JPS59188005A - Power plant using refrigeration of liquefied natural gas - Google Patents

Power plant using refrigeration of liquefied natural gas

Info

Publication number
JPS59188005A
JPS59188005A JP6062184A JP6062184A JPS59188005A JP S59188005 A JPS59188005 A JP S59188005A JP 6062184 A JP6062184 A JP 6062184A JP 6062184 A JP6062184 A JP 6062184A JP S59188005 A JPS59188005 A JP S59188005A
Authority
JP
Japan
Prior art keywords
natural gas
lng
expansion turbine
liquefied natural
liquefied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6062184A
Other languages
Japanese (ja)
Other versions
JPS6125889B2 (en
Inventor
Yoshio Okabayashi
岡林 芳夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6062184A priority Critical patent/JPS59188005A/en
Publication of JPS59188005A publication Critical patent/JPS59188005A/en
Publication of JPS6125889B2 publication Critical patent/JPS6125889B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether

Abstract

PURPOSE:To increase the circulating amount of re-liquefied LNG and the amount of power-generation by storing the natural gas re-liquefied by a re- liquefying device from an expansion turbine one in a receiver tank for circulating the liquefied gas inside the tank to the expansion turbine via a carburetter. CONSTITUTION:The LNG pressurized by a pump 2 is sent to a re-liquefying device 4 for re-liquefying the expanded natural gas from a duct 5 via an expansion turbine 13. In this construction, the LNG with raised temperature is supplied to the expansion turbine 13 via a carburetter 11 to make a job, and then, it is sent to an expansion turbine 17 via a heater 15 to rotate both turbines 13 and 17 to drive a generator 20. The LNG re-liquefied by a re-liquefying device 4 is introduced to a receiver tank 21, and the LNG inside the tank 21 is pressurized by a ciculation pump 8 and supplied to the carburetter 11. The liquid level of the LNG inside the tank 21 is kept constant by controlling an automatic valve 22 in accordance with the output of a liquid level adjusting unit 23.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は液化天然ガス冷熱利用発電設備tこ係り、特に
海水等の熱源を使用して液化天然ガス(以下LNGと略
す。)を気化し、膨張タービンで膨張させた天然ガスの
一部を上記L%Gで冷却して再液化させ、ポンプで昇圧
後再び上記LAGとともtこ海水等の熱源で気化し、上
記膨張タービンに循環させるようtこする再生サイクル
を備えた液化天然ガス冷熱利用発電設備の改良に関する
ものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a liquefied natural gas cold energy power generation facility, in particular, vaporizing liquefied natural gas (hereinafter abbreviated as LNG) using a heat source such as seawater, A part of the natural gas expanded by the expansion turbine is cooled and reliquefied by the above L%G, and after increasing the pressure by a pump, it is vaporized again with the above LAG and a heat source such as seawater, and then circulated to the above expansion turbine. This invention relates to the improvement of liquefied natural gas cold energy power generation equipment equipped with a t-scraping regeneration cycle.

〔発明の背景〕[Background of the invention]

従来、LNGの冷熱を利用した発電設備eこLNGの直
接膨張方式eこよるものがある。この方式の発電設備は
、LNGをポンプで昇圧し、気化器で海水等の熱源を使
用して気化したものを膨張タービン、加熱器、膨張ター
ビン、加熱器の順tこ流し、この繰り返し冷熱を利用し
て発電しながら、LNGを気化供給するようにしである
。しかし、この方式eこよれば、設備は簡単であるが、
冷熱利用による発電量が比較的少ないので、発電量を多
くするため、膨張タービンで膨張させた天然ガスの一部
をLNGで冷却して再液化させ、ポンプで昇圧後再び他
のLNGと一緒?こして海水等の熱源で気化させ、上記
膨張ターピン?こ循環させるようかこしたものが提案さ
れている。このh式Pこすれば、再液化および再気化さ
せる循環LNGの社が膨張タービンの装置増加をもたら
し、発電量を増加することができる。
Conventionally, there are power generation facilities that utilize the cold energy of LNG, and those that use LNG's direct expansion method. This type of power generation equipment boosts the pressure of LNG with a pump, vaporizes it in a vaporizer using a heat source such as seawater, and flows it through an expansion turbine, a heater, an expansion turbine, and a heater in this order, and repeatedly generates cold heat. The idea is to vaporize and supply LNG while using it to generate electricity. However, according to this method, although the equipment is simple,
Since the amount of power generated through the use of cold energy is relatively small, in order to increase the amount of power generated, some of the natural gas expanded in an expansion turbine is cooled with LNG and reliquefied, and after being pressurized with a pump, it is mixed with other LNG again? Strain it, vaporize it with a heat source such as seawater, and use the expanded turpin? Some ideas have been proposed to make this circulation more efficient. By using this type P, the company that reliquefies and revaporizes circulating LNG can increase the number of expansion turbines and increase the amount of power generation.

