JPS6072222A - Method for growing semiconductor thin film - Google Patents

Method for growing semiconductor thin film

Info

Publication number
JPS6072222A
JPS6072222A JP17988483A JP17988483A JPS6072222A JP S6072222 A JPS6072222 A JP S6072222A JP 17988483 A JP17988483 A JP 17988483A JP 17988483 A JP17988483 A JP 17988483A JP S6072222 A JPS6072222 A JP S6072222A
Authority
JP
Japan
Prior art keywords
gas
reaction tube
pedestal
spacer
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17988483A
Other languages
Japanese (ja)
Other versions
JPH0136980B2 (en
Inventor
Yasuhiro Ishii
康博 石井
Yoshimoto Fujita
藤田 良基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP17988483A priority Critical patent/JPS6072222A/en
Publication of JPS6072222A publication Critical patent/JPS6072222A/en
Publication of JPH0136980B2 publication Critical patent/JPH0136980B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

PURPOSE:To obtain the good-quality growth layer in a thin film growing device for growing compound semiconductor thin films by a method wherein a pedestal supported by a supporting member is arranged in a vertical tube reactor and a partion wall arranged around a semiconductor substrate put on said pedestal screens it and a flow path restrain spacer is arranged on the pedestal to expose the substrate to a material gas introduced from a gas inlet of the top through a space between the spacer and the reactor, after which the gas after use is carried to the gas outlet of the upper part through an opening of the center of the spacer. CONSTITUTION:A pedestal 10 for carrying a compound semiconductor 8 is inserted in a tube reactor 2 surrounded by a water-cooled outer tube 3 with being supported by a supporting member 9 and the periphery of the substrate 8 is screened by a partition wall 37. Above the substrate 8, an exhaust opening for the gas 29 after use is arranged in the center and a flow path restrain spacer 23 having a space for passing a material gas 30 is arranged in the periphery. The material gas 30 is introduced from the inlets 21 both of which are arranged in the upper part and the substrate 8 is exposed to this gas and is mixed sufficiently in a gas mixing and dispersing chamber 34. After that the gas is led to an outlet 22 through the central part.

Description

【発明の詳細な説明】 (発明の技術分野) 木発明は半導体薄膜特に化合物半導体薄膜を成長させる
に好適な半導体薄膜成長装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a semiconductor thin film growth apparatus suitable for growing semiconductor thin films, particularly compound semiconductor thin films.

(従来技術の説明) GaAs、AlAs等の化合物半導体膜11りのエピタ
キシャル成長法として、従来の液相エピタキシャル成長
法とは異なる有機金属化合物熱分解法が提案されている
。この方法は有機金属を熱分解することにより化合物半
導体薄膜を結晶成長させる方法でMO−CVD法と呼ば
れている。このMO−CVD法は、成長膜の組成及び成
長速度を原料物質輸送律則で制御可能であること、非可
逆反応であり基板エッチ作用の悲影響かないこと等の基
本的な特徴を有しているため、光半導体デバイス、超高
周波・超高速デバイスのための基幹技術として最近非常
に注目されている。
(Description of Prior Art) As a method for epitaxially growing a compound semiconductor film 11 such as GaAs or AlAs, an organometallic compound thermal decomposition method, which is different from the conventional liquid phase epitaxial growth method, has been proposed. This method is called the MO-CVD method, and is a method of crystal-growing a compound semiconductor thin film by thermally decomposing an organic metal. The basic characteristics of this MO-CVD method include that the composition and growth rate of the grown film can be controlled using the raw material transport law, and that it is an irreversible reaction and does not have the negative effects of substrate etching. Therefore, it has recently attracted much attention as a core technology for optical semiconductor devices and ultra-high frequency/ultra-high speed devices.

しかし、有機金属の熱分解反応、成長反応の理論が未整
備であるため、不明瞭な事象が多い。特に、反応塔の構
造、各種カスの供給方法等により、成長エピタキシャル
層の品質が大きく左右される傾向があり、大きな課題と
なっていた。
However, many phenomena are unclear because the theories of thermal decomposition and growth reactions of organic metals are still underdeveloped. In particular, the quality of the grown epitaxial layer tends to be greatly influenced by the structure of the reaction tower, the method of supplying various scraps, etc., which has been a major problem.

第1図はMO−CVD法に用いられている従来の反応塔
の代表的な構造を簡略的に示す断面図である。
FIG. 1 is a cross-sectional view schematically showing a typical structure of a conventional reaction tower used in the MO-CVD method.

この構造では、反応塔1は石英カラスで作られた二重構
造とし、内側の反応管2の外周囲に外側管3を設け、外
側管3の上下に設けられた流入・排出口4.5を経て冷
却水を流して反応管2の外壁を水冷する冷却装置を有す
る構造となっている。
In this structure, the reaction tower 1 has a double structure made of quartz glass, with an outer tube 3 provided around the outer periphery of an inner reaction tube 2, and inlet/outlet ports 4.5 provided above and below the outer tube 3. The structure includes a cooling device that cools the outer wall of the reaction tube 2 by flowing cooling water through the tube.

