JPS6072228A - Method for inpurity doping into semiconductor substrate - Google Patents

Method for inpurity doping into semiconductor substrate

Info

Publication number
JPS6072228A
JPS6072228A JP17813183A JP17813183A JPS6072228A JP S6072228 A JPS6072228 A JP S6072228A JP 17813183 A JP17813183 A JP 17813183A JP 17813183 A JP17813183 A JP 17813183A JP S6072228 A JPS6072228 A JP S6072228A
Authority
JP
Japan
Prior art keywords
substrate
film
semiconductor substrate
neutral beam
doping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17813183A
Other languages
Japanese (ja)
Inventor
Kenji Shibata
健二 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17813183A priority Critical patent/JPS6072228A/en
Publication of JPS6072228A publication Critical patent/JPS6072228A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation

Abstract

PURPOSE:To dope impurities without causing a charge-up and breakage of elements by implanting the ions accelerated electrically into a semiconductor substrate after neutralizing the ions by an electron current, followed by annealing by a high-temperature furnace, irradiation with a high-energy beam, heating by a lamp and etc. CONSTITUTION:A p type Si substrate 1 is coated with an SiO2 film 2 and it is etched with using a resist film 3 of the predetermined size as a mask to open the desired apertures 4a and 4b. Next, on the substrate exposed in the apertures 4a and 4b, impurity doped layers 5a and 5b are formed by use of a neutral beam. At this time, the neutral beam is As<+> ion accelerated with 40keV which is then neutralized by an electron current on a way to the substrate. After that, the film 3 is removed and an SiO2 film 6 and a PSG film 7 are deposited with lamination over the whole surface. Then the substrate is subjected a heat treatment at 800-1,000 deg.C to make the layers 5a and 5b into n<+> type shallow source and drain regions 8a and 8b.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は半導体基板への不純物ドーピング方法に係り、
特に単結晶半導体基板、あるいは半導体薄膜に電気的に
中性化した不純物粒子を注入し。
[Detailed description of the invention] [Technical field to which the invention pertains] The present invention relates to a method of doping impurities into a semiconductor substrate,
In particular, electrically neutralized impurity particles are implanted into a single crystal semiconductor substrate or semiconductor thin film.

アニール工程を経て、砒素、はう素、燐などの不純物を
電気的チャージ・アップを゛防ぎながらドーピングする
方法に関する。
The present invention relates to a method of doping impurities such as arsenic, boronic, and phosphorous through an annealing process while preventing electrical charge-up.

〔従来技術とその問題点〕[Prior art and its problems]

周知の如(、半導体装置1例えばMO8型電界効果トラ
ンジスタの製造においては、半導体基板(以下シリコン
基板を用いる)中に不純物おドーピングして、ンース、
ドレイン領域を形成する工程が不可欠である。またダイ
オードやバイポーラトランジスタ等素子の製造において
も不純物ドーピングによりp−N接合を形成することが
不可欠である。
As is well known (in the manufacture of a semiconductor device 1, for example, an MO8 field effect transistor, impurities are doped into a semiconductor substrate (hereinafter referred to as a silicon substrate),
A step of forming a drain region is essential. Furthermore, in the manufacture of elements such as diodes and bipolar transistors, it is essential to form p-N junctions by doping with impurities.

従来、これらの不純物ドーピング法としてはイオン注入
法、不純物を含有したガラス層またはシリコン層による
添加法(いわゆるドープド会オキサイド法またはドープ
ド魯シリコン法)、あるいは高温熱処理炉中のガス相よ
りの拡散法1等が知られている。これらのうち、素子の
高集積化、高速化の観点や、プロセス制御の容易さ、1
辻産化の観点からすれば不純物のドーピング法としては
、イオン注入法が最適であると考えらnる。
Traditionally, methods for doping these impurities include ion implantation, addition using a glass layer or silicon layer containing impurities (so-called doped oxide method or doped silicon method), or diffusion from the gas phase in a high-temperature heat treatment furnace. The first prize is known. Among these, the viewpoints of high integration and high speed of elements, ease of process control,
From the viewpoint of commercialization, ion implantation is considered to be the most suitable impurity doping method.

