェハ面上に転写、焼付ける場合には、
クエ・・面上に焼付けられる回路パターンの解像線巾は
光源の波長に比例する几め、近年では遠紫外(Deep
 UV )領域の短い波長の光源が用いられている。
When projecting and exposing the single-child circuit pattern 7 of a semiconductor such as an LSI onto the wafer surface, the exposure lid on the wafer surface must be properly maintained.
cRegarding the exposure amount control deviceO Recent semiconductor technology is progressing toward higher integration and miniaturization of Nariko circuits, and the field of optical exposure methods is also expanding further with the development of high-resolution lenses, etc. be. In such exposure equipment for semiconductor manufacturing, when transferring and printing the circuit pattern of a mask or reticle onto the wafer surface,
The resolution line width of the circuit pattern printed on the surface is proportional to the wavelength of the light source.
Short wavelength light sources in the UV) region are used.

従来この種の遠紫外光源としては、重水素ランプやXs
 −Hgランプが知られていた。
Conventional deep ultraviolet light sources of this type include deuterium lamps and Xs
-Hg lamps were known.

一般に半導体製造においては回路パターンを繰り返して
ウェハ面上に投影露光するのでウェハ面上への実効露光
量は各処理毎に常に適切になる値に維持されていなけれ
ばならない。ここで実効露光量とは、該露光光のエネル
ギーに1焼きつけようとする感光性樹脂の感度を来じ几
もの全波長で積分しtものとする。
Generally, in semiconductor manufacturing, a circuit pattern is projected and exposed onto the wafer surface repeatedly, so the effective amount of exposure onto the wafer surface must always be maintained at an appropriate value for each process. Here, the effective exposure amount is defined as the energy of the exposure light and the sensitivity of the photosensitive resin to be printed, integrated over all wavelengths.

従来はウェハ面上の照度が一定となるように照明光学系
の光路中に受光手段を配置し、受光手段からの出力が一
定となるように光源への入力低圧を制御またり若しくは
露光時間を制御し几りしてい友。
Conventionally, a light receiving means is placed in the optical path of the illumination optical system so that the illuminance on the wafer surface is constant, and the input low pressure to the light source is controlled or the exposure time is controlled so that the output from the light receiving means is constant. A friend who is in control and careful.

一方、近年エキシマ(excimer )レーザーとい
つ品出力のa紫外領域全発振波長とする光源が各方面で
使用でれている。このエキシマレーザ−は高倉F度性、
単色性そして可干渉距離が短いことから半棉体製造の除
の露光装置[は大変有効である。
On the other hand, in recent years, excimer lasers and light sources with output wavelengths all in the a-ultraviolet region have been used in various fields. This excimer laser has Takakura F-degree properties.
Due to its monochromatic nature and short coherence distance, the exposure system is very effective for producing semi-cotton bodies.

このエキシマレーザ−の励起方式は11 電励起方式で
あるのでエキシマレーザ−を回路パターンの露光用の照
明光学系の光源として用い、ウニ八面上への露光エネル
ギーを所定vLに維持する為には放電励起電圧を制御す
ることによって行うことが考えられる。しかしながら励
起電圧が大きくなりすぎるとレーザー或いは励起回路が
破壊され、逆に励起電圧が小さくなりすぎるとレーザー
が発振しなくなる等、励起電圧を制御して出力エネルギ
ーを大きく変えることは一般に大変困難である。
The excitation method of this excimer laser is the 11 electric excitation method, so the excimer laser is used as the light source of the illumination optical system for exposing the circuit pattern, and in order to maintain the exposure energy on the eight faces of the sea urchin at a predetermined vL. It is conceivable that this could be done by controlling the discharge excitation voltage. However, if the excitation voltage becomes too large, the laser or excitation circuit will be destroyed, and conversely, if the excitation voltage becomes too small, the laser will no longer oscillate, so it is generally very difficult to control the excitation voltage and greatly change the output energy. .

′!九二キシマレーザーは大出力のパルス発振の九め、
通常1パルスから数パルス程度で必要な露光エネルギー
が得られ、さらにパルスの発光時間410〜20nSe
C程度と非常に短い几め、超高速シャッターを必要とす
る等露光時間を制御することにより、精密に露光エネル
ギーを制御することは難しい。
′! The 92 xima laser is the 9th type of high-power pulse oscillation.
Normally, the necessary exposure energy can be obtained with one to several pulses, and the pulse emission time is 410 to 20 nSe.
It is difficult to precisely control the exposure energy by controlling the exposure time, which requires a very short time of about C and an ultra-high speed shutter.

