JPS6075704A - Thermal generating system - Google Patents

Thermal generating system

Info

Publication number
JPS6075704A
JPS6075704A JP18359783A JP18359783A JPS6075704A JP S6075704 A JPS6075704 A JP S6075704A JP 18359783 A JP18359783 A JP 18359783A JP 18359783 A JP18359783 A JP 18359783A JP S6075704 A JPS6075704 A JP S6075704A
Authority
JP
Japan
Prior art keywords
turbine
gas
condenser
flow rate
heat medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18359783A
Other languages
Japanese (ja)
Inventor
Junji Yamamoto
順二 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hokushin Electric Corp filed Critical Yokogawa Hokushin Electric Corp
Priority to JP18359783A priority Critical patent/JPS6075704A/en
Publication of JPS6075704A publication Critical patent/JPS6075704A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/04Plants characterised by condensers arranged or modified to co-operate with the engines with dump valves to by-pass stages

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To suppress fluctuation of pressure within a condenser by giving fluctuation of flow rate of ultra-cold liquid gas as a feed forward signal to an adjusting-meter of a flow rate of heat medium vaporized gas which enters the condenser through direct bypass from a gas vaporizer for heat medium. CONSTITUTION:The captioned system has a gas vaporizer 1 in which liquid gas for heat medium, for example, LPG is vaporized by sea water, and a condenser 2 in which used heat medium vaporized gas coming out of a turbine TB1 is cooled and liquidized by ultra-cold liquid gas, for example, LNG. In this case, an adjusting-meter C1 which adjusts a turbine bypass valve V3 that introduces a part of the heat medium vaporized gas directly to the condenser 2 without introducing it to the turbine TB1 is provided. And by this adjusting-meter C1, the bypass valve V3 is controlled by a feed-forward signal obtained based on a detected pressure in the condenser 2 by a pressure detector 11, the most suitable set value by a function generator 12, and fluctuation of flow rate at an LNG entrance portion by an LNG flow rate detector 13.

Description

【発明の詳細な説明】 し発明のl1ilづる技術分野] 本発明(ま、熱媒体用液化ガスの循環作用を用いた冷熱
光゛山シスツムに関する。更に詳しくは超低温液化カス
の流量変動を、熱媒体用ガスヘーバライザから該コンデ
ンサに直1名バイパスして入る熱媒体気化カス流用を調
節する調節t1にフイードフAワード信号として与え、
コンチン1)内の圧力変動を最小限に抑えて制御性を向
1−さけた冷熱発電システムに関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a cryo-thermal light mountain system using a circulating action of liquefied gas for a heating medium. Applying as a feed A word signal to the adjustment t1 that adjusts the flow of heat medium vaporized waste directly bypassing from the medium gas hebalizer to the condenser;
This invention relates to a cold power generation system that improves controllability by minimizing pressure fluctuations in a continuum.