反応管2の上部にはガス流入口6、また、下部にはカス
排出ロアが設けられており、ガス流入口6からエピタキ
シャル成長に関与する有機金属化合物カス(例えば、G
a(CH3) 3、A立(C413) 3等のガス)及
び水素化物カス(例えば、 AsH3、PH3等のカス
)をキャリヤガス(例えば、 H2、Ar等のガス)と
共に反応管内に供給し、反応後の不要ガスをガス流出管
7から排出させてり\る。
A gas inlet 6 is provided in the upper part of the reaction tube 2, and a waste discharge lower is provided in the lower part.
A (CH3) 3, A (C413) 3, etc. gas) and hydride residue (e.g., AsH3, PH3, etc. gas) are fed into the reaction tube together with a carrier gas (e.g., H2, Ar, etc. gas), Unnecessary gas after the reaction is discharged from the gas outlet pipe 7.

また、エピタキシャル成長層が成長されるべき化合物半
導体基板8は反応管2中に支持体9tこより設装置され
たカーボンペデスタル10の上面10a iこ搭載し、
これを外側?6・3の外周に設けた加熱装置である高周
波誘導線輪11によって、600〜800°Cに加熱す
るような構造となっている。そして、この基板8に対し
均等にガスを供給するために石英ガラス製のメツシュ部
tjA12をガス流入口6の下側に設け、これによりガ
ス流入口6からの混合力゛ス流を混合分散させている。
Further, a compound semiconductor substrate 8 on which an epitaxial growth layer is to be grown is mounted on the upper surface 10a of a carbon pedestal 10 installed on a support 9t in the reaction tube 2,
Is this outside? It has a structure in which it is heated to 600 to 800°C by a high frequency induction coil 11, which is a heating device provided on the outer periphery of the cylinders 6 and 3. In order to uniformly supply gas to this substrate 8, a mesh part tjA12 made of quartz glass is provided below the gas inlet 6, thereby mixing and dispersing the mixing force flow from the gas inlet 6. ing.

(従来技術の欠点) MO−CVD法で均質な成長層を得るためには、有害な
反応が生じないような適切な低い温度で、熱分解反応を
行わせることが必要である。上述した従来の反応塔構造
では、エピタキシャル成長時1こおけるペデスタルの温
度上Rに起因して、化合物半導体基板及びペデスタル付
近のガスが温度」二重してしまい、これがため、混合ガ
ス流の対流13が強烈に生じ、カス流入口6或いは混合
分散用メ・ンシュ部材12を通過した混合ガス流14を
太きく攪拌し、その結果、反応管?内における混合ガス
の温度が過度に上昇してしまう。へれかため、エピタキ
シャル成長に関与する混合ガスが化合物半導体8の付近
に到達する以前に、各成分カスカル熱う)解反応を起し
てしまう。この熱分解反応lよ、化合物半導体基板8の
表面に到達する混合力スの各成分元素の比率に重大な影
響を与えるので、このような混合カス流の対流は、基板
表面での面内不均一性を含めて、良質のエピタキシャル
成長層を実現するために極めて大きな障害となる。
(Disadvantages of the prior art) In order to obtain a homogeneous growth layer using the MO-CVD method, it is necessary to carry out the thermal decomposition reaction at an appropriately low temperature so that no harmful reactions occur. In the conventional reaction tower structure described above, due to the temperature R of the pedestal at one stage during epitaxial growth, the temperature of the compound semiconductor substrate and the gas near the pedestal doubles, which causes convection of the mixed gas flow. is generated intensely, and the mixed gas flow 14 that has passed through the waste inlet 6 or the mixing and dispersing mesh member 12 is stirred vigorously, and as a result, the reaction tube? The temperature of the mixed gas inside will rise excessively. Because of this, before the mixed gas involved in epitaxial growth reaches the vicinity of the compound semiconductor 8, each component undergoes a decomposition reaction. This thermal decomposition reaction has a significant effect on the ratio of each component element in the mixed gas that reaches the surface of the compound semiconductor substrate 8, so the convection of the mixed gas flow causes in-plane unevenness on the substrate surface. Including uniformity, this poses an extremely large obstacle to achieving a high-quality epitaxial growth layer.

(発明の目的) 木発明の目的はかかる従来の欠点を根木的に解決して、
原料混合ガスを低温に維持した状態でイし合物半導体基
板に供給すると共に5反応後の高温の使用済ガス或いは
その他の不要カスを11;j料混合ガスから確実に分離
して排気するようになし、しかも、高温の混合ガスによ
り発生するイI害な微粉末が化合物半導体表面に落下し
なり)ような構造とした半導体薄膜成長装置を提供する
にある。
(Purpose of the invention) The purpose of the invention is to radically solve such conventional drawbacks,
The raw material mixed gas is supplied to the compound semiconductor substrate while being maintained at a low temperature, and the high temperature spent gas or other unnecessary waste after the reaction in 5 is reliably separated from the raw material mixed gas and exhausted. Another object of the present invention is to provide a semiconductor thin film growth apparatus having a structure in which harmful fine powder generated by a high-temperature mixed gas falls onto the surface of a compound semiconductor.

