JPS607473B2 - Control equipment for commutatorless motors - Google Patents

Control equipment for commutatorless motors

Info

Publication number
JPS607473B2
JPS607473B2 JP49056481A JP5648174A JPS607473B2 JP S607473 B2 JPS607473 B2 JP S607473B2 JP 49056481 A JP49056481 A JP 49056481A JP 5648174 A JP5648174 A JP 5648174A JP S607473 B2 JPS607473 B2 JP S607473B2
Authority
JP
Japan
Prior art keywords
signal
current
command signal
speed
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49056481A
Other languages
Japanese (ja)
Other versions
JPS50149910A (en
Inventor
俊昭 奥山
孝正 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP49056481A priority Critical patent/JPS607473B2/en
Publication of JPS50149910A publication Critical patent/JPS50149910A/ja
Publication of JPS607473B2 publication Critical patent/JPS607473B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【発明の詳細な説明】 発明の利用分野 本発明は周波数変換器の電動機側点弧角(制御進み角)
を可変にする無整流子爵動機の制御装置に関する。
[Detailed Description of the Invention] Field of Application of the Invention The present invention relates to a firing angle (control advance angle) on the motor side of a frequency converter.
This invention relates to a control device for a non-commutated Viscount motive that makes variable the.

発明の背景 一般に、サィリスタ周波数変換器で同期電動機を駆動す
る無整流子電動機においてはサィリスタの転流動作上か
ら制御進み角を連続的又は段階的に切換えて運転するこ
とが行われる。
BACKGROUND OF THE INVENTION In general, in a non-commutator motor in which a synchronous motor is driven by a thyristor frequency converter, the control advance angle is switched continuously or stepwise based on the commutation operation of the thyristor.

ところが、周波数変換器の制御進み角あるいは同期電動
機の界磁電流を変えると電動機のトルク対電機子電流の
比(トルク係数)が変化する。
However, when the control lead angle of the frequency converter or the field current of the synchronous motor is changed, the ratio of the motor torque to armature current (torque coefficient) changes.

トルク係数が変化すると速度制御系の応答特性が変わり
、制御が不安定となり、極端な場合は制御不能になる。
また、制御不安定によってトルク変動を生じることにな
る。発明の目的 本発明は上記点に対処して成されてたもので、その目的
とするところは制御進み角を変化させても速度制御系の
応答特性が変化せずに安定な制御を行える無整流子電動
機の制御装置を提供することにある。
When the torque coefficient changes, the response characteristics of the speed control system change, making control unstable and, in extreme cases, uncontrollable.
Furthermore, torque fluctuations occur due to unstable control. OBJECTS OF THE INVENTION The present invention has been made to address the above-mentioned problems, and its purpose is to provide stable control without changing the response characteristics of the speed control system even when the control advance angle is changed. An object of the present invention is to provide a control device for a commutator motor.

発明の概要 本発明の特徴とするところは速度制御回路が出力する電
流指令信号に制御進み角の余弦値の逆数値を掛算して得
た補償電流指令信号を電流制御回路に加えるようにし、
トルク係数が常に一定値となるようにしたことにある。
Summary of the Invention The present invention is characterized in that a compensation current command signal obtained by multiplying the current command signal output by the speed control circuit by the reciprocal value of the cosine value of the control advance angle is applied to the current control circuit;
The reason is that the torque coefficient is always kept at a constant value.

発明の実施例第1図に本発明の一実施例を示す。Embodiment of the Invention FIG. 1 shows an embodiment of the invention.

第1図において、1は商用交流電源から得られる3相交
流入力lacを直流に変換する第1のサィリスタ変換器
(順変換器)、2は順変換器1の直流出力を平滑するた
めの平滑リアクトル、3は順変換器1からの直流出力を
交流に変換する第2のサィリスタ変換器(逆変換器)で
、日頃変換器1、平滑リアクトル2および逆変換器3と
で周波数変換器を構成する。4は逆変換器3により駆動
される同期電動機、5は同期電動機4の回転子の回転角
位置を検出して分配信号を発生する分配器、6は同期電
動機4の速度を検出する速度検出器、7は速度検出器6
の速度検出信号に対してある関数関係にある2つの関係
信号A,Bを出力する関数発生器、8は分配信号に対し
て所定位相差のゲート信号を出力する移相器で、その移
相量は関数信号Aに応じて制御される。
In Fig. 1, 1 is a first thyristor converter (forward converter) that converts the three-phase AC input lac obtained from a commercial AC power supply into DC, and 2 is a smoother for smoothing the DC output of the forward converter 1. The reactor 3 is a second thyristor converter (inverse converter) that converts the DC output from the forward converter 1 into alternating current, and the daily converter 1, smoothing reactor 2, and inverse converter 3 constitute a frequency converter. do. 4 is a synchronous motor driven by the inverter 3; 5 is a distributor that detects the rotational angular position of the rotor of the synchronous motor 4 and generates a distribution signal; 6 is a speed detector that detects the speed of the synchronous motor 4. , 7 is the speed detector 6
8 is a function generator that outputs two related signals A and B that have a certain functional relationship with respect to the speed detection signal of The quantity is controlled according to the function signal A.