[従来技術] 熱媒(本用液化ガスが気化づるときの圧力を利用してカ
スタービンを回し発電させる所謂冷熱発電システムが近
年脚光を浴びている。第1図はその従来システムの例を
示り゛構成図である。図に43いて、1は熱媒体用液化
ガスをその中てtl+j水を通すことにより気化させる
熱媒体用カスヘーバライザ(以下単にカスヘーバライリ
゛という)で該ガスベーパライザ中には海水の通る配憶
が張りめぐらされており、熱交換を行うようになってい
る。2は主としく゛タービンの回転に用いIうれた使用
済熱媒体気化カスをその中で・超低温液化カスを通りこ
とにより再び液化する熱媒体用カスコンデンサ(以下単
にコンチン1)という)Cある。該コンデンリ内には使
用肖カスを液化覆るため、超低温液化ガスの配管が張り
めぐらされCいる。ここで、熱媒体用ガスとしては、例
えば、1−PG(プロパンガス)か、超低温液化ガスと
しCは例えばLNGが用いられる。3は熱媒体用ガス刀
スを循環づるlζめのポンプ、4は一1ンデン+J2で
使用された超(1−CiMa ’d’l化カス(以下!
71にLNGという)を海水に通しC加温する1次加温
器、5は該1次加温器を通過しノこ1.、 N Gを史
に加温覆る2次加湿器である。
[Prior Art] In recent years, a so-called cold energy power generation system that uses the pressure of a heating medium (liquefied gas) to turn a cast turbine and generate electricity has been in the spotlight. Figure 1 shows an example of this conventional system. This is a configuration diagram. In the figure, reference numeral 43 denotes a heat medium liquefied gas vaporizer (hereinafter simply referred to as a casseverary) that vaporizes a heat medium liquefied gas by passing tl+j water through it, and the gas vaporizer includes: The system is equipped with a system through which seawater can pass, allowing heat exchange to take place. 2 is mainly used to transport the vaporized waste of the spent heat medium used to rotate the turbine and the ultra-low-temperature liquefied waste. There is a heat medium waste capacitor (hereinafter simply referred to as "Contin 1") C that liquefies again when passing through it. Inside the condenser, ultra-low temperature liquefied gas piping is installed to liquefy the used waste. Here, as the heating medium gas, for example, 1-PG (propane gas) or an ultra-low temperature liquefied gas, such as LNG, is used as C. 3 is the 1ζ pump that circulates the heating medium gas, and 4 is the 1-CiMa 'd'l scum (below!
71 is a primary warmer that heats seawater (LNG) by passing it through the primary warmer; This is a secondary humidifier that heats the NG.

このようにして加湿され気化されたL N G tJ完
全にガス化し、Ii INから需要家に供給される。T
2Cは気化()た熱媒体用ガス〈以1=単にLPGと略
!I)で回転さゼられる第1のタービン、Ta2は気(
ヒした1、、 N Gの一部を用いて回転さけられる第
2のタービン(ある。V+i、l第1のターヒ゛ンTB
1を鴻断り−る遮断弁、V2f、iタービン1’ B 
+の入り1]部に取(Jられたタービンノズル、V31
;L気化L P Gのバイパス路に設(JられIζター
ビンバイパス弁、v4は気化L N Gの通路に設【〕
られたタービン疏遮断弁v5は第2のタービン千132
の入り口部に設けられたタービンノズル、■6は1.N
Gの入り口部に設(ブられた流山調節ノズル、v7は気
化LNGのバイパス路に設(′Jられlこタービンバイ
パス弁、V8はポンプバイパス弁である。図に示すター
ビンTB+ 、Ta2のうら光電作用は生として第1の
タービンTB+で行われ、Ta2は補助的なものである
。なお、LNG、IPGの流れの方向は図中に記入しで
ある。 このように構成された従来システムの動作を説
明1〕ればJ:l下の通りである。
The LNG tJ thus humidified and vaporized is completely gasified and supplied from Ii IN to consumers. T
2C is vaporized heating medium gas (abbreviated as LPG)! The first turbine, Ta2, is rotated by air (I).
The second turbine (V+i, l) which is rotated using a part of the heated 1,, N G
Shutoff valve that shuts off 1, V2f, i turbine 1'B
+ entry 1] section (Turbine nozzle, V31
; Installed in the bypass path of L gasification LPG (J and Iζ turbine bypass valve, v4 installed in the path of vaporization LNG)
The turbine canal isolation valve v5 is connected to the second turbine 132
The turbine nozzle, ■6, installed at the entrance of 1. N
V7 is a turbine bypass valve installed at the inlet of gas turbine G, V8 is a pump bypass valve, and V8 is a pump bypass valve. The photoelectric effect is performed in the first turbine TB+ as a raw material, and Ta2 is an auxiliary one.The flow directions of LNG and IPG are indicated in the figure. The operation is explained below.