本発明は常に安定した状態でしかも置時間にわ九り感光
性材料への実効露光量を適切になる値九制御することの
できる露光量制御装置の提供を特徴とする特に本発明に
おいてはクエ/S面上のフォトレジスト等の感光性材料
−へ回路パターンを投影露光する際に好適な実効露光量
制御装置の提供を目的とする。
The present invention is characterized by providing an exposure amount control device which can control the effective exposure amount to a photosensitive material to an appropriate value in a stable state at all times and over a period of time. An object of the present invention is to provide an effective exposure amount control device suitable for projecting and exposing a circuit pattern onto a photosensitive material such as a photoresist on a /S surface.

本発明の目的を達成する為の無光量制御装置の主尺る特
徴は、発振波長が可変でしかも出力エネルギーが発振波
長により異なる光源から放射される光束により照明光学
系を介して感光性材料tX光する際、前記光束の光路中
又はそこから分岐された光路中に受光手段を配置し、前
記受光手段からの出力信号を利用して前記感光性材料へ
の実効露光量が所定値となるように前記光源の発振波長
を変化させtことである。
The main feature of the lightless control device for achieving the object of the present invention is that the oscillation wavelength is variable and the output energy varies depending on the oscillation wavelength. When emitting light, a light receiving means is disposed in the optical path of the light beam or an optical path branched from the light path, and an output signal from the light receiving means is used so that the effective exposure amount to the photosensitive material becomes a predetermined value. The method is to change the oscillation wavelength of the light source.

次に本発明の一実施例を各図と共に説明する。Next, one embodiment of the present invention will be described with reference to each drawing.

第1図は本発明の一実施例の概略図である。四角及び線
幅全制御することのできるインジェクションロッキング
タイプのエキシマレーザ−である。
FIG. 1 is a schematic diagram of an embodiment of the present invention. This is an injection locking type excimer laser that can fully control the square and line widths.

本実施例で用いているエキシマレーザ−においては彼長
町変インジェクションロッキングというテクニックを用
いて、即ち2台のレーザーを直列につないで2つの共振
器のうち一方を発振用とし、他方を増幅用として用い、
発振用レーザー中にプリズム、グレーティング、エタロ
ン等を配置することにより発振波長幅を狭くするととも
に発振波長を変化できるようにしている。
The excimer laser used in this example uses a technique called Kanagamachi-hen injection locking, in which two lasers are connected in series, and one of the two resonators is used for oscillation, and the other is used for amplification. use,
By arranging prisms, gratings, etalons, etc. in the oscillation laser, the oscillation wavelength width can be narrowed and the oscillation wavelength can be changed.

2はエキシマレーザ−(ハ)の波長可変機構で例えばプ
リズム角度ティルト用ステップモーター等より構成され
ている。3はエキシマレーザ−1より射出し九レーザー
ビーム、4はレーザービーム3を所望の照射ビームに変
換する為の照明光学系、5は照射ビーム、6はウエノ・
面でマスクパターン、レティクル等の回路パターンが投
影されている。7は照射ビーム5の一部を取り込む為の
ミラー、8は受光器、9は積分回路、10は比較回路及
びマイクロプロセッサでらる。
Reference numeral 2 denotes a wavelength variable mechanism for the excimer laser (c), which is comprised of, for example, a step motor for tilting the prism angle. 3 is a nine laser beam emitted from the excimer laser 1, 4 is an illumination optical system for converting the laser beam 3 into a desired irradiation beam, 5 is an irradiation beam, and 6 is a Ueno beam.
Circuit patterns such as mask patterns and reticles are projected on the surface. 7 is a mirror for taking in a part of the irradiation beam 5, 8 is a light receiver, 9 is an integrating circuit, and 10 is a comparison circuit and a microprocessor.

このときエキシマレーザ−のレーザー媒質である希ガス
ハライド等の性質により例えばKrFの場合には第2図
に示すように波長の違いKより発振効率が変化するので
、これに応じて発振出力ヲ質化させている。
At this time, due to the properties of the rare gas halide that is the laser medium of the excimer laser, for example in the case of KrF, the oscillation efficiency changes due to the difference in wavelength K as shown in Figure 2, so the quality of the oscillation output changes accordingly. It's turning into something.