ところが、イオン注入法においては、イオンが電荷を持
った粒子であるため、イオン注入特に試料表面でチャー
ジ・アップや絶縁破壊などが起こる。特に素子の集積度
が向上し、高速化されてくると1例えばMO81−ラン
ジスタのゲート絶縁膜などは200Å以下となり、絶縁
破壊が起こり易4、 くなっている。また平面的なゲート長寸法も1μmより
小さくなっており、この点からも絶縁破壊は非常に起こ
り易(なっていると言える。この様な状況下では、高ド
ースのイオン注入は細心の注意をして行なう必要があり
、今後ますます素子の寸法が縮小化されて(ると、チャ
ージ・アップ、絶縁破壊1等の問題は深刻になるものと
予想される。
However, in the ion implantation method, since ions are charged particles, charge-up and dielectric breakdown occur during ion implantation, especially on the sample surface. In particular, as the degree of integration of devices increases and speeds increase, the gate insulating film of MO81 transistors, for example, has a thickness of less than 200 Å, making dielectric breakdown more likely to occur. In addition, the planar gate length is smaller than 1 μm, and from this point of view it can be said that dielectric breakdown is extremely likely to occur. Under these circumstances, high-dose ion implantation must be performed with extreme caution. It is expected that problems such as charge-up and dielectric breakdown will become more serious as the dimensions of elements become smaller in the future.

〔発明の目的〕[Purpose of the invention]

本発明は、この様を点に鑑みてなされたもので。 The present invention has been made in view of this point.

不純物を電荷を帯びてない中性ビームとし、これを半導
体基板中に注入することにより、チャージ・アノ・プノ
゛や素子の絶縁破壊を起こさせず−こ不純物をドーピン
グする方法を提供することを目的とする。
An object of the present invention is to provide a method for doping impurities without causing a charge atom or dielectric breakdown of an element by using an uncharged neutral beam as an impurity and injecting the beam into a semiconductor substrate. purpose.

〔発明の概要〕 本発明では、まずあらかじめ不純物をイオン化し、電界
によってこれを加速することによって運動エネルギーを
与えたのち、電子流(e16ctron・shower
 )にてイオンを中性化してやり、この中性ビームを半
導体基板に注入して、その後高温処理、ビームアニーζ
等でアニールすることlこより不純物のドーピングを行
うもので、’P−N接合、たとえばMOSトランジスタ
のソース、ドレイン領域などを形成するものである。
[Summary of the invention] In the present invention, impurities are first ionized in advance, and kinetic energy is given by accelerating them using an electric field.
) to neutralize the ions, and this neutral beam is implanted into the semiconductor substrate, followed by high temperature treatment and beam annealing.
This method is used to dope impurities by annealing, for example, to form PN junctions, such as source and drain regions of MOS transistors.

〔発明の効果〕〔Effect of the invention〕

本発明により、超微細パターンのトランジスタダイオー
ド、キャパシター、等の素子を再現性よ(、精度よく形
成し、これらを配線パターンにより結合させることによ
り超高密集積回路を製作することが可能となった。特に
SOSデバイスのように個々の素子が電気的に完全lこ
絶縁分離されている様な構造のデバイスには本発明の効
果が顕著に現われる。
According to the present invention, it has become possible to fabricate ultra-high density integrated circuits by forming elements such as transistor diodes and capacitors with ultra-fine patterns with high reproducibility (and precision) and connecting them with wiring patterns. The effects of the present invention are particularly noticeable in devices such as SOS devices in which individual elements are electrically completely isolated.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例について述べるが、まずシリコン
集積回路製造工程に於ける砒素不純物による浅いp、n
 、q5合を形成する方法を図面を用いて説明する。
Examples of the present invention will be described below. First, shallow p, n
, q5 will be explained using the drawings.