本システムは一種のピー1−リイフ1\ンC・あっC1
しNG、LPGおよび海水の沸点の違いを利用して、L
PGは系内を循環し、L N Gは気化されて製品とな
って送出される。運Φhの形態としては、TRIEX(
)−ライエックス)といわれる第1のモードとPOWE
REX (パ1フレックス)といわれる第2のモードが
ある。第1の七−1〜は発電は行わないでカス退出のみ
行なう。即ち、流m調節ノズルv6で流■ゴ1ントa−
ルされたLNGは一コンデンサ2内を通過づることにJ
、り該コンデンリ内のり、 P G (ゾ1]パンカス
)を液化し同時にLNG自身ら加温される。その後、L
、NGは1次加温器4.2次加温器5によつCJJ11
 !品昇圧(iFj水にJ、−)(加温されるのでLN
Gは気化し仕方が上がる)され系から送り出され需要家
に供給される。このとさ、タービン入り1]の臨断弁v
4は全111で゛ある。
This system is a kind of
L
PG circulates within the system, and LNG is vaporized and sent out as a product. As a form of luck Φh, TRIEX (
) - RYEX) and POWE
There is a second mode called REX (Pa1 Flex). The first 7-1 to 7-1 do not generate electricity but only discharge waste. That is, the flow m adjustment nozzle v6 adjusts the flow
The LNG that has been released will pass through one condenser 2.
At the same time, the LNG itself is heated. After that, L
, NG is based on primary warmer 4.secondary warmer 5 CJJ11
! Product pressure increase (iFj J, -) (LN because it is heated
G is vaporized and sent out from the system to be supplied to consumers. In this case, the critical valve with turbine 1]
4 has a total of 111.

系内のING圧力はタービンバイパス弁V7によって一
定に一]ンI・ロールされる。コンデンサ2内Cdシ化
された1−PGはポンプバイパス弁Vsを経t /jス
ヘーパライザ1に入りその中を流れる海水にJ、っ(気
化される。気化されたプロパンカスIJタービンバイパ
ス弁v3を通って再びコンデンナ2に戻る。タービン丁
B1の入り口1部の遮断弁V、+1全開である。このと
き、ポンプ3は停止して、13す、II)Gは自然循環
している。+#J *+、I: 1.、 N G 。
The ING pressure in the system is constantly rolled by the turbine bypass valve V7. 1-PG, which has been converted into Cd in the condenser 2, passes through the pump bypass valve Vs and enters the shaparizer 1, and is vaporized by the seawater flowing inside it.The vaporized propane gas IJ passes through the turbine bypass valve v3. Then, it returns to the condenser 2 again.The shutoff valve V and +1 at the inlet of the turbine block B1 are fully open.At this time, the pump 3 is stopped and the pumps 13 and 12G are in natural circulation. +#J *+, I: 1. , N.G.

L P Gを加温し、気化りるために用いられる。It is used to heat LPG and vaporize it.