第1図は一般的なこの種再生サイクルを備えたLNG冷
熱利用発電設備の系統図である。第1図において、LN
Gは導管1よりLN’Gポンプ2で所定の圧力まで昇圧
され、導管3より再液化器4rこ入る。ここで導管5よ
りの天然ガスを再液化させ、そnvこより温度上昇した
LNGは、導管6より送り出される。再液化器4で再液
化したLNGは、導管7を通り、循環ポンプ8で昇圧さ
れて、自動弁9.導管10を経て導管6からのLNGに
仲流し、その後LNG気化器】1トこ入り、ここで海水
等の熱源1こより気化し、導管12を経て膨張ターヒレ
1310入り、ここで膨張した天然ガスは導管14より
天然ガス加熱器15に入り、海水等の熱源tこより昇温
されて導管】6を経て膨張タービン1.7 C入り、そ
の後天然ガス加熱器181こ入り、ここで常温まで昇温
した天然ガスは、導管】9より次段の機器1こ供給され
る。膨張タービン13で膨張した天然ガスの一部は、導
管5を経て上記したようtこ再液化器4に入り、再液化
して導管6からのLNGと一緒)こLNG気化器11に
入り、以下この循環を繰り返す。なお、膨張タービン1
3.17は発電機20rこ連結してあり、膨張タービン
13.17の回転は電力として回収される。
FIG. 1 is a system diagram of an LNG cold energy power generation facility equipped with a general regeneration cycle of this type. In Figure 1, LN
G is pressurized from a conduit 1 to a predetermined pressure by an LN'G pump 2, and then enters a reliquefier 4r from a conduit 3. Here, the natural gas from the conduit 5 is reliquefied, and the LNG whose temperature has increased is sent out from the conduit 6. The LNG reliquefied in the reliquefier 4 passes through a conduit 7, is pressurized by a circulation pump 8, and then passes through an automatic valve 9. It passes through the conduit 10 to the LNG from the conduit 6, and then enters the LNG vaporizer, where it is vaporized from a heat source such as seawater, and enters the expansion tank 1310 through the conduit 12, where the expanded natural gas is It enters a natural gas heater 15 from a conduit 14, is heated by a heat source such as seawater, passes through a conduit 6, enters an expansion turbine 1.7 C, and then enters a natural gas heater 181, where it is heated to room temperature. Natural gas is supplied to the next stage of equipment from conduit 9. A portion of the natural gas expanded in the expansion turbine 13 enters the reliquefier 4 as described above via conduit 5, is reliquefied and enters the LNG vaporizer 11 (along with the LNG from conduit 6), and is then Repeat this cycle. Note that the expansion turbine 1
3.17 is connected to a generator 20r, and the rotation of the expansion turbine 13.17 is recovered as electric power.