〔実施例1〕 第1図(alは1例えば、比抵抗約10Ω−cmのp型
シリコン基体1の−1面上に酸化膜2を、例えば厚さ約
3000Xに形成し1周知の写真蝕刻法を用いてレジス
ト3をマスクとし、所定のn 形成領域lこ開口部4′
−a 、 4 bを穿設したものである。次に第1図(
b)に示す如く、開口部4a、4bによって露呈させた
シリコン基体中に本発明1こよる中性ビームにより、不
純物注入層5 a 、、5 bを形成する。この中性ビ
ームは、あらかじめ砒素イオンを40Kevで加速した
ものをシリコン基板まで導く途中で電子流によって中性
化するもので、その飛程距離は、40KeVのイオン注
入の場合とほぼ同等であった。中性ビームのドー、<l
itはイオンビームの一部をシリコン基板以外のターゲ
ットに導き。
[Example 1] FIG. 1 (al is 1, for example, an oxide film 2 is formed to a thickness of about 3000× on the -1 side of a p-type silicon substrate 1 having a specific resistance of about 10 Ω-cm, Using the resist 3 as a mask, a predetermined n-formation area l is formed with an opening 4'.
-a and 4b are drilled. Next, Figure 1 (
As shown in b), impurity implantation layers 5 a , 5 b are formed in the silicon substrate exposed through the openings 4 a and 4 b using the neutral beam according to the present invention. In this neutral beam, arsenic ions are accelerated at 40 KeV in advance and are neutralized by an electron flow as they are guided to the silicon substrate, and the range is almost the same as that of 40 KeV ion implantation. . Neutral beam do, <l
IT directs part of the ion beam to a target other than the silicon substrate.

この電流値よりモニターすることによって決定できる。It can be determined by monitoring this current value.

また中性ビーム照射時の注入マスクとしては酸化膜2だ
けでも十分であるが、レジスト3もマスクとして同時に
使用することもできる。次いでレジスト3を剥離した後
、第1図(C)に示す様周知(7)CVD法等を用いて
、約300OA(7)SiOt膜6及びリンガラス膜7
を重ねて堆積する。そして、これら全体を800〜10
00℃の温度下で熱処理すると、第1図(dlに示す様
に、浅く高濃度のn 層8a、8bが得られる。このn
 層は以後の工程(図示セス)#こより、例えばMOS
トランジスタのソース、ドレインとして使用する。
Further, although the oxide film 2 alone is sufficient as an implantation mask during neutral beam irradiation, the resist 3 can also be used as a mask at the same time. Next, after peeling off the resist 3, as shown in FIG.
are deposited in layers. And the total of these is 800 to 10
When heat-treated at a temperature of 00°C, shallow, high-concentration n layers 8a and 8b are obtained, as shown in Figure 1 (dl).
The layer is formed by the subsequent process (the process shown in the figure), for example, MOS.
Used as the source and drain of a transistor.

本発明の重要な特徴は、イオン注入法の利点を生かしな
がらチャージアップ、素子絶縁破壊を防いだ不純物ドー
ピング法である。従って、不純物導入には方向性があり
、不純物導入後の高温熱処理時に基体表面に沿った横方
向の拡散床がり(上記実施例の第1図に於ける酸化膜マ
スク下への不純物のまわり込み)がかなり抑制される。
An important feature of the present invention is an impurity doping method that takes advantage of the advantages of ion implantation while preventing charge-up and device dielectric breakdown. Therefore, impurity introduction has a directionality, and during high-temperature heat treatment after impurity introduction, a lateral diffusion bed along the substrate surface (the impurity wraps around under the oxide film mask in Figure 1 of the above example). ) is considerably suppressed.

このことは集積回路の素子の微細化、高密度化を指向す
る際に極めて都合が良い、。また不純物濃度の制御性、
均一性はイオン注入の特徴がそのまま活かされて良好で
あることは言うまでもない。
This is extremely convenient when aiming for miniaturization and higher density of integrated circuit elements. Also, controllability of impurity concentration,
Needless to say, the uniformity is good because the characteristics of ion implantation are utilized as they are.