このときの波長変化域は約1n1rL  と非常に狭い
ので光学系の色収差の影響を殆んどなくすることが比較
的容易である。
Since the wavelength change range at this time is very narrow, approximately 1n1rL, it is relatively easy to almost eliminate the influence of chromatic aberration of the optical system.

このように本実施例では波長変化範囲を1n1rL以下
という非常に狭い領域内で発振波長を変化させればレー
ザーの発振効率を大きく変化させることができそれに比
例してレーザー出力f:変化させることができる。この
結果ウニノー面上への露光エネルギーを任意に制御する
ことが可能となる。
As described above, in this embodiment, if the oscillation wavelength is changed within a very narrow range of wavelength change of 1n1rL or less, the oscillation efficiency of the laser can be greatly changed, and the laser output f: can be changed in proportion to the oscillation efficiency. can. As a result, it becomes possible to arbitrarily control the exposure energy onto the Uninow surface.

本実施列において初期段階では発振効率の最大値以外の
波長を用い受光器8に入射する光量が一定となるように
比較回路及びマイクロプロセッサ10で波長可変機構2
に送る制御信号全作って、エキシマレーザ−1の波長を
変えていけば長期にわ几り出力エネルギーの安定化が可
能となる。
In this implementation, in the initial stage, wavelengths other than the maximum value of oscillation efficiency are used, and the wavelength variable mechanism 2 is controlled by the comparison circuit and the microprocessor 10 so that the amount of light incident on the light receiver 8 is constant.
By creating all the control signals sent to the excimer laser 1 and changing the wavelength of the excimer laser 1, it becomes possible to stabilize the output energy over a long period of time.

尚本実施例の積分回路9はエキシマレーザ−1のパルス
毎のエネルギーに短期的なパラツ中がbる為その影j#
金除去する為のものである。
Note that the integration circuit 9 of this embodiment has a short-term paralysis in the energy of each pulse of the excimer laser 1, so its influence j#
It is for removing gold.

本実施列において用い九波長可変インジエクシコンロッ
キングタイプのエキシマレーザ−の代わり°にエキシマ
レーザ−やN2レーザー或いはYAGレーザーの第4高
調波で励起され九色素し−ザー或いはその第2次高調波
等f、t’用して@振波長を変化させても良い。この場
合は発振波長の変化量を大きくしフォトレジスト等の感
光性材料の分光感度の違いに応じて実効露光量を一定に
維持するようにする。
Instead of the nine wavelength tunable indiexicon locking type excimer laser used in this implementation, a nine dye laser excited with the fourth harmonic of an excimer laser, N2 laser, or YAG laser or its second harmonic is used. The oscillation wavelength may also be changed by using f, t', etc. In this case, the amount of change in the oscillation wavelength is increased to maintain a constant effective exposure amount depending on the difference in spectral sensitivity of photosensitive materials such as photoresists.

例えば第3図は日立化成(株)製の商品名RD200O
Nというフォトレジストの分光感度曲線である。一般に
フォトレジストの波長による感度変化は前述のインジェ
クションロッキングタイプのエキシマレーザ−の発振出
力の波長による変化に比べて非常に緩やかである。この
為色素レーザー全使用する場合はレーザーの発振波長を
感光性材料の分光感度分布に相当する程度に大きく変化
させて実効露光量を一定に維持させるようにする。
For example, Figure 3 shows the product name RD200O manufactured by Hitachi Chemical Co., Ltd.
This is a spectral sensitivity curve of a photoresist named N. In general, the sensitivity change of a photoresist due to wavelength is much gentler than the change due to wavelength of the oscillation output of the injection locking type excimer laser mentioned above. For this reason, when all dye lasers are used, the oscillation wavelength of the laser is changed greatly to an extent corresponding to the spectral sensitivity distribution of the photosensitive material, so that the effective exposure amount is maintained constant.

