JPS59113784A - Controlling method for induction motor - Google Patents

Controlling method for induction motor

Info

Publication number
JPS59113784A
JPS59113784A JP57221891A JP22189182A JPS59113784A JP S59113784 A JPS59113784 A JP S59113784A JP 57221891 A JP57221891 A JP 57221891A JP 22189182 A JP22189182 A JP 22189182A JP S59113784 A JPS59113784 A JP S59113784A
Authority
JP
Japan
Prior art keywords
magnetic flux
speed control
output
induction motor
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57221891A
Other languages
Japanese (ja)
Inventor
Hiroshi Nagase
博 長瀬
Nobuyoshi Muto
信義 武藤
Keijiro Sakai
慶次郎 酒井
Sadayuki Igarashi
貞之 五十嵐
Juichi Ninomiya
寿一 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Keiyo Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Keiyo Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Keiyo Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP57221891A priority Critical patent/JPS59113784A/en
Publication of JPS59113784A publication Critical patent/JPS59113784A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To maintain a loop gain of a speed control system constantly irrespective of a magnetic flux by regulating the gain of a speed control circuit in response to the actual value of the magnetic flux. CONSTITUTION:An output of a magnetic flux calculator is inputted to a magnetic flux control circuit 13 and dividers 15, 16. The divider 15 divides the output of a speed control circuit 11 by the output of a magnetic flux calculator 14, and the output, i.e., the command signal of the torque current of the primary current is inputted to a vector calculator 19. Since the output of the circuit 11 is divided by the magnetic flux phi in this manner, the characteristics of the speed control system is determined irrespective of the magnetic flux. Therefore, high responding speed control can be always performed irrespective of the amplitude of the magnetic flux, the variation in a loop gain of a speed control system based on the magnetic flux phi can be eliminated, thereby performing the stable operation.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は誘導電動機の1次電流をトルク成分と励磁成分
に分けて制御する誘導電動機の制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for controlling an induction motor in which the primary current of the induction motor is controlled by dividing it into a torque component and an excitation component.

〔従来技術〕[Prior art]

誘導電導機の高応答可変速駆動方式にベクトル制御があ
る。ベクトル制御によれば1次電流をトルク成分と励磁
成分とにわけて制御するので、電動機の発生トルクを直
流機で馳う直巻特性、分巻特性のように任意のトルク特
性を選択することが可能である。そのため、出方一定制
御を行うため界磁弱め制御を行ったシ、高効率運転を行
うためにトルクに応じて界磁制御を行うことができ、こ
の場合でも、直流機と同様に精度のよいトルク制御がで
きる。
Vector control is a high-response variable-speed drive system for induction machines. According to vector control, the primary current is controlled by dividing it into a torque component and an excitation component, so any torque characteristic can be selected, such as series winding characteristic or shunt winding characteristic, in which the torque generated by the motor is controlled by a DC machine. is possible. Therefore, it is possible to perform field weakening control to perform constant output control, and to perform field control according to torque to achieve high efficiency operation. I can do it.

しかしながら、速度制御を行う場合に次の問題点を生じ
る。すなわち、誘導電動機の発生トルクをτ、1次電流
のトルク成分・(、以下、トルク電流と略す)をIi)
すベシ周波数をfl、磁束をΦとすれば rCrCΦl、ocΦ”  f、        −(
1)の関係がある。速度制御回路の出力からモータ発生
トルクまでゲインが磁速Φに依存して決まるので前記の
ように、出カ一定制御あるいは高効率運転のために大幅
な界磁制御を行うと、速度制御系のループゲインが大幅
に変わる。その結果、速度制御系の応答が大幅に変化し
てしまうだけでなく、さらに速度制御系が不安定になる
場合が生じ、そのためにベクトル制御本来の高性能制御
が十分に発揮できない欠点があった。
However, the following problem occurs when speed control is performed. That is, the torque generated by the induction motor is τ, and the torque component of the primary current (hereinafter abbreviated as torque current) is Ii)
If the frequency is fl and the magnetic flux is Φ, then rCrCΦl, ocΦ” f, −(
There is the relationship 1). Since the gain from the output of the speed control circuit to the motor generated torque is determined depending on the magnetic speed Φ, as mentioned above, when a large field control is performed for constant output control or high efficiency operation, the loop gain of the speed control system increases. changes significantly. As a result, not only the response of the speed control system changes significantly, but also the speed control system may become unstable, which has the disadvantage that the high-performance control inherent to vector control cannot be fully demonstrated. .