為′j2のL−Fは発電し一ドCある。即ち、このとき
(ま・1;ンプ3)が動作しタービンバイパス弁v3が
絞られ、丁Sンテンリ2の■−力はカスベーバライリ1
のそれに比較(7(づつと低くなる。叩らベーパライザ
1から」ンデ′ン4〕2に向う方向のJ1力は強まり、
コンデンサ2からベーパライザ1に向う圧ツノは弱まる
。従って、循環用ポンプ3が必要になる。コンデシリ2
内のブ[1パンはL N Gとの熱交換によって凝縮し
続(〕ているから、タービンバイパス弁■3の絞り具合
でコンデンサ?のIF力を]ン1〜r]−ルづることが
てさる。ポンプバイパス弁v8は全閉になってJ3す、
この状態を減圧運転という。ここて、タービン−rL3
+、l’B2の入り口遮断弁V1.V4を開にづれLr
 /\−ハライスされたカスがそれぞれのタービンにD
速に流入し発電状態になる。このような減圧運転状態時
にJjいては、タービンバイパス弁V3を制御りる調1
Ii5 it〈図示ぜず)はタービンバイパス弁V3を
制御Jることによってコンデンサ−2のノ11パン月力
を:Iントロールしているが、この−1ン1〜I]−ル
にとってL N G流量の変動(,1人さな外乱となる
。即ち、L N G 71L Wk ヲ増加a−tiレ
バ:] ンj−ン4t 2 内0) フ+−+パン凝縮
速度が上がり圧力は低−トする。逆にLNG流邑を減少
させれば凝縮速痘は下かりj1力は流人/11ハンにJ
、・)tJ4?づる。発電電力を安定させるため或いは
コンデンサ内の温度を下げすきl、zいため(11力が
低下りれば該コンデンサ内の圧力は低下し超低(Fjl
液化ガスの気化効率を下げることにつく−iがる)、−
1ンj−ン→ノ内の熱媒体用液化ガス圧力は光電運転中
一定に」ントロールされなければならない。一方、超低
温液化カス流mはカス使用量の変化という負伺変動に対
して自由に増減制御できな(りれぽ4Tら<rい。とこ
ろが、超低温液化カスの流量の増大は」ンデンリ内の熱
媒体用ガスの急速イ「凝縮を招き圧力効果を引きおこり
。逆に超低温液化力スイ+に早の減少(31熱媒体用ガ
スの凝縮速瓜を下げ、」ンデンザ内に流入してくる熱媒
体用ガスによる圧力」−シフにつながる。そのため、減
圧中のカス負IX:1変動、流用変更は」ンデン勺1王
力コン!へ1」−ルをJf fitに不安定ムbのにJ
る。ターじシバ、イパスブrV3の動きに対りる=1ン
テンサ圧力の応答は)イい、、伺故なら、バイパス弁を
閉としくし]1ンデン4ノ内ゾ[Jパンカスが超低温液
化カスに」、−)C凝縮づるのに時間を要する等、遅れ
要素があるため(゛ある。従って、1.f:力変切に大
きな影響をもつ超低温液化ガス流量変化4)(−ト)A
ワーi−りる必要がある。
Therefore, L-F of 'j2 generates electricity and there is one C. That is, at this time, (1; pump 3) operates, the turbine bypass valve v3 is throttled, and the
Compared to that of (7), the J1 force in the direction from the beaten vaporizer 1 to 2 becomes stronger,
The pressure horn from the capacitor 2 toward the vaporizer 1 weakens. Therefore, a circulation pump 3 is required. Condesiri 2
Since the inner tube continues to condense through heat exchange with LNG, the IF force of the condenser can be controlled by the throttle of the turbine bypass valve ■3. Pump bypass valve V8 is fully closed and J3 is closed.
This state is called reduced pressure operation. Here, turbine-rL3
+, l'B2 inlet isolation valve V1. Open V4 Lr
/\-The scraped residue is transferred to each turbine.
It flows in quickly and becomes a power generating state. During such a reduced pressure operating state, Jj is adjusted to control the turbine bypass valve V3.
Ii5 it (not shown) controls the power of the condenser 2 by controlling the turbine bypass valve V3; Fluctuations in the flow rate (a slight disturbance occurs. In other words, L N G 71 L Wk wo increases a-ti lever: ] N J- N 4t 2 0) The condensation speed increases and the pressure decreases. to On the other hand, if you reduce the LNG flow, the condensation speed will decrease and the power will be reduced to 11.
,・)tJ4? Zuru. In order to stabilize the generated power or to lower the temperature inside the capacitor (11), if the power decreases, the pressure inside the capacitor decreases and becomes extremely low (F
This will reduce the vaporization efficiency of liquefied gas.
The pressure of the liquefied gas for the heating medium inside the engine must be constantly controlled during photoelectric operation. On the other hand, the ultra-low temperature liquefied waste flow m cannot be freely controlled to increase or decrease in response to fluctuations caused by changes in the amount of waste used. The rapid condensation of the heating medium gas causes a pressure effect.On the contrary, the ultra-low temperature liquefaction power rapidly decreases (31 The condensation speed of the heating medium gas is lowered, and the heat flowing into the denza is reduced). The pressure caused by the medium gas leads to a shift. Therefore, during depressurization, the negative IX: 1 fluctuation, the diversion change causes the flow to become unstable in the Jf fit.
Ru. The response of the = 1 tensa pressure to the movement of the Tajshiba and Ipassburr V3 is yes, if so, close the bypass valve] 1 nden 4 no naizo '', -) C Because there is a delay factor such as the time required for condensation, there is (゛) Therefore, 1.
I need to work.