このような再生サイクルeこおいては、循環ポンプ8の
安全運転の面から、種々の運転条件や制御系応答性を考
鳳して再液化器4での再液化温度が過冷却状態Vこなる
ような制御か法を採用するようVこしている。例えば、
第1図tこ示す如く、再液化器4を出たLNGの循環ポ
ンプ80入口導管7での温度が所定の過冷却温度Vこな
るようeこ、循環ポンプ流量を自動弁9で制御している
。ところで、循環ポンプ8の安全性を考えれば、過冷却
温度を高くするのが好ましいが、このようにすると、再
液化器4の交換熱量が一定であるとすれば、過冷却温度
を高くするrこは、単位流置当りの再液化熟成を大きく
しなければならないので、再液化器(循環量)を減少し
なければならない。こnvこともないタービン風徴が減
少し、発電量が減少することtこなる。このことから循
環ポンプ8を安全にし、かつ、循ff1lをいかtこ多
くするかが再生サイクルの特徴を生かすポイントとなる
。しかし、第1図1こ示す従来のLNG冷熱利用発電設
備ではそれを充分満足する構成となっておらず、その改
善が望まれている。
In such a regeneration cycle e, from the viewpoint of safe operation of the circulation pump 8, the reliquefaction temperature in the reliquefier 4 is set to a supercooled state V, taking into consideration various operating conditions and control system responsiveness. I am trying to adopt a control method that will make it possible. for example,
As shown in Figure 1, the flow rate of the circulation pump is controlled by an automatic valve 9 so that the temperature of the LNG leaving the reliquefier 4 at the inlet conduit 7 of the circulation pump 80 reaches a predetermined supercooling temperature V. There is. By the way, considering the safety of the circulation pump 8, it is preferable to raise the supercooling temperature, but in this case, if the amount of heat exchanged by the reliquefaction device 4 is constant, increasing the supercooling temperature r In this case, the reliquefaction and ripening per unit flow must be increased, so the number of reliquefiers (circulation amount) must be reduced. This also reduces the turbine wind characteristics and reduces the amount of power generated. From this, the key to making the most of the features of the regeneration cycle is to make the circulation pump 8 safe and to increase the amount of circulation ff1l. However, the conventional LNG cold energy power generation equipment shown in FIG. 1 does not have a configuration that fully satisfies this requirement, and an improvement is desired.

〔発明の目的〕[Purpose of the invention]

本発明は上記νこ鑑みてなされたもので、その目的とす
るところは、再液化温度を飽和点付近の温度としても安
全した運転を行うことができ、それ?こともない再液化
天然ガスの循環量を多くすることができ、発電はを増大
することができる液化天然ガス冷熱利用ff型設備を提
供することにある。
The present invention has been made in view of the above ν, and its purpose is to enable safe operation even when the reliquefaction temperature is near the saturation point. The object of the present invention is to provide an FF-type facility for utilizing liquefied natural gas cold energy, which can increase the circulation amount of reliquefied natural gas and increase power generation.

〔発明の概要〕[Summary of the invention]

本発明は、再液化器で再液化された膨張タービンからの
天然ガスを一巨しシーバタンクtこため、このレシーバ
タンク内の液化天然ガスの液面を一定ンこ保持した状態
で上記レシーバタンク内(7) 液化天然ガスを循環ポ
ンプを用いて、供給された液化天然ガスと上記再液化天
然ガスとを気化させる気化器を経て上記膨張タービンt
こ循環させるようVこしたものである。
In the present invention, natural gas from an expansion turbine that has been reliquefied in a reliquefaction device is stored in a receiver tank t, and the liquid level of the liquefied natural gas in the receiver tank is maintained at a certain level. (7) Using a circulation pump, the liquefied natural gas passes through a vaporizer that vaporizes the supplied liquefied natural gas and the re-liquefied natural gas, and then passes through the expansion turbine t.
It is V-shaped to ensure circulation.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を第2図に示した実施例を用いて詳細に説明
する。
The present invention will be explained in detail below using the embodiment shown in FIG.

第2図は本発明の発電設備の一実施例を示す系統図で、
第1図と同一部分は同じ符号で示し、ここでは説明を省
略する。第2図においては、再液化器4vこて再液化さ
ルたLNGを導管7よりレシーバタンク21に導き、レ
シーバタンク21内のLNGを循環ポンプ8で抜き出し
て昇圧し、この昇圧されたLNGをレシーバタンク2」
内のLNGの液面および流量Vこ応じて動作する自動弁
22゜導管10を介して導管6からのLNGと合流させ
てLNG気化器litこ送るようVこしである。
FIG. 2 is a system diagram showing an embodiment of the power generation equipment of the present invention.
Components that are the same as those in FIG. 1 are designated by the same reference numerals, and their explanation will be omitted here. In FIG. 2, LNG reliquefied by a reliquefaction device 4v trowel is led to a receiver tank 21 from a conduit 7, LNG in the receiver tank 21 is extracted by a circulation pump 8 and pressurized, and the pressurized LNG is Receiver tank 2"
An automatic valve 22° operates according to the liquid level and flow rate of LNG in the pipe 10, and the V strainer is connected to the LNG from the pipe 6 through the pipe 10 and sent to the LNG vaporizer.

