JPS63126220A - Impurity doping method - Google Patents
Impurity doping methodInfo
- Publication number
- JPS63126220A JPS63126220A JP27261086A JP27261086A JPS63126220A JP S63126220 A JPS63126220 A JP S63126220A JP 27261086 A JP27261086 A JP 27261086A JP 27261086 A JP27261086 A JP 27261086A JP S63126220 A JPS63126220 A JP S63126220A
- Authority
- JP
- Japan
- Prior art keywords
- insulator
- ions
- sample
- neutral
- impurity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 29
- 239000012535 impurity Substances 0.000 title claims abstract description 28
- 230000007935 neutral effect Effects 0.000 claims abstract description 18
- 239000012212 insulator Substances 0.000 claims abstract description 17
- 239000004065 semiconductor Substances 0.000 claims abstract description 13
- 239000002245 particle Substances 0.000 claims description 16
- 230000003472 neutralizing effect Effects 0.000 claims description 2
- 230000000704 physical effect Effects 0.000 claims 1
- 150000002500 ions Chemical class 0.000 abstract description 25
- 238000005468 ion implantation Methods 0.000 abstract description 14
- 230000000694 effects Effects 0.000 abstract description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 abstract description 6
- 239000007789 gas Substances 0.000 abstract description 5
- 229910052786 argon Inorganic materials 0.000 abstract description 3
- 235000012431 wafers Nutrition 0.000 description 8
- 238000006386 neutralization reaction Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 4
- 238000010894 electron beam technology Methods 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 238000002513 implantation Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910015900 BF3 Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 1
- 230000005591 charge neutralization Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000010885 neutral beam injection Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、電気的特性を制御するために、半導体基板
に不純物を添加する方法に関し、特に、不純物を加速し
、打ち込む不純物添加方法に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method of adding impurities to a semiconductor substrate in order to control electrical characteristics, and particularly relates to an impurity addition method of accelerating and implanting impurities. It is.
従来、不純物の半導体へのドーピング法として広範囲に
イオン注入法が用いられている。このイオン注入法は、
目的の量を目的の位置へ精度よくドーピングできる方法
である。又この方法は、その応用として半導体や絶縁物
の表面特性を精度よく変更する場合に用いられてきた。Conventionally, ion implantation has been widely used as a method for doping impurities into semiconductors. This ion implantation method is
This is a method that allows doping in the desired amount to the desired location with high precision. This method has also been used to accurately change the surface characteristics of semiconductors and insulators.
第3図によく使用されているイオン注入機の模式図を記
載した。以下、この図により動作について説明する。FIG. 3 shows a schematic diagram of a commonly used ion implanter. The operation will be explained below with reference to this figure.
イオンソース部1で発生したイオンは引き出されて、磁
界を利用した分析部2に入り、希望するイオンが選択さ
れる。選択されたイオンは、加速部3で所望のエネルギ
ーに加速され、ビームライン4と呼ばれる箇所でビーム
の成形又は走査が行なわれ、試料室5にあるウェハに打
ち込まれる。Ions generated in the ion source section 1 are extracted and enter an analysis section 2 using a magnetic field, where desired ions are selected. The selected ions are accelerated to a desired energy in an accelerator 3, beam-shaped or scanned at a location called a beam line 4, and then implanted into a wafer in a sample chamber 5.
なお、イオンソース部1より引き出されるエネルギーの
みでイオン注入を行なう場合は、加速部3が不要であり
、このタイプのイオン注入機も一般的に使用されている
。又、ビーム電流1mA以上の大電流イオン注入機の場
合は、ビームライン4でビーム成形や走査等を行なわず
、スリット等でビームの形を決めているだけの場合が多
い。その場合は、試料室5において、ウェハをディスク
に装填してそのディスクを回転することで、ウェハに均
一にビームが照射する機構となっている。Note that when ion implantation is performed using only the energy extracted from the ion source section 1, the acceleration section 3 is not necessary, and this type of ion implanter is also commonly used. Furthermore, in the case of a large current ion implanter with a beam current of 1 mA or more, beam shaping, scanning, etc. are not performed in the beam line 4, and the shape of the beam is often determined by a slit or the like. In that case, the wafer is loaded onto a disk in the sample chamber 5, and the disk is rotated to uniformly irradiate the wafer with a beam.