[発明の目的] 本発明はこのような点に鑑みCなされi=ものτあつU
、LNG流量の変動を前記バイパス路のLPG流量を調
節りるLPG流■調節系を構成覆る調節h1にフィード
フォワード信号として与えてやることにより制御性を向
上さけ前記不具合を無くした冷熱発電システムを実現し
たものである。
[Object of the invention] The present invention has been made in view of the above points, and i=thing τ
, by giving the fluctuations in the LNG flow rate as a feedforward signal to the adjustment h1 that constitutes the LPG flow adjustment system that adjusts the LPG flow rate in the bypass path, controllability is improved and a cold heat power generation system that eliminates the above-mentioned problems is realized. This has been achieved.

以下、図面を参照し−C本発明をミ1゛柵に説明づる。Hereinafter, the present invention will be explained in detail with reference to the drawings.

[発明の構成] 第2図は本発明の一実施例を示′8I構成図C゛ある。[Structure of the invention] FIG. 2 shows an embodiment of the present invention and is a block diagram C.

第1図と同一のbのは同一の番号をf」して示J0図に
a3いて、C1はバイパス路の気化IPG流量を制御づ
る第1の調節泪、11は二1ンデンリー2内の圧力を検
出する1]−υ検出器で、該圧力検出器の出力が測定値
PVどして該第1の調節δ1に与えられる。12は該第
1の調節計に減圧時或いは背L「時における最適設定値
を与える関数発生器である。
The same numbers as in Fig. 1 are indicated by "f" in Fig. J0. 1]-υ detector, the output of the pressure detector is applied as a measured value PV to the first adjustment δ1. Reference numeral 12 denotes a function generator that provides the first controller with an optimum set value at the time of depressurization or at the time of low pressure.

13はL N G入り口部に設(JI3れた1、、 N
 G流用を検出りる流量検出器、’I /I i;i該
検出器出)jを表示りる指示h1で該指示計を通過した
流量13号は前記第1の調It) if’ C+にフィ
ードフォワード信号としく+、λられCいる。C2はタ
ービンTB+に流入づる気化LPGの流量を調節する第
2の調節a1でその出力によりタービンノズルV2が駆
動される。
13 is installed at the LNG entrance (JI3 1,, N
A flow rate detector that detects G diversion, 'I /I i; As a feedforward signal, + and λ are applied to C. C2 is a second adjustment a1 that adjusts the flow rate of vaporized LPG flowing into the turbine TB+, and its output drives the turbine nozzle V2.

本発明の要旨t、;U L N G入り口部の流量変化
をLPGのバイパス流量を調節りる第1の調節81C4
にノt−1−ノA「ノードをかLJkことぐある。この
よ’J L: ti’+成さ1+ 7.71へ置の動作
を説明りれば、以下の通りC′ある。
Summary of the present invention: First adjustment 81C4 for adjusting the bypass flow rate of LPG by changing the flow rate at the U L N G inlet.
There is a saying that ``node t-1-noA'' is called ``LJk''. This way 'J L: ti' + formation 1 + 7.71 If we explain the operation of placing the node, we have C' as follows.

先・ノ゛フィー1〜ノ、11ノートをか1ノない場合の
動作(一ついて1.)ト明づる1、この状態では第1の
調節glC+ fil、タービンバイパス弁rV3を制
御CI′ることによつ(]コンデンサのプロパンハ:カ
を」ン(ヘロールしCいるが、この1ント目−ルに対し
てLNG流単の変動は人さく2外乱となる。即ち、LN
G流量を増加さUれば=1ンデン4J2内のプロパン凝
縮濃度が上がり11力は低−1−づる。一方、LNG流
量を減少させれば凝縮濃度は下がり圧力は流入fa」バ
The operation when there is no note 1 to 11 (1) is clear. 1. In this state, the first adjustment glC+ fil and the control CI' of the turbine bypass valve rV3 are performed. However, for this first point, fluctuations in the LNG flow rate will result in two disturbances. That is, LN
If the G flow rate is increased, the propane condensation concentration in 4J2 will increase, and the 11 force will become lower. On the other hand, if the LNG flow rate is reduced, the condensate concentration will decrease and the pressure will decrease.