この欠点を解決するため、速度制御回路の出力を磁束指
令値で割算し、安定化をはかる方法が提案されている。
In order to solve this drawback, a method has been proposed in which the output of the speed control circuit is divided by the magnetic flux command value to stabilize the output.

しかしながら、磁束の実際値と指令値は過渡状態まで考
えると必らずしも一致していないので、過渡状態におい
ては速度制御系はやはシネ安定になる場合がある。とく
に磁束の指令値が瞬時的に大きく変化するようなとき(
高効率制御などであシうる)には磁束の実際値と指令値
の不一致は無視できず、速度制御系の不安定さが問題に
なる。
However, since the actual value of the magnetic flux and the command value do not necessarily match when considering the transient state, the speed control system may become cine-stable in the transient state. Especially when the magnetic flux command value changes drastically instantaneously (
(This can be done with high-efficiency control, etc.), the discrepancy between the actual value of the magnetic flux and the command value cannot be ignored, and instability of the speed control system becomes a problem.

〔発明の目的〕[Purpose of the invention]

本発明は前記欠点に対してなされたもので、その目的と
するところは界磁の値にかかわらず、速度応答の変化が
少なく、常に安定に運転できる誘導電動機の制御方法を
提供することにある。
The present invention has been made to address the above-mentioned drawbacks, and its purpose is to provide a method for controlling an induction motor that can be operated stably at all times with little change in speed response regardless of the field value. .

〔発明の概要〕[Summary of the invention]

本発明の特徴とするところは速度制御系のルー、プゲイ
ンをほぼ一定に保つため、磁束の実際値に応じて速度制
御系のゲイン調整するようにしたことにある。
The feature of the present invention is that the gain of the speed control system is adjusted in accordance with the actual value of the magnetic flux in order to keep the loop gain of the speed control system substantially constant.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の一実施例を示す。 FIG. 1 shows an embodiment of the invention.

第1図において、1は交流電源で、可変電圧、可変周波
の支流を出力する電力変換器2に電力を供給する。電力
変換器2としては、PWMインバータやサイクロコンバ
ータ等が用いられる。電力変換器2は誘導電動機3に接
続され、誘導電動機3を可変速運転させる。誘導電動機
3の回転速度は誘導電動機3に接続された速度検出器4
によって検出される。速度検出器4で検出された回転速
度に比例する信号は速度指令回路10の出力信号と偏差
をと9速度制御回路11に入力される。速度制御回路1
1は速度検出器4と速度指令回路10の出力信号偏差に
応じて作動し、その出力は誘導電動機のトルクを指令す
る信号となる。速度指令回路10の出力は割算器15に
入力される。
In FIG. 1, 1 is an AC power source that supplies power to a power converter 2 that outputs a variable voltage, variable frequency tributary. As the power converter 2, a PWM inverter, a cycloconverter, or the like is used. The power converter 2 is connected to the induction motor 3 and causes the induction motor 3 to operate at variable speed. The rotational speed of the induction motor 3 is determined by a speed detector 4 connected to the induction motor 3.
detected by. A signal proportional to the rotational speed detected by the speed detector 4 is input to a speed control circuit 11 with a deviation from the output signal of the speed command circuit 10. Speed control circuit 1
1 operates according to the output signal deviation of the speed detector 4 and the speed command circuit 10, and its output becomes a signal for commanding the torque of the induction motor. The output of the speed command circuit 10 is input to a divider 15.

磁束指令回路12は出カ一定制御あるいは高効率制御の
だめの界磁制御を行う磁束指令を出す回路である。たと
えば、出カ一定制御において、磁束指令は速度に反比例
して与えられ、高効率制御において、磁束指令はトルク
に応じて与えられる。
The magnetic flux command circuit 12 is a circuit that issues a magnetic flux command to perform field control for constant output control or high efficiency control. For example, in constant output control, the magnetic flux command is given in inverse proportion to speed, and in high efficiency control, the magnetic flux command is given in accordance with torque.

