JPS5816137A - Water cooling device for air conditioner - Google Patents

Water cooling device for air conditioner

Info

Publication number
JPS5816137A
JPS5816137A JP11368281A JP11368281A JPS5816137A JP S5816137 A JPS5816137 A JP S5816137A JP 11368281 A JP11368281 A JP 11368281A JP 11368281 A JP11368281 A JP 11368281A JP S5816137 A JPS5816137 A JP S5816137A
Authority
JP
Japan
Prior art keywords
lng
cold water
rankine
cold
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11368281A
Other languages
Japanese (ja)
Inventor
Yoshio Okabayashi
岡林 芳夫
Naoyuki Watanabe
直幸 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11368281A priority Critical patent/JPS5816137A/en
Publication of JPS5816137A publication Critical patent/JPS5816137A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D31/00Other cooling or freezing apparatus
    • F25D31/002Liquid coolers, e.g. beverage cooler

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

PURPOSE:To prevent freezing of cold water and to effectively use the cold heat of LNG by cooling the cold water with Rankine coolant using an LNG cold generator having a Rankine cycle. CONSTITUTION:A part of LNG from a Rankine coolant evaporator 9 of the cold heat generator is taken out and is sent to the water cooler 16, where another cold water in the cooling pipe 17 is cooled to 10 deg.C, and is sent to the LNG evaporator 3 of said generator. In this case, the LNG level at the cooler 16 is regulated to a constant level by a level adjustor 20 together with a control valve 21, and the pressure of the LNG is also controlled by the adjustor 22 and a control valve 18 so that the evaporation temperature of the LNG is above 0 deg.C. Thus, the cold water in the cooling pipe 17 can be optimumly cooled without freezing, providing reliable and economical cooling equipment.

Description

【発明の詳細な説明】 本発明は、LNGの冷熱を利用して空調用冷水を冷却す
る設備に係υ、特に、LNG冷熱発電設備を利用した空
調用冷水冷却設備に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to equipment for cooling cold water for air conditioning using the cold energy of LNG, and particularly relates to a cold water cooling equipment for air conditioning using LNG cold power generation equipment.

従来よりLNGの冷熱を利用して空調用冷水(以下、冷
水と略)を冷却する方法、設備の開発検討がなされてい
る。しかし、冷水の温度範囲が10〜20℃であるのに
対し、冷熱源であるLNGの温度が一160℃と極めて
低温のため、冷水が氷結するという問題があシ、冷水の
氷結防止策として種々検討されているものの、信頼性、
経済性の点で解決すべき事項を多く有し、現在のところ
実用化に至っていない。
BACKGROUND ART Considerations have been made to develop methods and equipment for cooling air conditioning cold water (hereinafter referred to as cold water) using the cold energy of LNG. However, while the temperature range of cold water is 10 to 20 degrees Celsius, the temperature of LNG, which is the cold heat source, is extremely low at 1,160 degrees Celsius, so there is a problem that the cold water freezes. Although various studies have been conducted, reliability,
There are many issues that need to be solved in terms of economic efficiency, and so far it has not been put into practical use.

本発明は、上記問題の解決を目的としたもので、ランキ
ンサイクルを有するLNG冷熱発電設備を利用し、ラン
キン媒体で冷水を冷却する空調用冷水冷却設備を提供す
るものである。
The present invention is aimed at solving the above-mentioned problems, and provides a cold water cooling equipment for air conditioning that uses LNG cold power generation equipment having a Rankine cycle and cools cold water with a Rankine medium.

本発明の一実施例を図面によシ説明する。なお、ランキ
ンサイクルを有する冷熱発電設備では、ランキン媒体と
してプロパン等炭化水素系流体やフロン系流体が使用さ
れるが、本発明では、特に制限なくどのランキン媒体も
使用し得るので、本実施例では、プロパンを用いた場合
につき説明する。
An embodiment of the present invention will be explained with reference to the drawings. In addition, in a cold power generation facility having a Rankine cycle, a hydrocarbon fluid such as propane or a fluorocarbon fluid is used as a Rankine medium, but in the present invention, any Rankine medium can be used without any particular restriction, so in this example, , the case where propane is used will be explained.

