JPS61253822A - Manufacturing device for compound semiconductor thin film - Google Patents

Manufacturing device for compound semiconductor thin film

Info

Publication number
JPS61253822A
JPS61253822A JP9558785A JP9558785A JPS61253822A JP S61253822 A JPS61253822 A JP S61253822A JP 9558785 A JP9558785 A JP 9558785A JP 9558785 A JP9558785 A JP 9558785A JP S61253822 A JPS61253822 A JP S61253822A
Authority
JP
Japan
Prior art keywords
gas
gas ejection
plate
compound semiconductor
ejection plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9558785A
Other languages
Japanese (ja)
Other versions
JPH039609B2 (en
Inventor
Yasuhiro Ishii
康博 石井
Yoshimoto Fujita
藤田 良基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP9558785A priority Critical patent/JPS61253822A/en
Publication of JPS61253822A publication Critical patent/JPS61253822A/en
Publication of JPH039609B2 publication Critical patent/JPH039609B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Abstract

PURPOSE:To realize the epitaxial growth having excellent facial uniformity of the quality of grown layer of wide substrate crystal by a method wherein a gas flow path is dispersed and brought into a non-steady state, and the contact condition of gas stream on the surface of the substrate crystal, when an epitaxial growth is performed, is made uniform. CONSTITUTION:A gas jetting-out hole which is asymmetric to the center axis of a gas-jetting plate 11 is provided on the gas-jetting plate 11. A driving arm 13 to be used to install a permanent magnet 14 is provided on the gas induction pipe 10, and the gas induction pipe is rotated by the attraction generating between the permanent magnet 14 and the rotary permanent magnet 15 located outside a reaction tower. The various kinds of gas fed through a gas-feeding hole 8 is mixed by diffusion in the mixing space 16 formed by the gas induction pipe 10 and the gas-jetting plate 11, and the gas is jetted out from an axially asymmetric gas jetting-out hole 12.

Description

【発明の詳細な説明】 (産業上の利用分野) GaAs e InP等の化合物半導体薄膜のエピタキ
シャル成長薄膜の製造装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an apparatus for manufacturing an epitaxially grown thin film of a compound semiconductor such as GaAs e InP.

(従来の技術) GaAg 、 InP等の化合物半導体薄膜のエピタキ
シャル成長法としての有機金属化合物熱分解法(以下M
O−CVD法という)は、原料物質輸送律則で組成およ
び成長速度の制御が可能であること、非可逆反応であシ
基板のエッチ作用の悪影響がないこと等の基本的な特徴
を持っておシ、光半導対デバイス、超高周波、超高速デ
バイスのだめの基幹技術として最近非常に注目されてい
る。しかし、各種原料ガスの基板結晶面への輸送の不均
一性の改善が大きな課題になっている。
(Prior art) Organometallic compound thermal decomposition method (hereinafter referred to as M
O-CVD (O-CVD method) has basic characteristics such as being able to control the composition and growth rate using the raw material transport law, being an irreversible reaction, and having no adverse effects from etching the substrate. Recently, it has been attracting a lot of attention as a core technology for optical semiconductor devices, optical semiconductor couplers, ultra-high frequency, and ultra-high speed devices. However, improving the non-uniformity of transport of various source gases to the substrate crystal plane has become a major issue.