9は移相器8のゲート信号を増幅して逆変換器3の各サ
ィリスタに印加するゲート信号増幅器で、分配器5、移
相器8およびゲート信号増幅器9とで制御進み角を調整
する調整手段を構成する。
Reference numeral 9 denotes a gate signal amplifier that amplifies the gate signal of the phase shifter 8 and applies it to each thyristor of the inverse converter 3. The gate signal amplifier 9 is used to adjust the control advance angle by the divider 5, phase shifter 8, and gate signal amplifier 9. constitute means.

1川ま例えばポテンショメータからなる速度指令回路、
11は速度指令回路竃0の速度指令信号と速度検出器6
の速度検出信号とを突き合せて得られる速度偏差に応じ
た電流指令信号を出力する速度制御回路、12は電流指
令信号と関数信号Bとの積に比例した補償電流指令信号
を出力する補償演算回路で乗算器により構成される。
1. For example, a speed command circuit consisting of a potentiometer,
11 is the speed command signal of the speed command circuit 0 and the speed detector 6
12 is a speed control circuit that outputs a current command signal according to the speed deviation obtained by comparing the speed detection signal of , and 12 is a compensation calculation circuit that outputs a compensation current command signal proportional to the product of the current command signal and the function signal B. The circuit consists of a multiplier.

13は厭変換器1の交流入力を整流してその大きさに比
例した電流帰還信号を取出すための電流検出器、14は
補償演算回路12の補償電流指令信号と電流帰還信号と
を突き合せた電流偏差に応じた位相制御信号を出力する
電流制御回路、15は電流制御回路14の位相制御信号
に従って順変換器1の点弧位相を制御する自動パルス移
相器である。
13 is a current detector for rectifying the AC input of the converter 1 and extracting a current feedback signal proportional to the magnitude thereof; 14 is a current detector for comparing the compensation current command signal of the compensation calculation circuit 12 with the current feedback signal. A current control circuit 15 outputs a phase control signal according to the current deviation, and 15 is an automatic pulse phase shifter that controls the firing phase of the forward converter 1 in accordance with the phase control signal of the current control circuit 14.

次にその動作を説明する。Next, its operation will be explained.

無整流子電動機の動作は良く知られているので詳細説明
を省略するが、順変換器1により同期電動機4の電機子
電流ldの大きさを制御し、逆変換器3によって周波数
を制御する。
Since the operation of the commutatorless motor is well known, a detailed explanation will be omitted, but the forward converter 1 controls the magnitude of the armature current ld of the synchronous motor 4, and the inverse converter 3 controls the frequency.

逆変換器3は分配器5の位置信号に基づいて制御進み角
を制御される。制御進み角は低速時に零にし高速時に一
定値に切換えることが行われる。制御進み角の切換えは
連続的あるいは段階的に行われる。このように制御する
際に本発明においては更に次のような動作が行われる。
The control advance angle of the inverse converter 3 is controlled based on the position signal of the distributor 5. The control advance angle is set to zero at low speeds and switched to a constant value at high speeds. The control advance angle is switched continuously or stepwise. When controlling in this manner, the following operations are further performed in the present invention.

関数発生器は速度検出器6の速度検出信号とある関係に
ある関数信号A(第2図参照)を出力する。
The function generator outputs a function signal A (see FIG. 2) which has a certain relationship with the speed detection signal of the speed detector 6.