従来のイオン注入装置による不純物添加方法では、ウェ
ハ等の試料にビームを照射する場合、イオンが電荷を帯
びているために絶縁物が帯電するという現象が発生する
。シリコン等の半導体に不純物を添加するにあたり、シ
リコン表面が二酸化シリコン、窒化シリコン、フォトレ
ジスト等の絶縁物で覆われている場合や、バターニング
されている場合など、イオン注入などの荷電ビームを利
用した不純物の添加では、帯電により絶縁物の静電破壊
や不純物の注入不均一を発生する。In a conventional impurity addition method using an ion implantation device, when a sample such as a wafer is irradiated with a beam, a phenomenon occurs in which the insulator becomes electrically charged because the ions are electrically charged. When adding impurities to semiconductors such as silicon, charged beams such as ion implantation are used when the silicon surface is covered with an insulating material such as silicon dioxide, silicon nitride, or photoresist, or is buttered. When such impurities are added, charging causes electrostatic breakdown of the insulator and non-uniform impurity implantation.
この現象は、ビーム電流1mA以上の大電流イオン注入
を行なう場合、特に顕著に現れるが、1mA以下の場合
でも荷電ビームを利用している限り発生するものである
。This phenomenon is particularly noticeable when performing large current ion implantation with a beam current of 1 mA or more, but it occurs even when the beam current is 1 mA or less as long as a charged beam is used.
この帯電現象を緩和する1つの方法として、帯電した表
面電位を下げる目的で、電子線照射を行なう方法が提供
されている。しかし、イオン注入される試料の状態、パ
ターン形状によりウェハの帯電状況はそれぞれ異なって
くるため、電子線照射量の制御をリアルタイムに制御し
なくてはならない。電子線照射量が過多になると、今度
は逆に試料表面が負に帯電し、この影響で絶縁破壊等を
発生し、ウェハからの良品取れ率を大きく損なう。As one method for alleviating this charging phenomenon, a method has been proposed in which electron beam irradiation is performed for the purpose of lowering the charged surface potential. However, since the charging status of the wafer varies depending on the state of the sample into which ions are implanted and the pattern shape, the electron beam irradiation amount must be controlled in real time. If the amount of electron beam irradiation becomes excessive, the surface of the sample will become negatively charged, and this effect will cause dielectric breakdown and the like, greatly reducing the yield of good products from wafers.
このように、電子線照射による中性化は、制御が困難で
実用化が難しい。As described above, neutralization by electron beam irradiation is difficult to control and difficult to put into practical use.
この発明は上記のような問題点を解消するためって不純
物を添加するのとほとんど同等の性能を有する半導体装
置を得ることのできる不純物添加方法を提供することを
目的とする。SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, it is an object of the present invention to provide an impurity addition method that can obtain a semiconductor device having almost the same performance as that obtained by adding impurities.
この発明に係る不純物添加方法は、半導体又は絶縁物に
中性粒子を打ち込むようにしたものである。The impurity addition method according to the present invention is such that neutral particles are implanted into a semiconductor or an insulator.
この発明においては、半導体又は絶縁物に中性粒子を打
ち込んで不純物を注入することにより、試料表面の絶縁
物を帯電することなく、イオン注入法とほとんど同等の
不純物添加の効果を得ることができる。In this invention, by implanting impurities by implanting neutral particles into a semiconductor or insulator, it is possible to obtain an impurity addition effect almost equivalent to that of ion implantation without charging the insulator on the surface of the sample. .
荷電ビームを用いて不純物添加を行なう限りにおいては
、絶縁物の帯電はその中性化機構がない限り本質的には
避けられず、またそのような機構を実現することは装置
が複雑となり困難である。As long as impurities are added using a charged beam, charging of the insulator is essentially unavoidable unless there is a mechanism for neutralizing it, and realizing such a mechanism requires complicated equipment and is difficult. be.