第3図は、MO−CVD法における従来の装置の代表的
な構成図であって、石英ガラス製の反応塔31の外壁は
水冷のために二重構造とし、32および33はその流水
口および排水口である。石英ガラス爬の支柱34で支持
されたカーボンペデスタル35と該ペデスタル上に搭載
した化合物半導体基板結晶37は、高周波誘導線輪36
により轟 600−800℃に高周波誘導加熱さ−る。エピタキシ
ャル成長に関与する■族元素の有機金属化合物ガス、■
族元素の水素化物ガスおよびキャリヤガスは、ガス供給
口38から供給され、石英ガラス製のメツシュ板40で
仕切られた混合空間41で拡散混合され、該メツシュ板
のメツジュロ42から流出する。39はエピタキシャル
成長の反応過程を経過した排ガスを流出させるだめの排
ガス口である。かかるエピタキシャル成長における基板
結晶面内の均一性の改善策としての従来技術としては、
該カーボンペデスタルの支柱34を回転させることが試
みられている。参考文献:ジャーナル藝オプ・クリスタ
ル番グロース(Journal ofCrystal 
Growth )、P 、 D 、 Dapkus 、
 etc、 55 t 10−23、(1981) (発明が解決しようとする問題点) 上記従来の製造装置では、以下の理由によシ反応塔内で
の各種ガスが定常的なガス流路となシ、単にペデスタル
を回転するのみによる基板面内でのエピタキシャル成長
の均一化には限界があるという重大々欠的を持っている
。すなわち、MO−CVD法によるエピタキシャル成長
は、主として■族元素のガスの供給律則で成長速度が定
まり、不純物元素のガスの供給量によシミ気侭導度が定
まる性質があシ、結晶表面付近でのこれらのガス流の状
態が成長層の均一性に大きな影響を与えておシ、反応塔
内のガス流の状態と基板結晶との相対的な関係が極めて
重要となる。反応塔内のエピタキシャル成長時のガス流
は、高温度のペデスタルの庭めに、被デスタル周辺のガ
スの温度は上昇して上昇気流を生じ、結果としてかなシ
の対流を起している状態で定常的なガス流路が形成され
ている。
FIG. 3 is a typical configuration diagram of a conventional apparatus for the MO-CVD method, in which the outer wall of a reaction tower 31 made of quartz glass has a double structure for water cooling, and 32 and 33 are its water inlets and It is a drain. A carbon pedestal 35 supported by a quartz glass strut 34 and a compound semiconductor substrate crystal 37 mounted on the pedestal are connected to a high frequency guide ring 36.
High frequency induction heating is carried out to 600-800°C. Organometallic compound gas of ■ group elements involved in epitaxial growth, ■
The group element hydride gas and the carrier gas are supplied from the gas supply port 38, diffused and mixed in a mixing space 41 partitioned by a mesh plate 40 made of quartz glass, and flow out from the mesh plate 42 of the mesh plate. Reference numeral 39 is an exhaust gas port through which the exhaust gas that has undergone the reaction process of epitaxial growth is discharged. Conventional techniques for improving the uniformity within the substrate crystal plane in such epitaxial growth include:
Attempts have been made to rotate the carbon pedestal struts 34. References: Journal of Crystal Growth
Growth), P, D, Dapkus,
etc., 55 t 10-23, (1981) (Problems to be Solved by the Invention) In the above-mentioned conventional production equipment, various gases in the reaction tower do not flow in a steady gas flow path for the following reasons. However, there is a serious drawback in that there is a limit to the uniformity of epitaxial growth within the substrate plane simply by rotating the pedestal. In other words, in epitaxial growth by the MO-CVD method, the growth rate is mainly determined by the supply law of the gas of the group Ⅰ element, and the degree of stain conductivity is determined by the supply amount of the gas of the impurity element. The state of these gas flows has a great influence on the uniformity of the grown layer, and the relative relationship between the state of the gas flow in the reaction tower and the substrate crystal is extremely important. The gas flow during epitaxial growth in the reaction tower is steady due to the high temperature of the pedestal, where the temperature of the gas around the pedestal rises and creates an upward air current, resulting in a slight convection. A typical gas flow path is formed.

該定常的なガス流路は近似的に軸対称の形状をしておシ
、従ってその中心軸を軸としてペデスタルを回転しても
、ペデスタル上の基板結晶は、常に定常的な軸対称のガ
ス流路の環境下にあることにナシ、エピタキシャル成長
の基板面内の均一性の具体的な改善には限界があるのが
現状である。
The steady gas flow path has an approximately axially symmetrical shape. Therefore, even if the pedestal is rotated about its central axis, the substrate crystal on the pedestal will always maintain a steady, axially symmetrical gas flow path. At present, there is a limit to the specific improvement of the uniformity of epitaxial growth within the substrate surface, regardless of the presence of a flow channel environment.

(問題点を解決するだめの手段) 上記問題点を解決するだめに本発明は、エピタキシャル
成長時における軸対称なガス流路の定常的な生成を阻止
するだめに、エピタキシャル成長に関与するガスを供給
するガス噴出板に軸非対称なガス噴出口あるいはガス噴
出口と翼板とを設け、該ガス噴出板を回転させる機構を
設けて、エピタキシャル成長時における反応塔内に軸非
対称でかつ非定常的な分散ガス流路を形成するように構
成した。
(Means for Solving the Problems) In order to solve the above problems, the present invention supplies a gas involved in epitaxial growth in order to prevent steady generation of an axially symmetrical gas flow path during epitaxial growth. A gas ejection plate is provided with an axially asymmetrical gas ejection port or a gas ejection port and a vane plate, and a mechanism for rotating the gas ejection plate is provided to prevent an axially asymmetric and unsteady dispersed gas in the reaction tower during epitaxial growth. It was configured to form a flow path.