また、中性ビーム照射後の熱処理を酸化性雰囲気にて行
なえば、シリーン中の砒素を拡散する場合等は、オキサ
イド−シリコン基体界面に於ける砒素不純物の偏析効果
を活用できる。
Furthermore, if the heat treatment after neutral beam irradiation is performed in an oxidizing atmosphere, the segregation effect of arsenic impurities at the oxide-silicon substrate interface can be utilized when arsenic in silicone is diffused.

さらζζ本発明の他の実相例として、npnl−ランジ
スタの製造方法を取り上げ5%に、n 砒素埋め込み層
の形成方法に本発明の特徴が活かされる態様を1図面を
用いて説明する。
Further, as another practical example of the present invention, a method for manufacturing an npnl transistor will be taken up, and an embodiment in which the features of the present invention are utilized in a method for forming an n-arsenic buried layer will be described with reference to one drawing.

〔実施例2〕 第2図に於いて、先ず、鏡面研磨された、例えば比抵抗
〜20Ω−cmの、p型シリコン基体21の一生面に拡
散防止マスクとして作用する酸化シリコン膜22を厚さ
2000〜5000A程度に形成し、周知の写真蝕刻法
を用いてレジスト23をマスクとし、所定の拡散領域に
開口部24を穿設する。次に、開口部24によって露呈
させたシリコン基板表面に浅((例えば、400A以下
〕高濃度(例えば3 X 10 ” 7cm”以上ンの
砒素によるn+)A25を形成する+a+。この時中性
ビームは前述の実施例と同じ<、40KeVに加速した
イオンビームを電子流で中性化したものを用いる。また
中性ビーム注入に際してレジスト23はなくてもよい。
[Example 2] In FIG. 2, first, a silicon oxide film 22 acting as a diffusion prevention mask is deposited on the entire surface of a mirror-polished p-type silicon substrate 21 having a specific resistance of, for example, 20 Ω-cm. The resist 23 is used as a mask to form an opening 24 in a predetermined diffusion region using a well-known photolithography method. Next, a shallow (for example, 400 A or less) high concentration (for example, 3 x 10 "7 cm or more n+ with arsenic) A25 is formed on the surface of the silicon substrate exposed by the opening 24. At this time, a neutral beam The same as in the previous embodiment, an ion beam accelerated to 40 KeV and neutralized by electron flow is used. Also, the resist 23 may be omitted during the neutral beam implantation.

次いでレジスト23を剥離後、砒素不純物の外への拡散
out−dlffusionを防止する等の目的で酸化
シリコン膜24を厚さ100OA程度形成し、醸化性雰
囲気中で加熱処理してn+コレクタ埋め込み層27を形
成するFbl。続いて、前記シリコン酸化膜26及び2
2、等を全て除去して清浄、平滑な被エピタキシャル表
面28を露呈させる(C1゜次ζこ、前記被エピタキシ
ャル表面28上n型シリコンエピタキシャル層29を形
成する(di。この際、前記埋め込み層27はエピタキ
シャル層中にも浸透拡散し、改めて埋め込み層30を構
成する。
Next, after peeling off the resist 23, a silicon oxide film 24 is formed to a thickness of about 100 OA for the purpose of preventing out-dlffusion of arsenic impurities, and is heat-treated in a nurturing atmosphere to form an n+ collector buried layer. Fbl forming 27. Subsequently, the silicon oxide films 26 and 2
2, etc. to expose a clean and smooth epitaxial target surface 28 (C1 degree ζ), an n-type silicon epitaxial layer 29 is formed on the epitaxial target surface 28 (di. At this time, the buried layer 27 also permeates and diffuses into the epitaxial layer, forming the buried layer 30 again.

以後は、トランジスタをエピタキシャル層内の他の素子
又は回路から電気的絶縁する為のp++拡散分離層31
a〜31b、コレクタ引き出しn+型型数散層32p型
ベース領域33、n++エミッタ領域34.拡散マスク
としても使用されるシリコン表面保護絶縁膜35.電極
36a〜36dτ 等を具備したnpnトランジスタを形成するtel。
Thereafter, a p++ diffusion isolation layer 31 is used to electrically isolate the transistor from other elements or circuits in the epitaxial layer.
a to 31b, collector extraction n+ type scattering layer 32, p type base region 33, n++ emitter region 34. Silicon surface protection insulating film 35, also used as a diffusion mask. A tel forming an npn transistor including electrodes 36a to 36dτ and the like.