(発明の構成) この目的の達成を図るため、本発明1こよれば、反応管
内にガス流路規制装置を設け、反応管内における混合ガ
スと、化合物半導体基板との相対関係の根本的に改善す
ることにあり、従って、本発明の半導体薄膜成長装置に
よれば、反応管の上部端部に原料カス供粕用のカス流入
口と、上昇排ガス排出用のガス損出1コとを設け、さら
に、この反応管内にガス流路規制装置を配設して具え、
このカス流路規制装置には、ガス流入口から供給された
原料カスを反応管の内壁に沿ってこの内壁伺近を下降さ
せると共に、原料ガスと分離して上昇排ガスを排出する
ために、ガス流出口及びペデスタルの上側表面間に配設
され、がっ、上昇排ガスを吸入するガス吸入部及びこの
上昇排ガスをガス排出口へと排出する頚部を含む流路規
制スペーサを設けたことを特徴とする。
(Structure of the Invention) In order to achieve this object, according to the present invention 1, a gas flow regulating device is provided in the reaction tube to fundamentally improve the relative relationship between the mixed gas in the reaction tube and the compound semiconductor substrate. Therefore, according to the semiconductor thin film growth apparatus of the present invention, a waste inlet for supplying raw material waste and a gas loss outlet for discharging rising exhaust gas are provided at the upper end of the reaction tube, Furthermore, a gas flow path regulating device is provided within the reaction tube,
This waste flow path regulating device has a gas flow path regulating device that allows the raw material waste supplied from the gas inlet to descend along the inner wall of the reaction tube, and also to separate it from the raw material gas and discharge the rising exhaust gas. A flow path regulating spacer is provided between the outlet and the upper surface of the pedestal, and includes a gas suction section that sucks rising exhaust gas and a neck section that discharges the rising exhaust gas to the gas exhaust port. do.

本発明の好適実施例では、このガス流路規制装置には、
ペデスタルの上側表面伺近の位置の所に、反応管内の空
間を部分する隔壁を設けるのことが出来る。
In a preferred embodiment of the invention, the gas flow regulating device includes:
A partition wall can be provided near the upper surface of the pedestal to partition the space within the reaction tube.

さらに、本発明の実施に当り、この流路規制スペーサに
は前述の頚部と、ガス吸入部の下側端部との間に設けら
れかつガス対流空間を形成する膨大部とを設けるのが好
適である。
Furthermore, in carrying out the present invention, it is preferable that the flow path regulating spacer is provided with an enlarged portion that is provided between the aforementioned neck portion and the lower end portion of the gas suction portion and forms a gas convection space. It is.

さらに、本発明では、この膨大部のガス対流空間内に綿
状繊維を挿入するのが好適である。
Furthermore, in the present invention, it is preferable to insert cotton-like fibers into the gas convection space of this ampulla.

(実施例の説明) 以下、第2図に沿って本発明の実施例につき説明をする
。尚、これらの図において、第1図に示した構成成分と
同様な構成成分については同一符号をイリして示し、そ
の詳細な説明は省略する。また、これら図は本発明の構
成が理解出来る程度に部分的に省略して概略的に示しで
あるにすぎない。
(Description of Examples) Examples of the present invention will be described below with reference to FIG. In these figures, the same components as those shown in FIG. 1 are indicated by the same reference numerals, and detailed explanation thereof will be omitted. Further, these figures are only shown schematically with some parts omitted to the extent that the structure of the present invention can be understood.

第2図は本発明の半導体薄膜成長装置の反応塔の一実施
例を示す略図的断面図である。
FIG. 2 is a schematic cross-sectional view showing one embodiment of the reaction tower of the semiconductor thin film growth apparatus of the present invention.

本発明によれば、第2図からも明らかなように、反応管
2の上部端部に一個以上設けたカス流入口21から原料
ガスを供給し、同じく上側に設けたガス排出口22から
排出させる構造とする。この反応管2内にガス流路規制
装置を配設する。エビクキシャル成長に関与する各種の
ガスとしては、Ga(、CH3) 3、 AI (CH
3) 3等の有機金属化合物カス、 AsH3、PH3
等の水素化物ガス、不純物添加用カス及びH2、At等
のキャリヤガス等を用いており、これらの原料ガス類は
、数種づつのサブ・グループで混合した後にガス流入口
21から反応管2内へと供給される。上述のガス流路規
制装置はこれら原料ガスの流路を規制するため、例えば
、石英ガラス製の流路規制スペーサ23を有している。
According to the present invention, as is clear from FIG. 2, raw material gas is supplied from one or more waste inlets 21 provided at the upper end of the reaction tube 2, and is discharged from the gas outlet 22 also provided at the upper end. The structure is such that A gas flow regulating device is disposed within this reaction tube 2. Various gases involved in evixaxial growth include Ga(,CH3)3, AI(CH3), and AI(CH3).
3) Organometallic compound scum such as 3, AsH3, PH3
etc., scum for impurity addition, carrier gas such as H2, At, etc. are used, and these raw material gases are mixed in several sub-groups and then passed from the gas inlet 21 to the reaction tube 2. supplied inward. The above-mentioned gas flow path regulating device includes a flow path regulating spacer 23 made of quartz glass, for example, in order to regulate the flow paths of these raw material gases.