磁束指令回路12の出力信号は磁束演算回路14の出力
信号と偏差をとシ磁束制御回路13に入力される。磁束
制御回路13は磁束指令回路12と磁束演算回路14の
出力信号偏差に応じて作動し、その出力信号は1次電流
の励磁電流分の指令となる。磁束制御回路13の出力は
磁束演算回路14とベクトル演算回路19に入力される
。磁束演算回路14は磁束制御回路13の出力に基づき
、磁束を演算する。磁束演算回路14の出力は磁束制御
回路13と割算器15.16に入力される。割算器15
は速度制御回路11の出力を磁束演算回路14の出力で
割算し、その出力、すなわち1次電流のトルク電流分の
指令信号をベクトル演算回路19に入力する。割算器1
6は割算器15の出力を磁束演算回路14の出力で割算
し、その出力を加算器17に入力する。割算器16の出
力は誘導電動機3のすベシ周波数の指令である。加算器
17は割算器16と速度検出器4の出方を加算し、誘導
電動機3の1次周波数の指令を演算し、発振器18にそ
の信号を送る。発振器18は加算器17の1次周波数指
令に基づいた正弦波信号を出力し、ベクトル演算回路1
9にそれを入力する。
The output signal of the magnetic flux command circuit 12 is input to the magnetic flux control circuit 13 after the deviation from the output signal of the magnetic flux calculation circuit 14 is determined. The magnetic flux control circuit 13 operates according to the output signal deviation of the magnetic flux command circuit 12 and the magnetic flux calculation circuit 14, and its output signal becomes a command for the excitation current of the primary current. The output of the magnetic flux control circuit 13 is input to a magnetic flux calculation circuit 14 and a vector calculation circuit 19. The magnetic flux calculation circuit 14 calculates magnetic flux based on the output of the magnetic flux control circuit 13. The output of the magnetic flux calculation circuit 14 is input to the magnetic flux control circuit 13 and dividers 15 and 16. Divider 15
divides the output of the speed control circuit 11 by the output of the magnetic flux calculation circuit 14, and inputs the output, that is, a command signal corresponding to the torque current of the primary current, to the vector calculation circuit 19. Divider 1
6 divides the output of the divider 15 by the output of the magnetic flux calculation circuit 14, and inputs the output to the adder 17. The output of the divider 16 is a command for the overall frequency of the induction motor 3. Adder 17 adds the outputs of divider 16 and speed detector 4, calculates a command for the primary frequency of induction motor 3, and sends the signal to oscillator 18. The oscillator 18 outputs a sine wave signal based on the primary frequency command of the adder 17, and outputs a sine wave signal based on the primary frequency command of the adder 17.
Enter it in 9.

ベクトル演算回路19は発振器18の正弦波信号によっ
て割算器15と磁束制御回路13の出力とのベクトル加
算を行い、誘導電動機3の1次電流指令を演算する。電
流検出器2oは誘導電動機3に流れる1次電流を検出す
る。電流検出器2oで検出され7’C1次電流に比例す
る信号はベクトル演算回路19の出力である。1次電流
指令と偏差をとシミ流制御回路21に入力される。電流
制御回路21はベクトル演算回路19と電流検出器20
の出力信号の偏差に応じた信号を出力し、電力変換器2
を動作させる。
The vector calculation circuit 19 performs vector addition of the outputs of the divider 15 and the magnetic flux control circuit 13 using the sine wave signal of the oscillator 18, and calculates a primary current command for the induction motor 3. The current detector 2o detects the primary current flowing through the induction motor 3. The signal detected by the current detector 2o and proportional to the 7'C primary current is the output of the vector calculation circuit 19. The primary current command and the deviation are input to the stain flow control circuit 21. The current control circuit 21 includes a vector calculation circuit 19 and a current detector 20
The power converter 2 outputs a signal according to the deviation of the output signal of
make it work.

次に、動作を説明する。Next, the operation will be explained.

速度制御回路11の出力は誘導電動機3の出方磁束制御
回路13の出力は1次電流の励磁電流分の指令信号I 
L ”である。磁束演算回路14では次の演算によシ誘
導電′lJh機3の磁束Φを演算する。
The output of the speed control circuit 11 is the output of the induction motor 3.The output of the magnetic flux control circuit 13 is the command signal I for the excitation current of the primary current.
The magnetic flux calculation circuit 14 calculates the magnetic flux Φ of the induction electric machine 3 by the following calculation.