移相器8は関数信号Aに応じて移相量を決定しているの
で、逆変換器3の制御進み角yは同期電動機4の速度に
従って第2図に示すように変化する。また、関数発生器
7は制御進み角yの大きさに対し関数関係にある第2図
のような関数信号B(これは速度検出器6の出力ともあ
る関数関係にある)を出力し、補償演算回路12に加え
る。補償演算回路12は電流指令信号と信号Bの積に比
例した信号(補償電流指令信号)Dを出力する。このこ
とを式で表わすと次のようになる。
Since the phase shifter 8 determines the amount of phase shift in accordance with the function signal A, the control advance angle y of the inverter 3 changes as shown in FIG. 2 in accordance with the speed of the synchronous motor 4. Further, the function generator 7 outputs a function signal B as shown in FIG. 2, which has a functional relationship with the magnitude of the control advance angle y (this also has a certain functional relationship with the output of the speed detector 6), and compensates. It is added to the arithmetic circuit 12. The compensation calculation circuit 12 outputs a signal (compensation current command signal) D proportional to the product of the current command signal and the signal B. This can be expressed as follows.

lpm戊lp。lpm戊lp.

XF(y) …mここに、lpmは補
償演算回路12の出力信号D1poは速度制御回路11
の出力信号CF(ッ)は関数発生器7の出力信号B をそれぞれ示す。
XF(y) ...m where lpm is the output signal D1po of the compensation calculation circuit 12 and the speed control circuit 11
The output signal CF(c) of represents the output signal B of the function generator 7, respectively.

いま、関数発生器7の出力Bに F(y)は1/cos y ・・・{2
)なる関係をもたせたとすると、前記m式は次のように
なる。
Now, F(y) in the output B of the function generator 7 is 1/cos y...{2
), the above m formula becomes as follows.

lpm戊lpo×1/cos y …{
3}順変換器1の直流出力ldは電流制御回路14、移
相器15の動作に従って補償演算回路12の出力信号D
(補償電流指令信号)に比例して流れる。
lpm 戊lpo×1/cos y …{
3} The DC output ld of the forward converter 1 is converted to the output signal D of the compensation calculation circuit 12 according to the operations of the current control circuit 14 and phase shifter 15.
(compensation current command signal).

同期電動機4のトルク7は、 7=lpo ・・
・【4}となり、結局、速度制御回路11の出力Cによ
ってだけ決定されることになり、制御進み角yの変化に
よってトルク7は変動しなくなる。
The torque 7 of the synchronous motor 4 is 7=lpo...
- [4}, and in the end, it is determined only by the output C of the speed control circuit 11, and the torque 7 does not change due to changes in the control advance angle y.

このようにして制御するのであるが、制御進み角yの変
化によってトルク7が変動せず、トルク丁は速度制御回
路11の出力する電流指令信号に比例して変化すること
になる。
Although the control is performed in this manner, the torque 7 does not change due to a change in the control advance angle y, and the torque 7 changes in proportion to the current command signal output from the speed control circuit 11.

一般に、無整流子電動機の出力トルク7は次式で表わす
ことができる。
Generally, the output torque 7 of a commutatorless motor can be expressed by the following equation.

丁=K・lf・ld・cos y
・・・{5)ここで、Kは比例定数、lfは同期電動機
の界磁電流、ldは日頃変換器1の直流出力電流(同期
電動機4の電流と比例)、yは逆変換器3の制御進み角
である。
Ding=K・lf・ld・cos y
...{5) Here, K is a proportionality constant, lf is the field current of the synchronous motor, ld is the DC output current of the converter 1 (proportional to the current of the synchronous motor 4), and y is the current of the inverter 3. This is the control advance angle.

ところで、‘5}式からわかるように制御進み角yを変
化させるとそれに伴って同一トルクを発生するために要
する電流ldの大きさも変化する。
By the way, as can be seen from equation '5}, when the control advance angle y is changed, the magnitude of the current ld required to generate the same torque also changes accordingly.

例えば、cosyが小さくなる方向に変化した場合、所
定トルクを維持するためには、それまでより大きな電流
ldを流さなければならない。このことは、トルク係数
が小さくなったことを意味し、速度制御の応答特性が低
下したことになる。しかし、本発明では■式に示すよう
にトルクヶは制御進み角yを変化させても電流指令信号
に比例して変化することになる。トルク係数は制御進み
角yを変化させても一定となるので、応答特性を常に一
定にできる。第3図に関数発生器7のうちの、速度検出
器6の速度検出信号に応じて信号Aを出力する部分を示
す。
For example, when cozy changes in the direction of decreasing, a larger current ld must be passed in order to maintain a predetermined torque. This means that the torque coefficient has become smaller, and the response characteristics of speed control have deteriorated. However, in the present invention, the torque changes in proportion to the current command signal even if the control advance angle y is changed, as shown in equation (2). Since the torque coefficient remains constant even if the control advance angle y is changed, the response characteristics can always be kept constant. FIG. 3 shows a portion of the function generator 7 that outputs the signal A in response to the speed detection signal from the speed detector 6.