ンのために上昇づ゛る。It keeps rising for the sake of the song.

次にLPGガスコンデンリ2内のルカコント[l−ルに
ついて述べる。減圧運転中にり、 N G流量を増けば
、コンデンサ2にお1)るL’PG(71)凝縮が進み
、圧力は低下傾向をたどり、l N G F& fli
を減ずればガスベーパライザ1のカス流入にJ、つ゛C
コンデンリー2の圧力は上昇傾向をたどる。従つ−C、
タービンバイパス弁rV3にJ、る]]ンデンリー圧力
コン1−ローにLNG流量をフィー1〜ノAワードゴる
ことはfゴ効1: ilりる。
Next, the control in the LPG gas condenser 2 will be described. During depressurization operation, if the N G flow rate is increased, condensation of L'PG (71) in the condenser 2 progresses, and the pressure follows a downward trend, resulting in l N G F & fli
If you reduce the amount of waste flowing into the gas vaporizer 1, J and C will be reduced.
Condenry 2 pressure follows an upward trend. Follow-C,
It is effective to control the LNG flow rate to the turbine bypass valve rV3.

本発明によ1+ば、1.NG流量が一定であればタービ
ンバイパス弁V3は=1ンブン(月十力変動に対して二
1ントD−/しされる。ING活t fflか変1力づ
れば、フイードフAワー1−ゴこ号によってづ+、K 
15<タービンバイパス弁v3をコン1〜ロールし、コ
ンデンサ2の圧力変動を抑えることがCきる。一般に、
コンデンサ11力というII’i +fJのみ(・は=
1ン1〜1−1−ルループの存在づる大きな無駄時間の
ために、圧力コンl−0−ルが難しい。しかし41がら
、主lJろ9ト乱C(ちるl−、、N Gの流用変動信
号を用いてフィート)Aワード」ントD−ルを行うこと
によって、−1ンjンリ−2内の圧力変動を速1bかに
安定させることができる。ト述の説明C(,1熱媒体用
液化カスとしC+−、i〕cを、超低温dシ化カスどし
てl−N Gの場合を例にとったが、これに限る必要は
なく他の種jQ O)液化カスであっ一ζ−しかまわな
い。
According to the present invention, if 1+, 1. If the NG flow rate is constant, the turbine bypass valve V3 will be set to = 1 nbun (21 nt D-/ for monthly fluctuations). Depending on the number +, K
15<Turbine bypass valve v3 can be controlled from 1 to 1 to suppress pressure fluctuations in condenser 2. in general,
Only II'i +fJ (・ha=
Pressure control is difficult due to the large dead time due to the presence of the 1-1 to 1-1 loop. However, by performing the main 1J filter 9t disturbance C (feet) using the diversion fluctuation signal of 41, the pressure in 2 Fluctuations can be stabilized to speed 1b. The explanation above is based on the case where C is used as an example of liquefied waste for heat medium and l-NG is used as ultra-low temperature d liquefied waste. The species jQ O) The liquefied scum is only one ζ-.

[発明の効果] 1メ」ニ詳細に説明したように、本発明によれはL14
G(ん111の変動をIPG流吊流量li系を構成Jる
調DOl:ilにノイードフAワード信号とし−C5え
て15るごとにJ、すn1ll 1jll 4’lを向
上さけた冷熱発電システムを大IJ、jりることが−C
きる。
[Effects of the Invention] As explained in detail in step 1, the present invention provides L14
G (111 fluctuations constitute the IPG flow hanging flow li system J DOl:il as a node A word signal -C5 and every 15 times J, Sun1ll 1jll 4'l Dai IJ, j rikotoga-C
Wear.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図IJ促来シスjムの一例を示づ図、a)2図(よ
本発明の一実施例を承り−41へ成ド1である。 1・・・熱媒体用カスl\−バライリ、2・・・熱媒体
用11ス−1ン−Iンリ−13・・・循環、+iン/゛
、4,5・・・加温器、11・・・1力検出器、12・
・・関数発11器、13・・流が検出器、′14・・・
指示lit、C1,C2・・・調節ノズル、V3.V6
・・・流量調節ノズル、V7・・・タービンバイパス弁
、v6・・・ボンゾバイパス弁。
Fig. 1 shows an example of an IJ promotion system, a) Fig. 2 (according to an embodiment of the present invention) - 41 to form 1. 1... Heat medium waste l\- Validity, 2...Heat medium 11-1-1-13...Circulation, +in/゛, 4,5...Warmer, 11...1 Force detector, 12...
...Function generator 11, 13...Flow is the detector, '14...
Instruction lit, C1, C2...adjustment nozzle, V3. V6
...Flow rate adjustment nozzle, V7...Turbine bypass valve, V6...Bonzo bypass valve.