本発明による中性ビームを用いる方法では、ビームによ
る荷電粒子の帯電はなく、わずかにビームが絶縁物表面
に衝突することにより発生する二次電子の離乳に起因す
る電位上昇があるだけである。これは、従来のイオン注
入法によるビーム量に対する帯電量に比較すれば、はと
んど無視できる位に小さい。In the method using a neutral beam according to the present invention, there is no charging of charged particles by the beam, and there is only a slight increase in potential due to weaning of secondary electrons generated when the beam collides with the insulator surface. This is so small that it can be ignored compared to the amount of charge relative to the beam amount in conventional ion implantation methods.
以下、本発明の実施例を図について説明する。Embodiments of the present invention will be described below with reference to the drawings.
中性ビーム注入を実現するには、いくつかの方法が考え
られるが、まず第1図に示したように、中性ビーム源6
より引き出したビームを、直接ビームライン7を通過さ
せ、試料室5に装填されているウェハなどの試料に打ち
込む方法がある。中性ビーム源6としては、一度イオン
を放電等で発生させ、それを所望のエネルギーで引き出
しアルゴンガス等に電圧を印加し電位を発生させて、こ
の電子と引き出されたイオンとを再結合させる構造のも
のなどがある。Several methods can be considered to achieve neutral beam injection, but first, as shown in Figure 1, a neutral beam source 6 is
There is a method in which the beam that has been extracted further is directly passed through the beam line 7 and is struck into a sample such as a wafer loaded in the sample chamber 5. As the neutral beam source 6, ions are once generated by electric discharge, etc., and then extracted with a desired energy, a voltage is applied to argon gas, etc. to generate a potential, and these electrons and the extracted ions are recombined. There are structural ones.
次に第2図に示したように、従来のイオン注入装置に電
荷中性化機構9を付加した装置により、中性粒子を注入
する方法がある。この場合は、イオン源1より引き出し
たイオンから分析部2で所望のイオンを選択し、加速部
3で加速し、ビームライン4を通過させた後にイオン中
性化機構部9を通過させることにより、中性粒子として
試料室5に導くことができる。なお、イオン中性化機構
9は、アルゴンガス、窒素ガスを満たした気密室を設け
ることで実現できる。このガスの中を通過するイオンは
(■i突し再結合して中性化し、試料室5へ導かれる。Next, as shown in FIG. 2, there is a method of injecting neutral particles using a conventional ion implantation device with a charge neutralization mechanism 9 added thereto. In this case, desired ions are selected in the analysis section 2 from among the ions extracted from the ion source 1, accelerated in the acceleration section 3, passed through the beam line 4, and then passed through the ion neutralization mechanism section 9. , can be introduced into the sample chamber 5 as neutral particles. Note that the ion neutralization mechanism 9 can be realized by providing an airtight chamber filled with argon gas or nitrogen gas. The ions passing through this gas collide and recombine to become neutralized, and are led to the sample chamber 5.
また、中性化機構9は、このガスによるものである必要
はなく、電子を発生させ、プラズマ状態でイオンに供給
し、再結合を起こすことでも実現可能である。この第2
図による方法の場合、はとんどイオン注入と同程度の不
純物注入法としての効果を得ることができる。Further, the neutralization mechanism 9 does not need to be based on this gas, and can also be realized by generating electrons, supplying them to ions in a plasma state, and causing recombination. This second
In the case of the method shown in the figure, the effect as an impurity implantation method can be almost the same as that of ion implantation.