第3図において、第2図に示したa点はボテンショメー
タ1により調節される。
In FIG. 3, point a shown in FIG. 2 is adjusted by a potentiometer 1. In FIG.

すなわち、第3図に示すイ点の電圧は入力信号とポテン
ショメ−ターの電圧の和で定まるが、これが負電圧の間
はダイオード4が導通せず増中器5からは信号は出力さ
れない。ところが「 a点にきてイ点の電圧が正に転じ
るとダイオード4が導通し、増中器5からはイ点の電圧
を抵抗器6と7の抵抗比情に増中した信号が得られる。
イ点の電圧は入力信号に応じて変るため、増中器5の出
力はこのとき第2図cのように変化する。この曲線の傾
きは増中器7の抵抗値により調節できる。次に、第2図
のb点に到ると、前述と同様にして第3図口点の電圧が
正に転じる。
That is, the voltage at point A shown in FIG. 3 is determined by the sum of the input signal and the voltage of the potentiometer, but while this is a negative voltage, diode 4 is not conductive and no signal is output from multiplier 5. However, when the voltage at point A becomes positive when the voltage at point A becomes positive, diode 4 becomes conductive, and a signal is obtained from multiplier 5 in which the voltage at point A is multiplied by the resistance ratio of resistors 6 and 7. .
Since the voltage at point A changes depending on the input signal, the output of the multiplier 5 changes as shown in FIG. 2c at this time. The slope of this curve can be adjusted by the resistance value of the intensifier 7. Next, when the point b in FIG. 2 is reached, the voltage at the end point in FIG. 3 turns positive in the same manner as described above.

すると、ダイオード11が導通し、信号は極性反転器1
2を介して増中器5に加えられる。このとき、口点の霞
圧は抵抗器6と13の抵抗比倍に増中ごれ、増中器5の
出力に現われるが、極性反転器12があるため出力信号
は入力信号に対し負の傾きを持つようになる。ただし、
増中器5の出力信号は前述したダイオード4の出力信号
と位相反転器12の出力信号の和で変化するため、互い
の変化が打消し合い、このとき第2図dに示すように一
定した直線となる。なお、dにおける懐きは抵抗器13
により調整可能である。以上のように信号Aは作られる
が、信号Bについても同様の方法によって取り出すこと
ができる。
Then, the diode 11 becomes conductive and the signal is transferred to the polarity inverter 1.
2 to the intensifier 5. At this time, the haze pressure at the mouth point is multiplied by the resistance ratio of resistors 6 and 13, and appears at the output of multiplier 5, but because of the polarity inverter 12, the output signal is negative with respect to the input signal. It will have an inclination. however,
Since the output signal of the multiplier 5 changes according to the sum of the output signal of the diode 4 and the output signal of the phase inverter 12, the changes cancel each other out, and at this time, the signal remains constant as shown in FIG. 2d. It becomes a straight line. Note that the resistance at d is resistor 13.
It can be adjusted by Although signal A is generated as described above, signal B can also be extracted using a similar method.

発明の効果 以上説明したように本発明によれば電動機側点弧角(制
御進み角)を変化させてもトルク係数が常に一定値にで
きるので安定な制御を行える。
Effects of the Invention As explained above, according to the present invention, even if the motor side firing angle (control advance angle) is changed, the torque coefficient can always be kept at a constant value, so stable control can be performed.

なお、本発明は制御進み角だけでなく界滋電流も変える
ものにも通用できる。また、周波数変換器としてサイク
ロコンバータを用いたものであっても同様な効果が得ら
れる。
Note that the present invention can be applied to a device that changes not only the control lead angle but also the field current. Furthermore, similar effects can be obtained even if a cycloconverter is used as the frequency converter.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すブロック図、第2図は
第1図の動作を説明するための信号波形図、第3図は第
1図の装置に用いる関数発生器の一部を示す回路図であ
る。 1・・・・・・順変換器、2・・・・・・平滑IJァク
トル、3・・・・・・逆変換器、4・…・・同期電動機
、5・・・・・・分配器、6…・・・速度検出器、7・
・・・・・関数発生器、8・・・・・・移相器。 弟l図 弟2図 第3図
Fig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is a signal waveform diagram for explaining the operation of Fig. 1, and Fig. 3 is a part of a function generator used in the device shown in Fig. 1. FIG. 1...Forward converter, 2...Smoothing IJ factor, 3...Inverse converter, 4...Synchronous motor, 5...Distributor , 6... Speed detector, 7.
...Function generator, 8...Phase shifter. Younger brother 1 picture Younger brother 2 picture 3