このスペーサ23はガスυ[出口22と、ペデスタルl
Oとの間に着脱11在に挿入配設されている。
This spacer 23 connects the gas υ[outlet 22 and the pedestal l
The attachment/detachment 11 is inserted and disposed between O and O.

このスペーサ23は、図示例では、ガス排出口22と連
通ずるように配設された頚部24と、この頚部24に連
続した膨大部25と、この膨大部25の下側端部からこ
れに連続して形成され、反応管2の中央のガス排出口2
2側へと」三方へ傾刺して伸びかつ半導体基板8の上方
に聞【」26が形成されたガス吸入部27とを有してい
る。このガス吸入部27は上側に絞られかつ下側に末広
がり状の形状をしていて、反応管2の中心軸付近で1荷
ガス流を収集する。
In the illustrated example, the spacer 23 includes a neck 24 arranged to communicate with the gas discharge port 22, an enlarged part 25 continuous to the neck 24, and a lower end of the enlarged part 25 connected to the neck 24. gas outlet 2 in the center of the reaction tube 2.
2 side and a gas suction part 27 extending obliquely in three directions and having a groove 26 formed above the semiconductor substrate 8. This gas suction part 27 has a shape that is constricted on the upper side and widens towards the lower side, and collects a gas flow near the central axis of the reaction tube 2.

また、膨大部25は、その中央部分を、例えば、円筒状
部分とし、流入した原料ガスを冷却されている反応!$
2の内壁に沿って壁面付近を下降出来るように案内誘導
する働きを有する。この膨大部25とガス吸入部27と
によって、スペーサ23の内部にガス対流空間28を形
成するようにするのが好適である。或いはまた、この膨
大部25を設けずに頚部24を直接ガス吸入部27の中
央開口26に煙突状に連通させる構造としても良い。こ
の場合、ガス吸入部27をペデスタル10、半導体基板
8に対して適当に離間配設させてこれらの間に空隙を設
け、よって、反応管2の上部のガス流入口21から管内
に供給された原料ガスが、スペーサ23の外部を通り有
効的に、ペデスタル10の表面中央部に搭載された化合
物半導体基板8に向けて、供給出来るように構成する。
In addition, the enlarged portion 25 has a central portion that is, for example, a cylindrical portion, and the raw material gas that has flowed therein is cooled. $
It has a guiding function so that it can descend near the wall surface along the inner wall of No. 2. It is preferable that the enlarged portion 25 and the gas suction portion 27 form a gas convection space 28 inside the spacer 23 . Alternatively, a structure may be adopted in which the neck portion 24 is directly communicated with the central opening 26 of the gas suction portion 27 in a chimney-like manner without providing the enlarged portion 25. In this case, the gas suction part 27 is appropriately spaced apart from the pedestal 10 and the semiconductor substrate 8 to provide a gap between them, so that the gas is supplied into the tube from the gas inlet 21 at the upper part of the reaction tube 2. The configuration is such that the source gas can pass through the outside of the spacer 23 and be effectively supplied to the compound semiconductor substrate 8 mounted on the center surface of the pedestal 10.

さらに、このスペーサ23は、ペデスタル10の上側表
面10a付近で加熱されて高温の上昇排ガス29をカス
流入口21から供給される原料混合ガス30から完全に
分離するように作用する。
Further, the spacer 23 acts to completely separate the rising exhaust gas 29, which is heated near the upper surface 10a of the pedestal 10 and is at a high temperature, from the raw material mixed gas 30 supplied from the waste inlet 21.

またこのスペーサ23に膨大部25を設けている構造の
場合には、排出されるべきガスがガス対流空間28内テ
局部的に−kJ 3Gf 31 、I )# fるか、
この対流31は本来の上昇排ガス流29及び原料ガス流
3oに悪影響を及ぼす程のものではない。このカス対疏
空間28は高温となった混合ガスすなわち上昇排ガス2
9が系内の微量な残留不純物カス等と反応して生ずるA
s或いはGaの酸化物等の微粉末の集塵場所を提供する
ように作用し、これら有害な微粉末が化合物半導体基板
表面に落下するのを防止する。このようにすれば、半導
体表面に付着した微粉末が核となって発生するピット状
の微細なエピタキシャル成長面の荒を防止することが出
来る。この局部的ガス対流空間28に、例えば、石英ガ
ラス製の綿状繊維32を挿入して微粉末のフィルタ効果
を更に有効的に高めることが出来る。
In addition, in the case of a structure in which this spacer 23 is provided with an enlarged portion 25, the gas to be discharged is locally −kJ 3Gf 31 ,I) #f within the gas convection space 28, or
This convection flow 31 does not adversely affect the original ascending exhaust gas flow 29 and raw material gas flow 3o. This waste canal space 28 is filled with the high temperature mixed gas, that is, the rising exhaust gas 2.
A produced when 9 reacts with a small amount of residual impurity residue in the system.
It acts to provide a place for collecting fine powders such as oxides of S or Ga, and prevents these harmful fine powders from falling onto the surface of the compound semiconductor substrate. In this way, it is possible to prevent fine pit-like roughness of the epitaxial growth surface caused by fine powder adhering to the semiconductor surface serving as a nucleus. For example, cotton fibers 32 made of quartz glass may be inserted into this local gas convection space 28 to further effectively enhance the filtering effect of the fine powder.