ここで、Mは誘導電動機3の励磁インダクタンス、T2
は2次時定数である。割算器15では次の演算を行い、
1次電流のトルク電流分■、ネ、全求める。
Here, M is the excitation inductance of the induction motor 3, T2
is a quadratic time constant. The divider 15 performs the following operation,
Find the torque current component of the primary current.

ここで、klは定数である。さらに割算器16では 1′・・・(4) f8*−Φ の演算を行い、誘導電動機3のすべ多周波数指令f−を
求める。そして加算器17においてf1*=J N+f
81 の演算により、1欠周波数指令f1*上演算する。
Here, kl is a constant. Further, the divider 16 calculates 1'...(4) f8*-Φ to obtain the total multi-frequency command f- of the induction motor 3. Then, in the adder 17, f1*=J N+f
81, the one missing frequency command f1* is calculated.

ここでに、 、 k、は定数で、Nは速度検出器4で検
出される回転速度である。発振器18は1欠周波数指令
f、傘に基づいて の正弦波信号を出力する。この結果、ベクトル演算回路
19では F= I −”a + I t” b =11”sin (2ff ft*t+θ*)   ・
(6)のベクトル演算を行い、1次電流の指令を出力す
る。ここで である。電流制御回路21では電流検出器20で検出し
た1次電流信号1が1次電流指令1*に一致するように
働らき、電力変換器2を動作させる。
Here, , k are constants, and N is the rotational speed detected by the speed detector 4. The oscillator 18 outputs a sine wave signal based on one missing frequency command f. As a result, in the vector calculation circuit 19, F = I - "a + I t" b = 11" sin (2ff ft * t + θ *) ・
The vector calculation in (6) is performed and a primary current command is output. Here it is. The current control circuit 21 operates so that the primary current signal 1 detected by the current detector 20 matches the primary current command 1*, and operates the power converter 2.

以上のように、ベクトル制御を利用して誘導電動機を速
度制御すると直流電動機と同様の高応答制御が行える。
As described above, if the speed of an induction motor is controlled using vector control, high-response control similar to that of a DC motor can be achieved.

このとき、速度制御系の伝達関数のブロック図は第2図
のようになる。第2図において、101はAs凡のゲイ
ン、102は割算器15.103はトルク電流制御系の
閉ループ伝達特性、104はトルク係数、105は機械
系の特性、106は速度検出器4のゲインを表わす。な
お、トルク係数がζΦと表わすことができるのは、トル
クτは(1)式のように τ=ζΦIt             ・・・(8)
とΦとI、の積で表わすことができるからである。
At this time, the block diagram of the transfer function of the speed control system is as shown in FIG. In Fig. 2, 101 is the gain of As, 102 is the divider 15, 103 is the closed loop transfer characteristic of the torque current control system, 104 is the torque coefficient, 105 is the characteristic of the mechanical system, and 106 is the gain of the speed detector 4. represents. The torque coefficient can be expressed as ζΦ because the torque τ is expressed as τ=ζΦIt...(8)
This is because it can be expressed as the product of Φ and I.

第2図のブロック図のループゲインHはとなυ、磁束Φ
の値に無関係となる。このように速度制御口t@llの
出力を磁束Φで割算しているので、速度制御系の特性は
磁束Φに関係なく定まる。したがって、磁束の大きさに
よらず常に高応答速度制御ができ、磁束のに基づく速度
制御系のループゲイン変動がなくなシ、安定した運転を
行うことができる。
The loop gain H in the block diagram of Figure 2 is υ, and the magnetic flux Φ
is unrelated to the value of . Since the output of the speed control port t@ll is divided by the magnetic flux Φ in this way, the characteristics of the speed control system are determined regardless of the magnetic flux Φ. Therefore, high response speed control is always possible regardless of the magnitude of the magnetic flux, and there is no loop gain variation in the speed control system based on the magnetic flux, allowing stable operation.

第3図は本発明の他の実施例を示す。FIG. 3 shows another embodiment of the invention.

第3図において11.14は第1図と同一物、22は入
力である磁束Φと反比例するような信号を出力する関数
発生器、23は掛算器である。第3図の実施例は割算器
15に代わシ関数発生器22と掛算器23を用いている
点に特徴がおる。
In FIG. 3, 11 and 14 are the same as those in FIG. 1, 22 is a function generator that outputs a signal that is inversely proportional to the input magnetic flux Φ, and 23 is a multiplier. The embodiment shown in FIG. 3 is characterized in that a function generator 22 and a multiplier 23 are used instead of the divider 15.