ここで、レシーバタンク21内のLNGを飽和温度tこ
保持するなめ、液面調整器23を取り付は液面が変化し
た場合は、液面調整器23からの液面変化信号により液
面が所定値に戻るまで自動弁22を流量調節器24から
の信号1こよるよりも優先的tこ調節するようにしであ
る。したがって、循環ホンプ8の安全運転pこついては
、レシーバタンク21内のLNGが飽和状態rこあって
も液面が一定範囲内になるようtこ制御されるから、循
環ポンプ8より要求されるNPSHを満足するよう1こ
計画すれば、問題なく確保することができる。
Here, in order to maintain the LNG in the receiver tank 21 at a saturation temperature t, the liquid level regulator 23 is installed.If the liquid level changes, the liquid level will be adjusted by the liquid level change signal from the liquid level regulator 23. The automatic valve 22 is adjusted preferentially over the signal 1 from the flow regulator 24 until the predetermined value is returned. Therefore, when it comes to safe operation of the circulation pump 8, even if the LNG in the receiver tank 21 is saturated, the liquid level is controlled to be within a certain range. If you make a plan that satisfies the following, you can secure it without any problems.

要するtこ、第2図に示す実施例によれば、再液化する
LNG液化温度が飽和温度付近Vこなるような状態で運
転することができ、従来の場8Vこ比較して再液化’L
 N Gの循環量を増加して、膨張タービン13の風量
を増加し、発電量を増加することができる。
According to the embodiment shown in FIG. 2, it is possible to operate in a state where the LNG liquefaction temperature to be reliquefied is around the saturation temperature V, and the reliquefaction temperature is 8 V compared to the conventional case.
By increasing the circulation amount of NG, the air volume of the expansion turbine 13 can be increased, and the amount of power generation can be increased.

なお、第2図1こ示す実施例rこおいては、膨張タービ
ン13からの天然ガスの一部を再液化するよう1こしで
あるが、これを膨張タービン17からの天然ガスの一部
を再液化するようVこしてもよく、効果は同一である。
In the embodiment shown in FIG. 2, a part of the natural gas from the expansion turbine 13 is reliquefied, but a part of the natural gas from the expansion turbine 17 is It may also be V-strained to reliquefy and the effect is the same.

また、膨張タービンが13゜17の2台で、天然ガス加
熱器が15.18の2台となっているが、これはLNG
の昇圧圧力、天然ガスの送出温度、膨張タービンの型式
や特性等に応じて膨張タービンおよび加熱器の台数を変
えたものtこついても本発明を適用可能であり、同一の
効果がある。
In addition, there are two expansion turbines with a diameter of 13°17, and two natural gas heaters with a diameter of 15.18.
Even if the number of expansion turbines and heaters is changed depending on the boost pressure of the natural gas, the delivery temperature of the natural gas, the type and characteristics of the expansion turbine, etc., the present invention can be applied and the same effect can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したよう1こ、本発明eこよれば、再液化温度
を飽和点付近の温度としても安定した運転を行うことが
できるので、再液化LNGの循環量を多くすることがで
き、発電量を増大することができるという効果がある。
As explained above, according to the present invention, stable operation can be performed even when the reliquefaction temperature is near the saturation point, so the amount of reliquefied LNG circulated can be increased, and the amount of power generated can be increased. This has the effect of increasing the

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の液化天然ガス冷熱利用発電設備の系統図
、第2図は本発明の液化天然ガス冷熱利用発電設備の一
実施例を示す系統図である。 2・・・・・・LNGポンプ、4・・・・・・再液化器
、5,6゜7.10・・・・・・導管、8・・・・・・
循環ポンプ、11・・・・・・LNG気化器、13,1
7・・・・・膨張タービン、15.18・・・・・・天
然ガス加熱器、2o・・開発電機、21・・・・・・レ
シーバタンク、22・・・・・・自動弁、23・・・・
・・液面調節器、24・・曲流社調節器才1図
FIG. 1 is a system diagram of a conventional liquefied natural gas cold energy power generation facility, and FIG. 2 is a system diagram showing an embodiment of the liquefied natural gas cold energy power generation facility of the present invention. 2... LNG pump, 4... Reliquefier, 5,6°7.10... Conduit, 8...
Circulation pump, 11...LNG vaporizer, 13,1
7...Expansion turbine, 15.18...Natural gas heater, 2o...Development electric machine, 21...Receiver tank, 22...Automatic valve, 23・・・・・・
・・Liquid level regulator, 24・・Kuryusha regulator 1 diagram