さらに、スペーサ23には、適当な大きさの開口33が
形成された、原料ガスの11シ合分散を行うガス程合分
散空間34を形成する仕切板35を設けるのが好適であ
る。この仕切板35の形状配置は任意所望とし得るが、
図示例では頚部24に一体的に形成しである。この仕切
板35は固定部材として用い、これを反応管2の内側に
設けた鍔状突起38で着脱自在に支持固定する。
Further, it is preferable that the spacer 23 is provided with a partition plate 35 having an opening 33 of an appropriate size and forming a gas distribution space 34 for combining and dispersing the source gas. Although the shape and arrangement of the partition plate 35 can be arbitrarily determined,
In the illustrated example, it is formed integrally with the neck portion 24. This partition plate 35 is used as a fixing member, and is detachably supported and fixed by a flange-like projection 38 provided inside the reaction tube 2.

さらに、ガス流路規制装置には、その−構成部分として
、上述したスペーサ23と別体の、例えば、石英ガラス
製の隔壁37を含ませることが出来る。図示のように、
この隔壁37はペデスタル10の伺近に、例えば、ペデ
スタル10の」二面10a上であって、これに搭載した
半導体基板8を適当な間隔を以って、取り囲むように、
反応管2の内壁に設けた鍔状の突起38で着脱自在に支
持固定させるのが好適である。この隔壁37により、反
応管内の空間が上下に部分され、ペデスタル10の上!
−1’+110 a以外の他の面に接して加熱されたガ
スがこのl!FI+壁37の位置より上側に上昇してス
ペーサ周辺のカス流に混流するのを防止することが出来
ると共に、管壁に沿って下降してきた原Itカスを効果
的に半導体基板表面に向けるように誘導するよに作用す
る。そして、この隔壁37より下側のガスはカス刊出口
37から排出させるようにする。
Further, the gas flow path regulating device can include, as a component thereof, a partition wall 37 made of, for example, quartz glass, which is separate from the spacer 23 described above. As shown,
This partition wall 37 is located near the pedestal 10, for example, on the second surface 10a of the pedestal 10, and surrounds the semiconductor substrate 8 mounted thereon at an appropriate interval.
It is preferable that the reaction tube 2 is detachably supported and fixed by a collar-shaped projection 38 provided on the inner wall of the reaction tube 2. This partition wall 37 divides the space inside the reaction tube into upper and lower parts, and the space above the pedestal 10!
-1'+110 The gas heated in contact with a surface other than a is this l! It is possible to prevent the It debris from rising above the position of the FI+ wall 37 and mixing with the debris flow around the spacer, and to effectively direct the original It debris that has descended along the tube wall toward the semiconductor substrate surface. It acts to induce. The gas below the partition wall 37 is discharged from the waste outlet 37.

このような本発明の装置も従来の装置と同様に二重管構
造となっており、水或いはその他の冷却媒体によって、
反応塔を冷却出来るようになしてあり、また、加熱装置
である高周波誘導線輪11を具えていて、ペデスタル1
0の表面上に搭載された化合物半導体基板8をエピタキ
シャル成長温度、例えば、600〜800°Cに加熱す
ることが出来る。
The device of the present invention also has a double pipe structure like the conventional device, and is cooled by water or other cooling medium.
It is designed to be able to cool the reaction tower, and is also equipped with a high frequency induction wire ring 11 which is a heating device, and a pedestal 1
The compound semiconductor substrate 8 mounted on the surface of the semiconductor substrate 8 can be heated to an epitaxial growth temperature, for example, 600 to 800°C.

(動作の説明) 次に、上述した本発明の一実施例の反応塔構造における
本発明の特徴的な動作原理を説明する。
(Description of Operation) Next, the characteristic operating principle of the present invention in the reaction tower structure of the embodiment of the present invention described above will be explained.

本発明においては、反応塔20の上部のガス流入口21
を経て反応管2の内部に供給された各種の原料カスは、
先ず、ガス混合分散空間34内で良くR合分散された後
に、仕りJfi35の開口33を通過し、流路規制スペ
ーサ23の外壁によって、冷却されている反応管2の壁
面(=1近に導かれる。この領域で原料の混合ガス流3
0は充分に低温を確保した状態でペデスタルlOの周辺
から化合物半導体基板8へと導かれるので、基板8への
良好なエピタキシャル成長が行われる。
In the present invention, the gas inlet 21 at the upper part of the reaction tower 20
The various raw material scraps supplied to the inside of the reaction tube 2 through
First, after being well R-combined and dispersed in the gas mixing and dispersion space 34, the gas passes through the opening 33 of the final Jfi 35 and is guided near the wall surface (=1) of the reaction tube 2, which is being cooled by the outer wall of the flow path regulating spacer 23. In this region, the mixed gas flow of the raw material 3
Since the 0 is guided from the periphery of the pedestal 1O to the compound semiconductor substrate 8 while maintaining a sufficiently low temperature, good epitaxial growth onto the substrate 8 is performed.