Claims (1)

【特許請求の範囲】[Claims] 熱媒体用液化カスを海水で加熱しC気化し、そのとき発
生(る気化カスの圧力でタービンを回転さU光電さける
とともに、そのときの使用済カス(よ超(LK rQ液
液化スス通して再び熱媒体液化ガスiJ戻り−J、うに
構成された冷熱発電システムにおいて、熱媒体気化カス
の一部をタービンに通づこと’J <直接熱媒体用ガス
ニ]ンデンリ゛に接続1ノーるバイパスを89 +、t
 、熱媒体用カス」ンデン4ノの圧力変動を検知し−C
該バ、イパスを流れる気化ガス流mを調節づる流a K
f4 no alに超低温液化ガス流量の変動をフィー
トフAワード信号とし−C与えるJ:うにしたことを特
徴とする冷熱発電システム。
The liquefied waste for heating medium is heated with seawater and vaporized, and the pressure of the vaporized waste generated at that time rotates the turbine. In the cold power generation system configured as above, a part of the vaporized heat medium residue is passed through the turbine. 89 +, t
, detects the pressure fluctuation of the heating medium cassette 4-C
A flow a K that adjusts the vaporized gas flow m flowing through the path.
A cryogenic power generation system characterized in that a fluctuation in the flow rate of ultra-low temperature liquefied gas is used as a foot forward signal to give -C to f4 no al.
JP18359783A 1983-09-30 1983-09-30 Thermal generating system Pending JPS6075704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18359783A JPS6075704A (en) 1983-09-30 1983-09-30 Thermal generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18359783A JPS6075704A (en) 1983-09-30 1983-09-30 Thermal generating system

Publications (1)

Publication Number Publication Date
JPS6075704A true JPS6075704A (en) 1985-04-30

Family

ID=16138595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18359783A Pending JPS6075704A (en) 1983-09-30 1983-09-30 Thermal generating system

Country Status (1)

Country Link
JP (1) JPS6075704A (en)

Similar Documents

Publication Publication Date Title
KR100400123B1 (en) Combined cycle with steam cooling gas turbine
KR101813741B1 (en) Waste heat steam generator
JP2006233796A (en) Lng utilizing power generation plant and its operation method
CN103620303B (en) For running the method for direct-fired sun hot type steam generator
US3019774A (en) Once-through vapor generator
JPS59188005A (en) Power plant using refrigeration of liquefied natural gas
JPH0933005A (en) Water feeding device for waste heat recovery boiler
JPS6075704A (en) Thermal generating system
JPS5925853B2 (en) Power plant operation control method and device for implementing this method
JPH05222906A (en) Controller for power plant utilizing exhaust heat
JPS59221410A (en) Starting method of combined plant
JPH0529013A (en) Fuel cell power generation system
JPS5922043B2 (en) Cold energy power generation plant
JPS6214041B2 (en)
JPS58217709A (en) Composite cycle power generating plant
JPS59138705A (en) Controller for temperature of supplied water
JPS5932606A (en) Cold heat power generating plant
JPH0861012A (en) Evaporation amount control device for exhaust gas boiler
JPH03242429A (en) Gas turbine plant
JPS5829359Y2 (en) Concentration prevention device in liquefied natural gas vaporizer
JPS6160243B2 (en)
JPH0440527B2 (en)
JPS63194110A (en) Once-through boiler
JPS5951112A (en) Lng heat utilized generating set
JPS58135308A (en) Cold temperature power plant