図面は、ランキンサイクルを有する冷熱発電設備を利用
した空調用冷水冷却システムの70−シートである。図
で、LNGは、LNGポンプlで約1 oKg/cI!
IGまで昇圧され、導管2を経てLNG蒸発器3に送給
され、LNG蒸発器3でランキン媒体であるプロパン(
以下、プロパンと略)を凝縮することでLNGは一16
0℃より一55℃まで昇温、蒸発した後に、導管4を経
て加温器5に送給され、加温器5で海水等を熱源とし0
℃以上の温度となったLNGのガスは、燃料として導管
6によシ別の使用先(図示省略)に送出される。
The drawing is a 70-sheet of a cold water cooling system for air conditioning using a cold power generation facility having a Rankine cycle. In the figure, LNG is approximately 1 oKg/cI with LNG pump 1!
The pressure is increased to IG, and it is sent to the LNG evaporator 3 through the conduit 2, where it is converted into propane (Rankine medium).
By condensing LNG (hereinafter abbreviated as propane), LNG is
After the temperature is raised from 0°C to -55°C and evaporated, it is sent to the warmer 5 through the conduit 4, and the warmer 5 uses seawater etc. as a heat source.
The LNG gas, which has reached a temperature of .degree. C. or higher, is sent as fuel to another user (not shown) through a conduit 6.

一方、LNG蒸発器3で凝縮したOKg/dG、−45
℃のプロパンの液は、ランキン媒体ポンプ7で昇圧され
、導管8を経てランキン媒体蒸発器9に送給され、ラン
キン媒体蒸発器9で海水等を熱源とし昇温、蒸発した後
に、導管10を経てタービン11に送給され、ガス膨張
によ勺エネルギを回転エネルギに変換し、発電機(図示
省略)で電力を発生させる。この場合、ランキン媒体蒸
発器9のプロパンの液面は、液面調節器12でプロパン
の液面を検出し、液面調節弁13の弁開度を調節して常
に一定液面に制御される。その後、プロパンのガスは導
管14を経てLNG蒸発器3に送給され、LNG蒸発器
3でL N Gの冷熱によシ再液化され、2ンキン媒体
ポンプ7で昇圧され、導管8を経てランキン媒体蒸発器
9に再び送給される。
On the other hand, OKg/dG condensed in LNG evaporator 3, -45
The propane liquid at °C is pressurized by the Rankine medium pump 7 and sent to the Rankine medium evaporator 9 through the conduit 8. After being heated and evaporated in the Rankine medium evaporator 9 using seawater as a heat source, the propane liquid is passed through the conduit 10. The gas is then fed to the turbine 11, where the gas is expanded to convert the energy into rotational energy, and a generator (not shown) generates electric power. In this case, the propane liquid level in the Rankine medium evaporator 9 is always controlled to a constant liquid level by detecting the propane liquid level with the liquid level regulator 12 and adjusting the valve opening of the liquid level regulating valve 13. . Thereafter, the propane gas is sent to the LNG evaporator 3 via the conduit 14, re-liquefied by the cold heat of the LNG in the LNG evaporator 3, boosted in pressure by the second engine medium pump 7, and passed through the conduit 8 to the Rankine gas. The medium is again fed to the evaporator 9.

上記のランキンサイクルを有する冷熱発電設備を利用し
、冷水の冷却は次のように行われる。ランキン媒体蒸発
器9よシプロパンの液を一部抜き出し、抜き出されたプ
ロパンの液は、導管15を経て冷水冷却器16に送給さ
れ、冷水冷却器16に内股された冷水冷却管17に別の
使用先(図示省略)から別に送給される温度15℃の冷
水を10℃まで冷却した後に、昇温、蒸発17たプロパ
ンのガスは、圧力調節弁18でOK?/dGまで膨張し
た後に導管19、導管14を経てLNG蒸発器3に送給
される。
Cooling of chilled water is performed as follows using the cold power generation equipment having the above-mentioned Rankine cycle. A portion of the propane liquid is extracted from the Rankine medium evaporator 9, and the extracted propane liquid is sent to the cold water cooler 16 through the conduit 15, and is separated into the cold water cooling pipe 17 internally connected to the cold water cooler 16. After cooling the cold water at a temperature of 15°C to 10°C, which is supplied separately from the place of use (not shown), the temperature is raised and the propane gas is evaporated. After being expanded to /dG, it is sent to the LNG evaporator 3 via the conduit 19 and the conduit 14.