この際、ペデステル10の表面IQa付近で温度上昇を
受けた混合ガス流は、スペーサ23のガス吸入部27に
よって収集され、このスペーサ23内での煙突効果も加
わって、上昇排カス流29となってカス排出口22から
急速に排出される。これがため、流路規制スペーサ23
によって、原料ガス流の低温域流線30と、上昇ガス流
の高温域流線28とが混流しないように、これらを完全
に分離することが出来る。これがため、化合物半導体基
板8の表面に到達するまでの混合ガスの温度を低く維持
出来、よって、混合ガスの各成分ガスの有害な熱分解反
応を最小限に押えることが出来るので、従来装置か有す
る最大の欠点を解決し得る。
At this time, the mixed gas flow whose temperature has increased near the surface IQa of the pedestal 10 is collected by the gas suction part 27 of the spacer 23, and with the addition of the chimney effect within this spacer 23, it becomes an ascending exhaust gas flow 29. The waste is rapidly discharged from the waste discharge port 22. For this reason, the flow path regulating spacer 23
Accordingly, the low temperature region streamline 30 of the raw material gas flow and the high temperature region streamline 28 of the rising gas flow can be completely separated so that they do not flow together. Therefore, the temperature of the mixed gas until it reaches the surface of the compound semiconductor substrate 8 can be maintained low, and the harmful thermal decomposition reaction of each component gas of the mixed gas can be suppressed to a minimum. can solve the biggest drawback of

このようにして、この低温状態のままでII+!合原料
ガス流30をペデスタル10の中心部に搭載した化合物
半導体基板8に供給することが出来ることとなり、従っ
て、前述したガス流の泥流防止効果とあいまって、各成
分ガスの有害な熱分解反応を更に有効的に抑制し得る。
In this way, II+ is maintained in this low temperature state! The combined raw material gas flow 30 can be supplied to the compound semiconductor substrate 8 mounted in the center of the pedestal 10, and therefore, together with the mud flow prevention effect of the gas flow described above, harmful thermal decomposition of each component gas can be prevented. The reaction can be suppressed more effectively.

また、第2図に示した本発明の一実施例において、ペデ
スタル10の付近に設けた隔壁37はこのペデスタル1
0の表面10a以外の他の面によって加熱されたカスが
流路規制スペーサ21の温度上昇を来さないようにする
ために設けたものである。この隔壁29によって、本発
明の上述したような効果を一層確実に有効に作用せしめ
ることが出来る。
Further, in one embodiment of the present invention shown in FIG. 2, the partition wall 37 provided near the pedestal 10 is
This is provided in order to prevent the temperature of the flow path regulating spacer 21 from rising due to debris heated by surfaces other than the surface 10a of the spacer 21. This partition wall 29 allows the above-described effects of the present invention to be more reliably and effectively exerted.

(発明の効果) 」=述した第2図の実施例で説明したように、本発明の
半導体薄膜成長装置によれば、MO−CVD法の反応塔
内において、各種の原料ガスの混合ガスが化合物半導体
基板表面に到達するまでに有害な熱分解反応を起すのを
防にしてエピタキシャル成長に関与する各成分元素の比
率を定量的に確保し、また、高温の混合ガスにより発生
する有害な微粉末が化合物半導体基板表面に落下するの
を効果的に防止し得るので、良好な結晶性、表面平担性
、゛電導特性を有するエピタキシャル成長層を再現性良
く成長させることが出来るという従来装置では見られな
い優れた効果を奏し得る。
(Effects of the Invention) As explained in the embodiment shown in FIG. 2, according to the semiconductor thin film growth apparatus of the present invention, a mixed gas of various raw material gases is It prevents harmful thermal decomposition reactions from occurring before reaching the surface of the compound semiconductor substrate, quantitatively ensuring the ratio of each component element involved in epitaxial growth, and also prevents harmful fine powder generated by high-temperature mixed gases. This method effectively prevents the compound semiconductor from falling onto the surface of the compound semiconductor substrate, making it possible to grow an epitaxial layer with good crystallinity, surface flatness, and electrical conductivity with good reproducibility, which is not possible with conventional equipment. It can produce excellent effects.

かかる本発明の半導体薄膜成長装置は、高効率発光素子
、超高速FET素子及びそれらの集積化素子等の構成基
材として用いられるエピタキシャル結晶層の結晶特性を
向上せしめるので、素子性能の向上、素子製造の歩留り
の向上等に大きく貢献し得る。
The semiconductor thin film growth apparatus of the present invention improves the crystal properties of epitaxial crystal layers used as constituent materials for high-efficiency light-emitting devices, ultra-high-speed FET devices, and integrated devices thereof, so that device performance can be improved and device performance can be improved. This can greatly contribute to improving manufacturing yields, etc.