Claims (1)

【特許請求の範囲】[Claims] 1、 液化天然ガスを気化させて膨張タービンで膨張さ
せた天然ガスの一部を前記液化天然ガスを用いて再液化
器で再液化し、これを前記液化天然ガスとともVこ気化
器で気化させて前記膨張タービンtこ循環させるように
する再生サイクルを備えた液化天然ガス冷熱利用発電設
備ンこおいて、前記再液化器で再液化さまた前記膨張タ
ービンからの天然ガスを一巨しシーバタンクtこため、
該レシーバタンク内の液化天然ガスの液面を一定に保持
した状態で前記レシーバタンク内の液化天然ガスを循環
ポンプを用いて前記気化器を経て前記膨張タービンtこ
循環させる構成としたことを特徴とする液化天然ガス冷
熱利用発電設備。
1. Part of the natural gas obtained by vaporizing liquefied natural gas and expanding it in an expansion turbine is re-liquefied in a re-liquefier using the liquefied natural gas, and this is vaporized together with the liquefied natural gas in a V-type vaporizer. In the liquefied natural gas cold energy power generation equipment equipped with a regeneration cycle for circulating the liquefied natural gas through the expansion turbine, the natural gas is reliquefied in the reliquefier and the natural gas from the expansion turbine is transferred to a large seaba tank. Because of this,
The liquefied natural gas in the receiver tank is circulated through the expansion turbine via the vaporizer using a circulation pump while the liquid level of the liquefied natural gas in the receiver tank is maintained constant. Liquefied natural gas cold energy power generation equipment.
JP6062184A 1984-03-30 1984-03-30 Power plant using refrigeration of liquefied natural gas Granted JPS59188005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6062184A JPS59188005A (en) 1984-03-30 1984-03-30 Power plant using refrigeration of liquefied natural gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6062184A JPS59188005A (en) 1984-03-30 1984-03-30 Power plant using refrigeration of liquefied natural gas

Publications (2)

Publication Number Publication Date
JPS59188005A true JPS59188005A (en) 1984-10-25
JPS6125889B2 JPS6125889B2 (en) 1986-06-18

Family

ID=13147534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6062184A Granted JPS59188005A (en) 1984-03-30 1984-03-30 Power plant using refrigeration of liquefied natural gas

Country Status (1)

Country Link
JP (1) JPS59188005A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015504132A (en) * 2012-01-13 2015-02-05 ハイヴュー・エンタープライゼズ・リミテッド Power generation apparatus and method
KR20160142522A (en) * 2015-06-03 2016-12-13 대우조선해양 주식회사 Vessel Including Storage Tanks
KR20160143035A (en) * 2015-06-04 2016-12-14 대우조선해양 주식회사 Vessel Including Storage Tanks
KR20160144738A (en) * 2015-06-09 2016-12-19 대우조선해양 주식회사 Vessel Including Storage Tanks
KR20160147380A (en) * 2015-06-15 2016-12-23 대우조선해양 주식회사 Boil Off Gas Treatment System And Method
KR20160147382A (en) * 2015-06-15 2016-12-23 대우조선해양 주식회사 Boil Off Gas Treatment System And Method
KR20160147381A (en) * 2015-06-15 2016-12-23 대우조선해양 주식회사 Boil Off Gas Treatment System And Method
KR20160147378A (en) * 2015-06-15 2016-12-23 대우조선해양 주식회사 Boil Off Gas Treatment System And Method
KR20160147377A (en) * 2015-06-15 2016-12-23 대우조선해양 주식회사 Boil Off Gas Treatment System And Method
KR20160147379A (en) * 2015-06-15 2016-12-23 대우조선해양 주식회사 Boil Off Gas Treatment System And Method
KR20160149461A (en) * 2015-06-18 2016-12-28 대우조선해양 주식회사 Vessel Including Storage Tanks
WO2018139131A1 (en) * 2017-01-27 2018-08-02 株式会社神戸製鋼所 Natural gas fired combined-cycle power generation system and natural gas fired combined-cycle power generation method
KR102025787B1 (en) * 2018-04-17 2019-09-26 한국조선해양 주식회사 gas treatment system and offshore plant having the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3479832A (en) * 1967-11-17 1969-11-25 Exxon Research Engineering Co Process for vaporizing liquefied natural gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3479832A (en) * 1967-11-17 1969-11-25 Exxon Research Engineering Co Process for vaporizing liquefied natural gas