上記実施例では、シリコン中へ砒素不純物をこよるn 
コレクタ形成の場合ζこ就いて述べたが、砒素と同様、
シリコン中での熱拡散係数が小さいアンチモン不純物を
用いたn 埋め込み層を形成する場合にも1本発明を適
用できる。又、上記実施例では1選択領域への埋め込み
層形成に就いて述べたが1例えば基板上の一生面全体へ
n+層を形成する工程を含む半導体装置の製造に於いて
も。
In the above embodiment, arsenic impurities are introduced into silicon.
In the case of collector formationζAs mentioned above, as with arsenic,
The present invention can also be applied to the case of forming an n buried layer using antimony impurity having a small thermal diffusion coefficient in silicon. Furthermore, although the above embodiments have been described with respect to forming a buried layer in one selected region, the present invention may also be applied to the manufacture of a semiconductor device that includes a step of forming an n+ layer over the entire surface of a substrate, for example.

本発明を適用できる。さら擾こ、npn トランジスタ
の−p 埋め込み層の形成や、基板の一生面全体へp+
層を形成し、その上に半導体膜を設ける工程を含む半導
体装置の製造に際しても、上記実施例を変形応用できる
。又、実施例の如(、基体に対して逆導電型となる様な
不純物のみならず、基体と同じ導電型を与える様な不純
物を、基体主面の所定領域若しくは基体主面全体へ中性
ビーム注入し、然る後、この主面上へ半導体膜を設ける
工程を含む半導体装置を製造する場合等にも1本発明を
適宜変形応用できる。
The present invention can be applied. Furthermore, it is possible to form a -p buried layer of an npn transistor, or to add p+ to the entire surface of a substrate.
The above embodiments can also be modified and applied to the manufacturing of a semiconductor device including a step of forming a layer and providing a semiconductor film thereon. In addition, as in the embodiment, not only impurities that have the opposite conductivity type to the substrate, but also impurities that give the same conductivity type as the substrate, are added to a predetermined region of the main surface of the substrate or to the entire main surface of the substrate. The present invention can be appropriately modified and applied to the case of manufacturing a semiconductor device including a step of performing beam injection and then forming a semiconductor film on the main surface.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(al〜(dlはこの発明の一実施例の製造工程
断面図、第2図(al〜(elはこの発明の他の実施例
の製造工程断面図である。 図において。 1.21・・・シリコン基板、2.22・・・シリコン
酸化膜、5a、5b、25・・・不純物注入層、6゜2
6・・・シリコン酸化膜、7・・・リンガラス層、8a
。 8b・・・n 層、29・・・エピタキシャル層、30
・・・n+埋め込み層、31a、31b・・・p++散
分離層、32・・・n コレクタ領域、33・・・p 
ペース領域、34・−・n+エミッタ領域、35・・・
表面保護絶縁膜、36a〜36d・・・電極。 代理人弁理士 則 近 憲 佑(ほか1名)第1図 (−J) CC) (d) 第 2 図 (θ7)
FIG. 1 (al~(dl) is a sectional view of the manufacturing process of one embodiment of the present invention, and FIG. 2 (al~(el) is a sectional view of the manufacturing process of another embodiment of the invention. In the figures. 21... Silicon substrate, 2.22... Silicon oxide film, 5a, 5b, 25... Impurity implantation layer, 6°2
6... Silicon oxide film, 7... Phosphorus glass layer, 8a
. 8b...n layer, 29... epitaxial layer, 30
...n+ buried layer, 31a, 31b...p++ dispersion layer, 32...n collector region, 33...p
Pace area, 34...n+ emitter area, 35...
Surface protection insulating film, 36a to 36d...electrode. Representative patent attorney Kensuke Chika (and 1 other person) Figure 1 (-J) CC) (d) Figure 2 (θ7)