尚、本発明は上述した実施例にのみ限定されるものでは
ないこと明らかである。例えば、ガス流路規制装置の構
造は他の構造であっても良い。ようするに、温度上昇さ
れた使用済或いは不要ガス流と、原料ガス流とを効果的
に分離し、しかも、この原料ガス流を、冷却されている
反応管の内壁に沿って下降させて半導体基板表面に供給
出来るような構造となっていれば良い。
It is clear that the present invention is not limited only to the embodiments described above. For example, the structure of the gas flow path regulating device may be another structure. In this way, the used or unnecessary gas flow whose temperature has been raised is effectively separated from the raw material gas flow, and the raw material gas flow is lowered along the inner wall of the reaction tube being cooled to reach the surface of the semiconductor substrate. It is sufficient if the structure is such that it can be supplied to

さらに、この反応塔は石英ガラス以外の他の羽斜を用い
て構成することが出来る。
Furthermore, this reaction tower can be constructed using a glass plate other than quartz glass.

さらに、仕切板は流路規制スペーサと一体構造としても
良いし、別体としても良い。
Furthermore, the partition plate may be integrated with the flow path regulating spacer, or may be formed separately from the flow path regulating spacer.

また、当然のことながら、冷却装置、加熱装置は上述し
た実施例で、説明した以外の装置であっても良い。
Further, as a matter of course, the cooling device and the heating device may be devices other than those described in the embodiments described above.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の半導体薄膜成長装置を示す断面図、 第2図は本発明の半導体薄膜成長装置の一実施例を示す
略図的断面図である。 l・・・反応塔、 2・・・反応管 3・・・外側管、 4.5・・・流入・排出管6・・・
ガス流入管、 7・・・ガスυ1出管8・・・化合物半
導体基板、9・・・支持体10・・・ペデスタル、 1
0a・・・ペデスタルの表面11・・・高周波誘導線輪
、 12・・・メツシュ部材13・・・混合ガス流の対
流、14・・・混合ガス流20・・・反応塔、 21・
・・ガス流入口22.38・・・カス排出口 23・・・流路規制スペーサ 24・・・疏路規制スペーサの頚部 25・・・疏路規制スペーサの膨大部 26・・・開口 27・・・流路規制スペーサのガス吸入部28・・・ガ
ス対流空間 28・・・上昇排ガス(流) 30・・・原料(混合)ガス(流) 31・・・対流、 32・・・綿状繊維33・・・開口
、 34・・・ガス混合空間35・・・仕切板、 36
.38・・・鍔状突起37・・・隔壁。 第2図
FIG. 1 is a cross-sectional view showing a conventional semiconductor thin film growth apparatus, and FIG. 2 is a schematic cross-sectional view showing an embodiment of the semiconductor thin film growth apparatus of the present invention. l...Reaction tower, 2...Reaction tube 3...Outer tube, 4.5...Inflow/discharge pipe 6...
Gas inflow pipe, 7... Gas υ1 outlet pipe 8... Compound semiconductor substrate, 9... Support body 10... Pedestal, 1
0a...Pedestal surface 11...High frequency guide wire ring, 12...Mesh member 13...Convection of mixed gas flow, 14...Mixed gas flow 20...Reaction tower, 21.
...Gas inlet 22.38...Dus discharge port 23...Flow path regulating spacer 24...Neck of canal regulating spacer 25...Enlarged portion 26 of canal regulating spacer...Opening 27. ... Gas suction part 28 of flow path regulating spacer ... Gas convection space 28 ... Rising exhaust gas (flow) 30 ... Raw material (mixed) gas (flow) 31 ... Convection, 32 ... Fluffy Fiber 33...opening, 34...gas mixing space 35...partition plate, 36
.. 38... Flange-like process 37... Partition. Figure 2

Claims (1)