以上のように本発明によれば光源の出力エネルギーの波
長依存性や感光性材料の感度の波長依存性を利用し、光
源からの発振波長を変化させることにより感光性材料へ
の露光量が所定値になるように制御し次層光量制御装置
ifk達成することができる。
As described above, according to the present invention, by utilizing the wavelength dependence of the output energy of the light source and the wavelength dependence of the sensitivity of the photosensitive material, the amount of exposure to the photosensitive material is determined by changing the oscillation wavelength from the light source. It is possible to achieve the next layer light amount control device ifk by controlling it so that the value is the same.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の概略図、第2図は本発明に
系るエキシマレーザ−の波長による発ム効率の説明図、
第3図は感光性材料としてのフォトレジストの分光感[
曲iである。 図中1はエキシマレーザ−12は波長可変機構、4は照
明光学系、6は被照射面、7Fi<ラー、8σ受光G、
9は積分回路、lOは比較回路及びマイクロプロセッサ
である。
FIG. 1 is a schematic diagram of an embodiment of the present invention, and FIG. 2 is an explanatory diagram of emission efficiency according to wavelength of an excimer laser according to the present invention.
Figure 3 shows the spectral sensitivity of photoresist as a photosensitive material [
It's song i. In the figure, 1 is an excimer laser, 12 is a wavelength variable mechanism, 4 is an illumination optical system, 6 is a surface to be irradiated, 7Fi<ra, 8σ light receiving G,
9 is an integrating circuit, lO is a comparison circuit and a microprocessor.

Claims (1)

【特許請求の範囲】[Claims] (1)発振波長が可変でしかも出力エネルギーが発振波
長により異なる光源から放射される光束により照明光学
系を介して感光性材料を露光する際、該露光光路中又は
該露光光路から分岐された光路中に受光手段を配置し、
前記受光手段からの出力信号を利用して前記感光性材料
への実効露光量が所定値となるように前記光源の発振波
長を変化させたことを特徴とする露光量制御装置。
(1) When exposing a photosensitive material through an illumination optical system with a light beam emitted from a light source whose oscillation wavelength is variable and whose output energy differs depending on the oscillation wavelength, an optical path in the exposure optical path or branched from the exposure optical path A light receiving means is placed inside,
An exposure amount control device characterized in that the oscillation wavelength of the light source is changed using an output signal from the light receiving means so that the effective amount of exposure to the photosensitive material becomes a predetermined value.
JP59233583A 1984-11-06 1984-11-06 Exposure amount controller Pending JPS61111529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59233583A JPS61111529A (en) 1984-11-06 1984-11-06 Exposure amount controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59233583A JPS61111529A (en) 1984-11-06 1984-11-06 Exposure amount controller

Publications (1)

Publication Number Publication Date
JPS61111529A true JPS61111529A (en) 1986-05-29

Family

ID=16957340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59233583A Pending JPS61111529A (en) 1984-11-06 1984-11-06 Exposure amount controller

Country Status (1)

Country Link
JP (1) JPS61111529A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62176129A (en) * 1986-01-29 1987-08-01 Canon Inc Exposure apparatus
JPS63151022A (en) * 1986-12-16 1988-06-23 Matsushita Electric Ind Co Ltd Method for improving resistance of resist pattern

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62176129A (en) * 1986-01-29 1987-08-01 Canon Inc Exposure apparatus
JPH0546694B2 (en) * 1986-01-29 1993-07-14 Canon Kk
JPS63151022A (en) * 1986-12-16 1988-06-23 Matsushita Electric Ind Co Ltd Method for improving resistance of resist pattern

Similar Documents

Publication Publication Date Title
US20230152707A1 (en) Forming multiple aerial images in a single lithography exposure pass
US4881231A (en) Frequency-stabilized line-narrowed excimer laser source system for high resolution lithography
US6128030A (en) Semiconductor exposure device
CA1173889A (en) High resolution optical lithography method and apparatus having excimer laser light source and stimulated raman shifting
US11467502B2 (en) Wavelength control method of laser apparatus and electronic device manufacturing method
US4922290A (en) Semiconductor exposing system having apparatus for correcting change in wavelength of light source
JP3325350B2 (en) Laser exposure apparatus and semiconductor device manufacturing method
JPH03276782A (en) Pulse light source
US4968868A (en) Projection exposure system
JPS61111529A (en) Exposure amount controller
JPH10270330A (en) Method and device for forming pattern
US5706076A (en) Semiconductor light exposure apparatus
JPH01119020A (en) Aligner
JP2526983B2 (en) Exposure equipment
JPS61154128A (en) Exposure unit
Jain Advances in excimer laser lithography
JPS62187815A (en) Light quantity controller
Kahlert et al. Comparison of 248-nm line narrowing resonator optics for deep-UV lithography lasers
JP3301412B2 (en) Exposure equipment
JPH0243785A (en) Wavelength variable laser device
JPS60162258A (en) Exposure device
JPH03132012A (en) Semiconductor aligner
JPS60257519A (en) Printer
CN116491034A (en) Multifocal imaging with increased wavelength separation
JPS61111530A (en) Exposure device