Claims (1)

【特許請求の範囲】[Claims] 1 交流の周波数変換を行う周波数変換器と、該周波数
変換器により駆動される同期電動機と、該同期電動機の
速度指令信号と実速度信号の偏差に応じた電流指令信号
を出力する速度制御回路と、前記電流指令器信号の大き
さに応じて前記周波数変換器の出力電流を制御する電流
制御回路と前記周波数変換器の電動機側点弧角を変化さ
せる調整手段とを有するものにおいて、前記同期電動機
の速度信号を入力し前記電動機側点弧角の余弦値の逆数
値を出力する関数発生手段と、該関数発生手段の出力信
号と前記電流指令信号を掛算した補償電流指令信号を前
記電流制御回路に与える補償演算回路とを設け、前記電
流制御回路は前記補償電流指令信号に基づき前記周波数
変換器の出力電流を制御することを特徴とする無整流子
電動機の制御装置。
1. A frequency converter that converts the frequency of alternating current, a synchronous motor driven by the frequency converter, and a speed control circuit that outputs a current command signal according to the deviation between the speed command signal and the actual speed signal of the synchronous motor. , comprising a current control circuit that controls the output current of the frequency converter according to the magnitude of the current command signal, and an adjusting means that changes the firing angle of the frequency converter on the motor side, wherein the synchronous motor function generating means for inputting a speed signal of and outputting a reciprocal value of the cosine value of the firing angle on the motor side; and a compensation current command signal obtained by multiplying the output signal of the function generating means by the current command signal to the current control circuit. A control device for a non-commutator motor, characterized in that the current control circuit controls the output current of the frequency converter based on the compensation current command signal.
JP49056481A 1974-05-22 1974-05-22 Control equipment for commutatorless motors Expired JPS607473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP49056481A JPS607473B2 (en) 1974-05-22 1974-05-22 Control equipment for commutatorless motors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP49056481A JPS607473B2 (en) 1974-05-22 1974-05-22 Control equipment for commutatorless motors

Publications (2)

Publication Number Publication Date
JPS50149910A JPS50149910A (en) 1975-12-01
JPS607473B2 true JPS607473B2 (en) 1985-02-25

Family

ID=13028277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49056481A Expired JPS607473B2 (en) 1974-05-22 1974-05-22 Control equipment for commutatorless motors

Country Status (1)

Country Link
JP (1) JPS607473B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4427934A (en) * 1982-01-29 1984-01-24 General Electric Company Current limiter for a load commutated inverter
JPS60198425A (en) * 1984-03-23 1985-10-07 Kataoka Kikai Seisakusho:Kk Device for measuring and controlling take-up torque

Also Published As

Publication number Publication date
JPS50149910A (en) 1975-12-01

Similar Documents

Publication Publication Date Title
US4862343A (en) Induction motor control apparatus
US4361791A (en) Apparatus for controlling a PWM inverter-permanent magnet synchronous motor drive
EP0030462A2 (en) Induction motor drive apparatus
JP3716670B2 (en) Induction motor control device
US4088932A (en) Control system for commutatorless motor
US3612971A (en) Static converter with dc intermediate circuit for controlling the speed of a three phase motor
US5386186A (en) Stator flux oriented control
EP0121792A2 (en) Vector control method and system for an induction motor
JPS607473B2 (en) Control equipment for commutatorless motors
US4475074A (en) Apparatus for determining the common frequency of two independently variable electrical a-c variables, especially in a rotating-field machine
JP4219362B2 (en) Rotating machine control device
JPS6330236Y2 (en)
JP3124019B2 (en) Induction motor control device
JP2527161B2 (en) Vector control arithmetic unit for electric motor
JPS58172989A (en) Torque controller for induction motor
JPH0213555B2 (en)
JPS5851788A (en) Controller for induction motor
JPS59113784A (en) Controlling method for induction motor
CA1058695A (en) Regulating the torque of an induction motor
JPS6233520Y2 (en)
JPS6042711B2 (en) Transmission motor rotation control device
JPS6042709B2 (en) induction motor control device
JPH0254039B2 (en)
SU892635A1 (en) Frequency-controlled ac electric drive
JPH07107784A (en) Control system of ac motor