一方、冷水冷却器16で10℃まで冷却された冷水は、
冷水冷却管17の他端よp空調用として別の使用先に送
シ返される。この場合、液面調節器筒で冷水冷却器16
のプロパンの液面を検出し、液面調節弁21の弁開度を
調節して常に一定液面を維持す、 3 るように自動制御される。また、冷水冷却器16内のプ
ロパンのガスの圧力は、圧力調節器nでプロパンのガス
の圧力を検出し、圧力調節弁18により自動調節でき、
調節されたプロパンのガスの圧力に対応する飽和温度で
プロパンは蒸発する。したがって、プロパンの蒸発温度
は、圧力調節器n。
On the other hand, the cold water cooled to 10°C by the cold water cooler 16 is
The other end of the cold water cooling pipe 17 is sent back to another place of use for air conditioning. In this case, the cold water cooler 16 is installed in the liquid level regulator cylinder.
The liquid level of propane is detected and the opening degree of the liquid level control valve 21 is adjusted to maintain a constant liquid level at all times. Further, the pressure of propane gas in the cold water cooler 16 can be automatically adjusted by detecting the pressure of propane gas with a pressure regulator n and using a pressure regulating valve 18.
Propane evaporates at a saturation temperature corresponding to the regulated propane gas pressure. Therefore, the evaporation temperature of propane is determined by the pressure regulator n.

圧力調節弁18の作用で任意に選択できるため、プロパ
ンの蒸発温度が0℃以上になるようプロパンのガスの圧
力を選択、設定すれば、冷水冷却管17の冷水は氷結す
ることなくプロパンによシ冷却される。なお、冷水の流
量、温度等の変動、つまシ、負荷変動に対しては、液面
調節器筒、液面調節弁21の作用によシ冷水冷却器16
のプロパンの液面は、常に一定液面を維持するように自
動制御され対処される。
Since it can be selected arbitrarily by the action of the pressure control valve 18, if the propane gas pressure is selected and set so that the evaporation temperature of propane is 0°C or higher, the cold water in the cold water cooling pipe 17 will be heated by propane without freezing. It is cooled down. In addition, changes in the flow rate, temperature, etc. of cold water, changes in load, etc. are handled by the action of the liquid level regulator tube and liquid level control valve 21, and the chilled water cooler 16
The propane liquid level is automatically controlled to maintain a constant liquid level at all times.

本発明は、以上説明したように、空調用冷水冷却設備を
、ランキンサイクルを有するLNG冷熱発電設備に冷水
冷却器を連設させ、ランキン媒体の蒸発温度を0℃以上
に設定し自動制御する圧力調節器および圧力調節弁、冷
水冷却器の液面を常・ 4 に一定液面に維持し自動制御する液面調節器および液面
調節弁で構成したので、高信頼性で、かつ、経済的に冷
水の氷結が防止でき、LNGの冷熱を利用して冷水を良
好に冷却できる効果がある。
As explained above, the present invention provides a cold water cooling equipment for air conditioning in which a cold water cooler is connected to an LNG cold power generation equipment having a Rankine cycle, and the evaporation temperature of the Rankine medium is set to 0°C or higher and the pressure is automatically controlled. It is highly reliable and economical because it is composed of a regulator, a pressure control valve, and a liquid level regulator and a liquid level control valve that automatically control the liquid level of the chilled water cooler to maintain a constant level at all times. This has the effect of preventing cold water from freezing and effectively cooling the cold water using the cold energy of LNG.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、本発明の一実施例を説明するもので、3・・・
・・LNG蒸発器、9・・・・・・ランキン媒体蒸発器
、11・・・・・・タービン、14. 15.19・・
・・・・導管、16・・・冷水冷却器、17・・・・・
・冷水冷却管、18・・・・・・圧力調節弁、加・・・
・・・液面調節器、4・・・・・・液面調節弁、ρ・・
・圧力調節器
The drawings illustrate one embodiment of the present invention.
... LNG evaporator, 9 ... Rankine medium evaporator, 11 ... turbine, 14. 15.19...
...Conduit, 16...Cold water cooler, 17...
・Cold water cooling pipe, 18...Pressure control valve, addition...
...Liquid level regulator, 4...Liquid level control valve, ρ...
・Pressure regulator

Claims (1)