(作用) 上記のように、ガス流路の分散化と非定常化を行い、エ
ピタキシャル成長時における基板結晶表面内でのガス流
との接触条件の均一化を達成し、広い基板結晶に対して
も成長層品質の面内均一性の優れたエピタキシャル成長
を実現する製造装置を提供する。
(Function) As described above, the gas flow path is dispersed and unsteady, and the contact conditions with the gas flow within the substrate crystal surface during epitaxial growth are made uniform, and even for a wide substrate crystal. Provided is a manufacturing apparatus that realizes epitaxial growth with excellent in-plane uniformity of growth layer quality.

(実施例) 以下、本発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

第1図は、本発明に係る化合物半導体膜の製造装置の一
実施例図である。同図において、1は石英ガラス製の反
応塔であり、管壁を水冷できるように二重構造になって
おり、2および3はその流水口および排水口である。石
英ガラス裂の支柱4で支持されたカーがン製の被デスタ
ル5は高周波線輪6によシ例えば600−800℃程度
の結晶成長温度に高周波誘導加熱できるように表ってお
シ、該にデスタル上には化合物半導体基板結晶7が装着
される。MO−CVD法による化合物半導体のエピタキ
シャル成長に関与する各種の原料ガス、すなわちGa(
CH3)3.In(C2H5)6等の有機金属化合物ガ
ス、A8H3、PH5等の水素化合物ガス、zn(CH
3)2  等の不純物添加用の有機金属化合物ガスは、
H2r Ar等のキャリヤガスと共にガス供給口8より
反応塔内に供給される。9は排ガス口であって、常圧状
態でのMO−C■法の場合にはそのまま外部の排ガス処
理装置へ接続し、減圧状態でのMO−CVD法の場合に
は、排気速度を調整可能な排気系をへて外部排ガス処理
装置に接続し、て所定の反応塔内圧力(例えば数10T
orr)になるように調整される。
FIG. 1 is a diagram showing an embodiment of a compound semiconductor film manufacturing apparatus according to the present invention. In the figure, 1 is a reaction tower made of quartz glass, which has a double structure so that the tube wall can be cooled with water, and 2 and 3 are its water inlets and drain ports. The carton destal 5 supported by the quartz glass crack pillar 4 is exposed to a high frequency coil 6 so that it can be heated by high frequency induction to a crystal growth temperature of, for example, about 600-800°C. A compound semiconductor substrate crystal 7 is mounted on the destal. Various raw material gases involved in epitaxial growth of compound semiconductors by MO-CVD method, namely Ga(
CH3)3. Organometallic compound gas such as In(C2H5)6, hydrogen compound gas such as A8H3, PH5, zn(CH
3) Organometallic compound gas for adding impurities such as 2.
It is supplied into the reaction tower from the gas supply port 8 together with a carrier gas such as H2r Ar. 9 is an exhaust gas port, which can be directly connected to an external exhaust gas treatment device in the case of the MO-C method under normal pressure conditions, and the exhaust speed can be adjusted in the case of the MO-CVD method under reduced pressure conditions. It is connected to an external exhaust gas treatment device through a suitable exhaust system, and is controlled at a predetermined internal pressure (for example, several tens of tons).
orr).

本発明に係る製造装置の特徴的は、ガス噴出部の構造に
ある。すなわち、10は石英ガラス製の漏斗状のガス誘
導管、11はガス噴出板であシ、該ガス噴出板にはその
中心軸に非対称なガス噴出口12が設けられている。ガ
ス誘導板10には永久磁石14を装着するための駆動ア
ーム13が設けられ、該永久磁石と反応塔の外部の回、
転永久磁石15との間の引力によりガス誘導管を回転で
きるように構成されている。ガス供給口8から供給され
た各種のガスは、ガス誘導管10とガス噴出板11とで
形成される混合空間16で拡散混合して、軸非対称なガ
ス噴出口12から噴出される。
The manufacturing apparatus according to the present invention is characterized by the structure of the gas ejection part. That is, 10 is a funnel-shaped gas guide tube made of quartz glass, 11 is a gas ejection plate, and the gas ejection plate is provided with an asymmetric gas ejection port 12 around its central axis. The gas guide plate 10 is provided with a drive arm 13 for mounting a permanent magnet 14, and the permanent magnet and the external rotation of the reaction tower are connected to each other.
The gas guide tube is configured to be able to rotate due to the attractive force between it and the rotating permanent magnet 15. Various gases supplied from the gas supply port 8 are diffused and mixed in a mixing space 16 formed by a gas guide pipe 10 and a gas ejection plate 11, and are ejected from an axially asymmetric gas ejection port 12.