このように中性ビーム粒子を利用することで、従来のイ
オン注入法で問題になった絶縁物の帯電による静電破壊
、注入不均一性はなくなる。そのため、ウェハ等に半導
体素子を形成する場合、密度の高いビームを利用するこ
とができ、不純物濃度の高い層、例えばモス型トランジ
スタのソース・ドレイン電極、バイポーラ型トランジス
タのエミッタ電極形成では、帯電の影響を考える必要が
なく、注入装置の性能を十分に利用することができる。By using neutral beam particles in this way, problems with conventional ion implantation methods, such as electrostatic breakdown caused by charging of insulators and non-uniform implantation, are eliminated. Therefore, when forming semiconductor elements on wafers etc., a high-density beam can be used, and when forming layers with high impurity concentration, such as source/drain electrodes of MOS type transistors and emitter electrodes of bipolar type transistors, it is possible to use a high-density beam. There is no need to consider the effects, and the performance of the injection device can be fully utilized.
なお、荷電粒子の中性化は100%である必要はなく、
50%以上であれば中性化された粒子と言える。また、
50%以下の中性化率であっても、絶縁物の帯電防止に
はかなりの成果を得ることができる。Note that the neutralization of charged particles does not need to be 100%,
If it is 50% or more, it can be said that the particles are neutralized. Also,
Even with a neutralization rate of 50% or less, considerable results can be obtained in preventing static electricity on insulators.
また、中性粒子としては、ホウ素や砒素等の原子、ある
いはフン化ホウ素等の分子を用いることが可能である。Further, as the neutral particles, atoms such as boron and arsenic, or molecules such as boron fluoride can be used.
以上のように、この発明に係る不純物添加方法によれば
、半導体又は絶縁物に中性粒子を打ち込むようにしたの
で、荷電ビームを利用する従来のイオン注入機の適用範
囲をすべてカバーし、更に絶縁物の帯電を抑制すること
ができ、静電破壊を引き起こすことを防止でき、半導体
素子の良品取れ率を大幅に上げることができ、信頼性の
高い製品を得られる効果がある。As described above, according to the impurity doping method according to the present invention, neutral particles are implanted into a semiconductor or an insulator, so that it covers all the applicable ranges of conventional ion implanters that use a charged beam, and It is possible to suppress the charging of insulators, prevent electrostatic damage from occurring, greatly increase the yield of non-defective semiconductor devices, and have the effect of obtaining highly reliable products.
第1図はこの発明の一実施例による不純物添加の装置を
示す模式図、第2図はこの発明の他の実畑例による不純
物添加の装置を示す模式図、第3図は従来のイオン注入
機を模式的に示した図である。
■はイオンソース部、2は分析部、3は加速部、4はビ
ームライン、5は試料室、6は中性ビーム源、7は中性
ビームのビームライン、9はイオン中性化機構部。
なお、図中、同一符号は同−又は相当部分を示す。FIG. 1 is a schematic diagram showing an impurity doping device according to an embodiment of the present invention, FIG. 2 is a schematic diagram showing an impurity doping device according to another field example of the present invention, and FIG. 3 is a schematic diagram showing a conventional ion implantation device. FIG. ■Ion source section, 2 analysis section, 3 acceleration section, 4 beam line, 5 sample chamber, 6 neutral beam source, 7 neutral beam beam line, 9 ion neutralization mechanism section . In addition, in the figures, the same reference numerals indicate the same or corresponding parts.
Claims (3)
を添加する方法において、 上記半導体又は絶縁物に中性粒子を打ち込むことことを
特徴とする不純物添加方法。(1) A method for adding impurities to control the physical properties of a semiconductor or insulator, which method comprises implanting neutral particles into the semiconductor or insulator.
所定のエネルギーに加速したものであることを特徴とす
る特許請求の範囲第1項記載の不純物添加方法。(2) The above neutral particles are extracted directly from the neutral particle source,
2. The impurity addition method according to claim 1, wherein the impurity addition method is performed by accelerating the impurity to a predetermined energy.