【特許請求の範囲】[Claims] 1、 LNG蒸発器、ランキン媒体蒸発器、ランキン媒
体タービン等で構成されランキンサイクルを有するLN
G冷熱発電設備を利用する空調用冷水冷却設備において
、冷水冷却管を内設し、かつ、液面調節器と圧力調節器
が取付けられた冷水冷却器と前記ランキン媒体蒸発器を
、前記液面調節器の液面調節弁を途中に設けた導管で連
結し、かつ、前記ランキン媒体タービンの出口側と前記
LNG蒸発器を連結した導管と前記冷水冷却器とを前記
圧力調節器の圧力調節弁を途中に設けた導管で連結した
ことを特徴とする空調用冷水冷却設備。
1. LN with a Rankine cycle, consisting of an LNG evaporator, a Rankine medium evaporator, a Rankine medium turbine, etc.
In a cold water cooling equipment for air conditioning using G cold power generation equipment, a cold water cooler equipped with a cold water cooling pipe and a liquid level regulator and a pressure regulator, and the Rankine medium evaporator are connected to the The liquid level control valve of the pressure regulator is connected to the liquid level control valve of the pressure regulator by a conduit provided midway, and the conduit connecting the outlet side of the Rankine medium turbine and the LNG evaporator and the cold water cooler are connected to the pressure control valve of the pressure regulator. Cold water cooling equipment for air conditioning, characterized in that the two are connected by a conduit installed in the middle.
JP11368281A 1981-07-22 1981-07-22 Water cooling device for air conditioner Pending JPS5816137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11368281A JPS5816137A (en) 1981-07-22 1981-07-22 Water cooling device for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11368281A JPS5816137A (en) 1981-07-22 1981-07-22 Water cooling device for air conditioner

Publications (1)

Publication Number Publication Date
JPS5816137A true JPS5816137A (en) 1983-01-29

Family

ID=14618498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11368281A Pending JPS5816137A (en) 1981-07-22 1981-07-22 Water cooling device for air conditioner

Country Status (1)

Country Link
JP (1) JPS5816137A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60179218A (en) * 1984-02-28 1985-09-13 Asahi Glass Co Ltd Injection compression molding method
JP2004190951A (en) * 2002-12-11 2004-07-08 Hiroshima Gas Kk Lng cold recovery method and its device
CN110617598A (en) * 2019-09-20 2019-12-27 青岛海尔空调电子有限公司 Control method of air conditioning system and air conditioning system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60179218A (en) * 1984-02-28 1985-09-13 Asahi Glass Co Ltd Injection compression molding method
JP2004190951A (en) * 2002-12-11 2004-07-08 Hiroshima Gas Kk Lng cold recovery method and its device
CN110617598A (en) * 2019-09-20 2019-12-27 青岛海尔空调电子有限公司 Control method of air conditioning system and air conditioning system

Similar Documents

Publication Publication Date Title
US6318089B1 (en) Gas turbine inlet air cooling system
JP7181690B2 (en) Cryogenic generator
JPS6040707A (en) Low boiling point medium cycle generator
JP4986664B2 (en) Gas turbine combustion air cooling system
KR102005157B1 (en) Apparatus for cooling working fluid and Power generation plant using the same
JPS59188005A (en) Power plant using refrigeration of liquefied natural gas
JP2001081484A (en) Liquefied-gas evaporation apparatus with cold-heat generation function
JPS5816137A (en) Water cooling device for air conditioner
US20220290815A1 (en) System and method for cryogenic vaporization using circulating cooling loop
JP2005291094A (en) Power plant facility using liquefied gas vaporizing device
JPS6228357B2 (en)
JPH05302504A (en) Low temperature power generating device using liquefied natural gas
JP2001241304A (en) Combined power generation system utilizing gas pressure energy
JPS5620709A (en) Method of recovering cold and hot energy
JP2019163805A (en) Carburetor heating apparatus
CA2222607C (en) A liquefied natural gas (lng) fueled combined cycle power plant and an lng fueled gas turbine plant
JPS6213489B2 (en)
JPS5620708A (en) Device for recovering cold and hot energy
JPS6212367B2 (en)
JPS601697U (en) Evaporative oil recovery device in oil tanker
JPS6157445B2 (en)
RU2176024C2 (en) Integrated system using liquefied gas in boiler units
JPS6164301A (en) Method and apparatus for gasifying fluid
JPH01142219A (en) Cooling method and device for gas turbine intake air
JPS63127062A (en) Cold heat utilizer for liquefied natural gas