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015504132A (en) * 2012-01-13 2015-02-05 ハイヴュー・エンタープライゼズ・リミテッド Power generation apparatus and method
KR20160142522A (en) * 2015-06-03 2016-12-13 대우조선해양 주식회사 Vessel Including Storage Tanks
KR20160143035A (en) * 2015-06-04 2016-12-14 대우조선해양 주식회사 Vessel Including Storage Tanks
KR20160144738A (en) * 2015-06-09 2016-12-19 대우조선해양 주식회사 Vessel Including Storage Tanks
KR20160147380A (en) * 2015-06-15 2016-12-23 대우조선해양 주식회사 Boil Off Gas Treatment System And Method
KR20160147382A (en) * 2015-06-15 2016-12-23 대우조선해양 주식회사 Boil Off Gas Treatment System And Method
KR20160147381A (en) * 2015-06-15 2016-12-23 대우조선해양 주식회사 Boil Off Gas Treatment System And Method
KR20160147378A (en) * 2015-06-15 2016-12-23 대우조선해양 주식회사 Boil Off Gas Treatment System And Method
KR20160147377A (en) * 2015-06-15 2016-12-23 대우조선해양 주식회사 Boil Off Gas Treatment System And Method
KR20160147379A (en) * 2015-06-15 2016-12-23 대우조선해양 주식회사 Boil Off Gas Treatment System And Method
KR20160149461A (en) * 2015-06-18 2016-12-28 대우조선해양 주식회사 Vessel Including Storage Tanks
WO2018139131A1 (en) * 2017-01-27 2018-08-02 株式会社神戸製鋼所 Natural gas fired combined-cycle power generation system and natural gas fired combined-cycle power generation method
KR102025787B1 (en) * 2018-04-17 2019-09-26 한국조선해양 주식회사 gas treatment system and offshore plant having the same

Also Published As

Publication number Publication date
JPS6125889B2 (en) 1986-06-18

Similar Documents

Publication Publication Date Title
US5678411A (en) Liquefied gas supply system
JPS59188005A (en) Power plant using refrigeration of liquefied natural gas
US3438216A (en) Cryogenic recovery vaporizer
JP7181690B2 (en) Cryogenic generator
CN103180656B (en) LNG vaporization equipment
JP2000337170A (en) Gas turbine power generation system and its operating method
KR101876973B1 (en) Fuel Gas Supply System and Method for Vessel
JP2000130185A (en) Energy storing type gas turbine power generation system
JP4551548B2 (en) Power generation facility and power generation method using the same
KR101924535B1 (en) Floating generating system
KR101885079B1 (en) Heat source supply device and method for steam generation
JPH05302504A (en) Low temperature power generating device using liquefied natural gas
JPS5832909A (en) Operating method of power generating facility utilizing cold thermal energy
JPS6256699A (en) Controller for pressure of fuel gas main line
KR101876972B1 (en) Fuel Gas Supply System and Method for Vessel
JPS5816137A (en) Water cooling device for air conditioner
JPH01271603A (en) Lng cryogenic power generator equipment
SU411773A1 (en) Method of gaseous fuel feed into heat power plant
JPS5932606A (en) Cold heat power generating plant
JPH109698A (en) Helium freezing system
JP2021076056A (en) Power generating system, control device, and power generation method
JPS58178810A (en) Low-heat power generating equipment
JPH11173160A (en) Gas turbine power generation system and control method thereof
JP2000130109A (en) Method and device for controlling output of cryogenic power plant
JPS63312599A (en) Hot water heating type evaporator for liquefied natural gas