このようにしても速度制御回路11からトルク電流分指
令までの演算は(3)式と同様になシ、第1図のように
速度制御系のループゲインは磁束Φと無関係に定まる。
Even in this case, the calculation from the speed control circuit 11 to the torque current command is not performed in the same manner as in equation (3), and as shown in FIG. 1, the loop gain of the speed control system is determined independently of the magnetic flux Φ.

さらに、第3図の考えを進め、磁束に応じて速度制御回
路11のゲイン特性そのものを変更してもよい。この方
法はマイクロプロセッサを用いてディジタル制御とした
場合に適用し易くなる。
Furthermore, the idea of FIG. 3 may be advanced and the gain characteristic of the speed control circuit 11 itself may be changed depending on the magnetic flux. This method becomes easier to apply when digital control is performed using a microprocessor.

第4図は本発明の他の実施例を示す。FIG. 4 shows another embodiment of the invention.

第4図において、1〜21は第1図と同一部品を示す。In FIG. 4, numerals 1 to 21 indicate the same parts as in FIG. 1.

24.26は掛算器、25は割算器を示す。割算器25
では の演算を行い、すベシ周波数指令f、*を求める。
24 and 26 are multipliers, and 25 is a divider. Divider 25
Then, perform the calculation to obtain the frequency command f, *.

掛算器26は次の演算でトルク電流指令■1*、を求め
る。
The multiplier 26 calculates the torque current command ■1* by the following calculation.

Is”=に5 ω、Φ         ・・・αυこ
こで、k41 kBは定数である。このように、速度制
御回路11の出力からすベシ周波数を求める場合におい
ても、掛算器24と割算器25によって(10)式の演
算を行えば、速度制御系のループゲインは磁束Φによら
ず一定にすることができる。
Is"=5 ω, Φ...αυHere, k41 kB is a constant. In this way, even when calculating the Bessi frequency from the output of the speed control circuit 11, the multiplier 24 and the divider 25 By performing the calculation of equation (10), the loop gain of the speed control system can be made constant regardless of the magnetic flux Φ.

第5図は第4図に示す要部を変えた他の実施例を示す。FIG. 5 shows another embodiment in which the main parts shown in FIG. 4 are changed.

第5図において、11.14は第1図と同一物を示す。In FIG. 5, 11.14 indicates the same thing as in FIG.

27は磁束の2乗値Φ2に反比例する信号を出力する関
数発生器、28は掛算器である。
27 is a function generator that outputs a signal inversely proportional to the square value Φ2 of magnetic flux, and 28 is a multiplier.

掛算器24と割算器25の代わシに関数発生器27と掛
算器28を用いる点に特徴がある。掛算器28の出力は
11式の演算を行っている。
A feature is that a function generator 27 and a multiplier 28 are used instead of the multiplier 24 and divider 25. The output of the multiplier 28 is subjected to the calculation of equation 11.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば磁束の実際値に応
じて速度制御回路のゲインを調整するので磁束にかわら
ず速度制御系のループゲインが一定にできる。その結果
、速度制御系の応答は変らず、常に安定な運転が出来る
As explained above, according to the present invention, the gain of the speed control circuit is adjusted according to the actual value of the magnetic flux, so that the loop gain of the speed control system can be kept constant regardless of the magnetic flux. As a result, the response of the speed control system remains unchanged, allowing stable operation at all times.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構成図、第2図は第1
図の伝達関数のブロック図、第3図、第4図、第5図は
それぞれ本発明の他の実施例を示す構成図である。 2・・・電力変換器、3・・・誘導電動機、11・・・
速度制御回路、12・・・磁束指令回路、13川磁束制
御回路、14・・・磁束演算回路、19・・・ベクトル
演算回路。 軍 2 図 第3 口 第 +図 案 5図 第1頁0つ続き 、7℃:出 願 人 日立京葉エンジニアリング株式%
式%
FIG. 1 is a configuration diagram showing one embodiment of the present invention, and FIG.
The transfer function block diagrams in the figure, FIGS. 3, 4, and 5 are configuration diagrams showing other embodiments of the present invention, respectively. 2... Power converter, 3... Induction motor, 11...
Speed control circuit, 12... Magnetic flux command circuit, 13 River magnetic flux control circuit, 14... Magnetic flux calculation circuit, 19... Vector calculation circuit. Military 2 Figure 3 Mouth + Design Figure 5 Figure 1 Page 0 continued, 7℃: Applicant Hitachi Keiyo Engineering Stock%
formula%