【特許請求の範囲】 1、カス流入口及びガス排出口を有する反応管と、 該反応管の内部に配設され前記ガス流入口に対向させて
化合物半導体基板を搭載出来る表面を有するペデスタル
と、 該反応管の外部に設けられ該反応管を冷却するための冷
却装器と、 前記化合物半導体基板を加熱するための加熱装置とを有
する、有機金属化合物熱分解法用の半導一体膜膜成長装
置において、 前記反応管の上部端部に原料ガス供給用のガス流入1コ
と、上昇排ガス排出用のガス排出口とを具え、 さらに、前記反応管内に配設されたガス流路規制装置を
具え、 該ガス流路規制装置は、前記ガス流入口から供給された
原料ガスを前記反応管の内壁に沿って該内壁付近を下降
させると共に、該原料ガスと分離して前記上昇排ガスを
排出するために、前記ガス流出口及び前記ペデスタルの
上側表面間に配設され、かつ、該上昇排ガスを吸入する
ガス吸入部及び該上昇排ガスを前記ガス排出口へと排出
する頚部を含む流路規制スペーサを有する ことを特徴とする半導体薄膜成長装置。 2、前記ガス流路規制装置は、前記ペデスタルの上側表
面付近の位置の所に、前記反応管内の空間を二分する隔
壁を有していることを特徴とする特許請求の範囲第1項
記載の半導体薄膜成長装置。 3、前記流路規制スペーサは、前記頚部と、前記ガス吸
入部の下側端部との間に設けられかつガス対流空間を形
成する膨大部とを、有していること 。 を特徴とする特許請求の範囲第1項記載の半導体薄膜成
長装置。 4、前記膨大部のガス対流空間内に綿状繊維を有してい
ることを特徴とする特許請求の範囲第3項記載の半導体
薄膜成長装置。
[Scope of Claims] 1. A reaction tube having a waste inlet and a gas outlet; a pedestal disposed inside the reaction tube and having a surface on which a compound semiconductor substrate can be mounted facing the gas inlet; Semiconductor integrated film growth for organometallic compound pyrolysis method, comprising: a cooling device provided outside the reaction tube for cooling the reaction tube; and a heating device for heating the compound semiconductor substrate. In the apparatus, an upper end of the reaction tube is provided with one gas inflow port for supplying raw material gas and a gas outlet for discharging rising exhaust gas, and further comprising a gas flow path regulating device disposed in the reaction tube. The gas flow regulating device causes the raw material gas supplied from the gas inflow port to descend near the inner wall along the inner wall of the reaction tube, and separates it from the raw material gas and discharges the rising exhaust gas. a flow-path regulating spacer disposed between the gas outlet and the upper surface of the pedestal, the spacer including a gas inlet for inhaling the rising exhaust gas and a neck for discharging the rising exhaust gas to the gas outlet; A semiconductor thin film growth apparatus characterized by having: 2. The gas flow path regulating device has a partition wall that divides the space inside the reaction tube into two at a position near the upper surface of the pedestal, as set forth in claim 1. Semiconductor thin film growth equipment. 3. The flow path regulating spacer has an enlarged portion that is provided between the neck portion and the lower end portion of the gas suction portion and forms a gas convection space. A semiconductor thin film growth apparatus according to claim 1, characterized in that: 4. The semiconductor thin film growth apparatus according to claim 3, further comprising flocculent fibers in the gas convection space of the ampulla.
JP17988483A 1983-09-28 1983-09-28 Method for growing semiconductor thin film Granted JPS6072222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17988483A JPS6072222A (en) 1983-09-28 1983-09-28 Method for growing semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17988483A JPS6072222A (en) 1983-09-28 1983-09-28 Method for growing semiconductor thin film

Publications (2)

Publication Number Publication Date
JPS6072222A true JPS6072222A (en) 1985-04-24
JPH0136980B2 JPH0136980B2 (en) 1989-08-03

Family

ID=16073580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17988483A Granted JPS6072222A (en) 1983-09-28 1983-09-28 Method for growing semiconductor thin film

Country Status (1)

Country Link
JP (1) JPS6072222A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5430891A (en) * 1992-08-18 1995-07-04 U.S. Philips Corporation Tuning detection circuit for a high-frequency receiver, and receiver including such detection circuit
JP2008248998A (en) * 2007-03-29 2008-10-16 Osaka Gas Co Ltd Transport pipe encircling body, and encircling body attaching method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50347A (en) * 1973-05-09 1975-01-06

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50347A (en) * 1973-05-09 1975-01-06

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5430891A (en) * 1992-08-18 1995-07-04 U.S. Philips Corporation Tuning detection circuit for a high-frequency receiver, and receiver including such detection circuit
JP2008248998A (en) * 2007-03-29 2008-10-16 Osaka Gas Co Ltd Transport pipe encircling body, and encircling body attaching method

Also Published As

Publication number Publication date
JPH0136980B2 (en) 1989-08-03

Similar Documents

Publication Publication Date Title
US5972106A (en) Device and method for producing single crystal
JP4111828B2 (en) Especially the method of depositing crystal layer
CN214572367U (en) Silicon carbide crystal growing device
JP2002154899A (en) Method and apparatus for producing silicon carbide single crystal
JP2009267388A (en) Organometallic-compound feeder
CN113151897B (en) Crucible structure
JP2006069888A (en) Method for manufacturing polycrystal silicon rod and manufacturing apparatus
JPS6072222A (en) Method for growing semiconductor thin film
JP3941727B2 (en) Method and apparatus for producing silicon carbide single crystal
JPS6072221A (en) Device for growing semiconductor thin film
US3954551A (en) Method of pulling silicon ribbon through shaping guide
JP2009001489A (en) Apparatus and method for producing single crystal
JP2003306398A (en) Process and apparatus for preparing silicon carbide single crystal
JPS6072223A (en) Device for growing semiconductor thin film
JPH01286306A (en) Crystal growth device
JPH0524965A (en) Method and apparatus for producing semiconductor crystal
JP2710433B2 (en) Single crystal pulling device
JPS6092608A (en) Thin-film growth device for semiconductor
JPS61253822A (en) Manufacturing device for compound semiconductor thin film
JPH07193003A (en) Vapor growth device and vapor growth method
JPH04219386A (en) Apparatus for production of silicon single crystal
JPS58223695A (en) Device for vapor-phase epitaxial growth
JP4155085B2 (en) Method for producing compound semiconductor single crystal
JPS59112615A (en) Vapor phase reaction device
JPS62244123A (en) Vapor growth device