Claims (1)

【特許請求の範囲】[Claims] 電気的に加速したイオンを電子流をこより中性化したの
ち半導体基板に注入し、その後高温炉、高エネルギービ
ーム照射、ランプ加熱などによりアニールする工程を伴
なったことを特徴とする半導体基板への不純物ドーピン
グ方法。
A semiconductor substrate characterized by a step of injecting electrically accelerated ions into a semiconductor substrate after neutralizing them through an electron flow, and then annealing them in a high-temperature furnace, high-energy beam irradiation, lamp heating, etc. impurity doping method.
JP17813183A 1983-09-28 1983-09-28 Method for inpurity doping into semiconductor substrate Pending JPS6072228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17813183A JPS6072228A (en) 1983-09-28 1983-09-28 Method for inpurity doping into semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17813183A JPS6072228A (en) 1983-09-28 1983-09-28 Method for inpurity doping into semiconductor substrate

Publications (1)

Publication Number Publication Date
JPS6072228A true JPS6072228A (en) 1985-04-24

Family

ID=16043188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17813183A Pending JPS6072228A (en) 1983-09-28 1983-09-28 Method for inpurity doping into semiconductor substrate

Country Status (1)

Country Link
JP (1) JPS6072228A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63126220A (en) * 1986-11-14 1988-05-30 Mitsubishi Electric Corp Impurity doping method
US5079609A (en) * 1988-12-28 1992-01-07 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having dielectric breakdown protection element and method of fabricating same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5787056A (en) * 1980-09-24 1982-05-31 Varian Associates Method and device for strengthening neutralization of ion beam of positive charge

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5787056A (en) * 1980-09-24 1982-05-31 Varian Associates Method and device for strengthening neutralization of ion beam of positive charge

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63126220A (en) * 1986-11-14 1988-05-30 Mitsubishi Electric Corp Impurity doping method
US5079609A (en) * 1988-12-28 1992-01-07 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having dielectric breakdown protection element and method of fabricating same

Similar Documents

Publication Publication Date Title
US5900652A (en) Apparatus for the localized reduction of the lifetime of charge carriers, particularly in integrated electronic devices
US4922315A (en) Control gate lateral silicon-on-insulator bipolar transistor
JPH05347383A (en) Manufacture of integrated circuit
US4797372A (en) Method of making a merge bipolar and complementary metal oxide semiconductor transistor device
JPH0361337B2 (en)
US4343080A (en) Method of producing a semiconductor device
US4502894A (en) Method of fabricating polycrystalline silicon resistors in integrated circuit structures using outdiffusion
EP0519592B1 (en) Self-aligned planar monolithic integrated circuit vertical transistor process
US5151378A (en) Self-aligned planar monolithic integrated circuit vertical transistor process
JPH0235460B2 (en)
US3729811A (en) Methods of manufacturing a semiconductor device
US4247343A (en) Method of making semiconductor integrated circuits
JP2002359373A (en) Semiconductor device and its manufacturing method
JPS6072228A (en) Method for inpurity doping into semiconductor substrate
JP3792930B2 (en) Method for forming ultra-thin SOI electrostatic discharge protection element
EP0193992A2 (en) Method of manufacturing an insulated gate field effect device
EP0224712A2 (en) Integrated device comprising bipolar and complementary metal oxide semiconductor transistors
JPS5854502B2 (en) Manufacturing method of semiconductor device
KR950012742B1 (en) Method for simultaneously fabricating bipolar and complementar and complementary field transistors
JPH0567623A (en) Manufacture of semiconductor device
KR19980057870A (en) Static electricity protection diode and manufacturing method thereof
JPS61139057A (en) Manufacture of semiconductor integrated circuit device
JPS63144567A (en) Manufacture of semiconductor device
JPH09129884A (en) Soi thin film field-effect transistor and its manufacture
JPH0637097A (en) Semiconductor device and manufacture thereof