しこれを所定のエネルギーに加速した後に中性化したも
のであることを特徴とする特許請求の範囲第1項記載の
不純物添加方法。(3) The impurity addition method according to claim 1, wherein the neutral particles are obtained by extracting charged particles from a charged particle source, accelerating them to a predetermined energy, and then neutralizing them.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27261086A JPS63126220A (en) | 1986-11-14 | 1986-11-14 | Impurity doping method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27261086A JPS63126220A (en) | 1986-11-14 | 1986-11-14 | Impurity doping method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63126220A true JPS63126220A (en) | 1988-05-30 |
Family
ID=17516328
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27261086A Pending JPS63126220A (en) | 1986-11-14 | 1986-11-14 | Impurity doping method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63126220A (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53136798A (en) * | 1977-05-05 | 1978-11-29 | Ibm | Ion beam bombardment device |
JPS5787056A (en) * | 1980-09-24 | 1982-05-31 | Varian Associates | Method and device for strengthening neutralization of ion beam of positive charge |
JPS59196600A (en) * | 1983-04-21 | 1984-11-07 | 工業技術院長 | Neutral particle implanting method and its device |
JPS6072228A (en) * | 1983-09-28 | 1985-04-24 | Toshiba Corp | Method for inpurity doping into semiconductor substrate |
JPS6147048A (en) * | 1984-08-10 | 1986-03-07 | Hitachi Ltd | Device for preventing electrification of target of ion implantation device |
JPS61153938A (en) * | 1984-12-27 | 1986-07-12 | Ulvac Corp | Charge neutralizing device in ion implanting apparatus |
-
1986
- 1986-11-14 JP JP27261086A patent/JPS63126220A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53136798A (en) * | 1977-05-05 | 1978-11-29 | Ibm | Ion beam bombardment device |
JPS5787056A (en) * | 1980-09-24 | 1982-05-31 | Varian Associates | Method and device for strengthening neutralization of ion beam of positive charge |
JPS59196600A (en) * | 1983-04-21 | 1984-11-07 | 工業技術院長 | Neutral particle implanting method and its device |
JPS6072228A (en) * | 1983-09-28 | 1985-04-24 | Toshiba Corp | Method for inpurity doping into semiconductor substrate |
JPS6147048A (en) * | 1984-08-10 | 1986-03-07 | Hitachi Ltd | Device for preventing electrification of target of ion implantation device |
JPS61153938A (en) * | 1984-12-27 | 1986-07-12 | Ulvac Corp | Charge neutralizing device in ion implanting apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100876049B1 (en) | Methods and apparatus for plasma doping and ion implantation in integrated processing systems | |
Rimini | Ion implantation: basics to device fabrication | |
US6020592A (en) | Dose monitor for plasma doping system | |
Rubin et al. | Ion implantation in silicon technology | |
KR20080010061A (en) | Plasma based ion implantation apparatus | |
EP1438735B1 (en) | Methods and apparatus for plasma doping by anode pulsing | |
JP2006019048A (en) | Manufacturing method of ion implantation device and semiconductor device | |
JP7343445B2 (en) | Ion beam control over a wide range of beam current operation | |
JPS63126220A (en) | Impurity doping method | |
US5434423A (en) | System and method for optimizing placement of dopant upon semiconductor surface | |
US6982215B1 (en) | N type impurity doping using implantation of P2+ ions or As2+ Ions | |
JP2616423B2 (en) | Ion implanter | |
KR950002182B1 (en) | Method of removing electric charge | |
JPS59196600A (en) | Neutral particle implanting method and its device | |
JPH1116849A (en) | Method and device for ion implantation | |
JPH0754918Y2 (en) | Electron shower device | |
JPH07211279A (en) | Ion implantation | |
JPH0896744A (en) | Ion implanting device | |
Jain | Ion implantation requirements for deep submicron technology | |
JPS63299043A (en) | Ion implantation device | |
JPS6240369A (en) | Ion implantation device | |
Duff et al. | Ion implant equipment challenges for 0.18... | |
MATSUDA et al. | Industrial Aspects of Ion-Implantation Equipment and Ion Beam Generation | |
JPH08106876A (en) | Ion implanting device and ion implanting method | |
JPS61292843A (en) | Ion implanting device |