Claims (1)

【特許請求の範囲】[Claims] 1、可変電圧、可変周波の交流電力を出力する電力変換
器、前記電力変換によって駆動される誘導電動機、前記
誘導電動機の回転速度を検出する速度検出器、速度指令
信号と前記速度検出器の出力信号に基づいて前記誘導電
動機の回転速度を制御する速度制御回路を備えた誘導電
動機の制御装置において、前記誘導電動機の速度制御系
の一巡伝達関数のゲインがほぼ一定になるように磁束の
実際値に応じて前記速度制御回路のゲイン調節を行うこ
とを特徴とする誘導電動機の制御方法。
1. A power converter that outputs variable voltage, variable frequency AC power, an induction motor driven by the power conversion, a speed detector that detects the rotational speed of the induction motor, and a speed command signal and the output of the speed detector. In an induction motor control device comprising a speed control circuit that controls the rotational speed of the induction motor based on a signal, the actual value of the magnetic flux is adjusted such that the gain of the open-loop transfer function of the speed control system of the induction motor is approximately constant. A method for controlling an induction motor, characterized in that the gain of the speed control circuit is adjusted according to the speed control circuit.
JP57221891A 1982-12-20 1982-12-20 Controlling method for induction motor Pending JPS59113784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57221891A JPS59113784A (en) 1982-12-20 1982-12-20 Controlling method for induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57221891A JPS59113784A (en) 1982-12-20 1982-12-20 Controlling method for induction motor

Publications (1)

Publication Number Publication Date
JPS59113784A true JPS59113784A (en) 1984-06-30

Family

ID=16773790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57221891A Pending JPS59113784A (en) 1982-12-20 1982-12-20 Controlling method for induction motor

Country Status (1)

Country Link
JP (1) JPS59113784A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0291494U (en) * 1989-01-06 1990-07-19
JPH04183290A (en) * 1990-11-15 1992-06-30 Nippon Reliance Kk Constant output control system for induction motor
JPH04251589A (en) * 1990-12-27 1992-09-07 Fanuc Ltd Induction motor control system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5671486A (en) * 1979-11-12 1981-06-15 Toshiba Corp Control device for induction motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5671486A (en) * 1979-11-12 1981-06-15 Toshiba Corp Control device for induction motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0291494U (en) * 1989-01-06 1990-07-19
JPH04183290A (en) * 1990-11-15 1992-06-30 Nippon Reliance Kk Constant output control system for induction motor
JPH04251589A (en) * 1990-12-27 1992-09-07 Fanuc Ltd Induction motor control system

Similar Documents

Publication Publication Date Title
US4230979A (en) Controlled current inverter and motor control system
US4602199A (en) Control for induction motor drive using load commutated inverter circuit
US3612971A (en) Static converter with dc intermediate circuit for controlling the speed of a three phase motor
JP2000175492A (en) Controller for induction motor
JPH0348749B2 (en)
JP2515903B2 (en) AC motor drive system and control method thereof
US3900779A (en) Starting and regulator device for asynchronous motors with a wound rotor
US4833389A (en) Current source inverter control system for load commutated induction motor drive
US4074174A (en) Controlling apparatus for asynchronous motors with wound rotor
JPS59113784A (en) Controlling method for induction motor
US4044284A (en) Alternating current motor control method and system
US3686551A (en) Synchronous motor field regulator control
JPS6226271B2 (en)
JPH06261584A (en) Control device of ac motor
JPH0213555B2 (en)
JPH10174500A (en) Vector control inverter for induction motor
JP2521985B2 (en) Control method of induction motor
SU1259428A1 (en) Rectifier electric motor
JPH0412698A (en) Control method for voltage type pwm inverter
JPS6412194B2 (en)
JPH0731192A (en) Controller and control method for variable speed drive system
JPS62239886A (en) Control unit for ac motor
JPS607473B2 (en) Control equipment for commutatorless motors
JPH04101692A (en) Dc brushless motor controller
JPS6024674B2 (en) Induction motor speed control device