第2図は本発明の製造装置におけるガス噴出板に係る種
々の実施例図である。同図のガス噴出板21はすべて中
心軸非対称の位置に1個又は複数個のガス噴出口が設け
られている点で共通しておシ、同図(、)では1個の円
形のガス噴出口22を、(b)では1個のスリット状の
ガス噴出口23を、(C)では蜂の巣状に配列された7
個の微少なガス噴出口24を、(d)では直線状に配列
された4個の微小なガス噴出口25を、それぞれ設けた
場合の実施例図である。また、第2図(、)および(f
)は、第2図(、)のガス噴出板に平面状およびくの字
形の翼板26および27をそれぞれ設けた実施例図であ
る。
FIG. 2 is a diagram showing various embodiments of the gas ejection plate in the manufacturing apparatus of the present invention. The gas ejection plates 21 shown in the same figure all have one or more gas ejection ports located asymmetrically on the central axis. In (b) there is one slit-shaped gas outlet 23, and in (C) there are 7
FIG. 12(d) is a diagram showing an example in which four minute gas outlets 25 arranged in a straight line are provided, respectively. Also, Figure 2 (,) and (f
) is an embodiment view in which the gas ejection plate of FIG. 2(,) is provided with planar and dogleg-shaped vanes 26 and 27, respectively.

以上の本発明に係る製造装置の特徴的な構造は、第3図
での従来の説明で詳述したような高温度のペデスタルに
起因して発生する軸対称な対流を、定常的な状態にしな
いようにするようにされたものである。すなわち、まづ
、ガス噴出板のガス噴出口を軸非対称な位置にすること
によシ軸対称性を減少させ、つぎに該軸非対称のガス噴
出口を回転させることによシ、ガス流路が定常的な状態
になる以前に分散させる機能を果すことができる。
The characteristic structure of the manufacturing apparatus according to the present invention described above is such that the axially symmetrical convection generated due to the high temperature pedestal, as detailed in the conventional explanation in FIG. 3, is brought into a steady state. It was designed to prevent this from happening. That is, first, the axial symmetry is reduced by locating the gas outlet of the gas outlet plate in an axially asymmetrical position, and then, by rotating the axially asymmetrical gas outlet, the gas flow path is It can perform the function of dispersing before it reaches a steady state.

さらに、ガス噴出板に軸非対称な翼板を設けることによ
シ、ガス噴出板とペデスタルとの間のガスを回転させて
一層のガス流路の分散非定常化を行なうことができる。
Further, by providing the gas ejection plate with an axially asymmetrical vane plate, the gas between the gas ejection plate and the pedestal can be rotated to further disperse and unsteady the gas flow path.

上述のように本発明は、ガスの供給側を全く新しい構造
とすることによシエビタキシャル成長の基板面内での均
一化を達成するものであシ、従来のペデスタル側の回転
による改善策とは性質を異にするものである。しかし、
本発明の装置構造は、ペデスタル側の構造に何等の制約
なしに実施できることから、本発明に加えての補助的な
手段として、従来のペデスタル側の回転を容易に重畳さ
せることが可能であシ、ガス噴出板側とペデスタル側と
のそれぞれの回転方向あるいは回転数を選定することに
より非常に広いガス流量範囲および成長温度範囲にわた
ってのエピタキシャル成長条件を最適化できる利点もあ
る。
As mentioned above, the present invention achieves uniformity of the vitaxial growth within the substrate surface by creating a completely new structure on the gas supply side, and is an improvement over the conventional method of rotating the pedestal side. They have different characteristics. but,
Since the device structure of the present invention can be implemented without any restrictions on the structure of the pedestal side, it is possible to easily superimpose the rotation of the conventional pedestal side as an auxiliary means in addition to the present invention. Another advantage is that epitaxial growth conditions can be optimized over a very wide gas flow rate range and growth temperature range by selecting the respective rotation directions or rotation speeds of the gas ejection plate side and the pedestal side.

(発明の効果) 以上説明したように本発明によれば、軸非対称のガス噴
出口とその回転および軸非対称な回転翼板によシ、MO
−CVD法における軸対称なガス流路の定常化を阻止し
てガス流路の分散化、非定常化を行い、エピタキシャル
成長時における広い基板結晶表面内でのガス流との接触
条件の均一化を計シ、成長層の品質の面内均一性を飛躍
的に改善することができる。
(Effects of the Invention) As explained above, according to the present invention, the axially asymmetrical gas jet port and its rotation, and the axially asymmetrical rotary blade plate allow the MO
- Preventing the stabilization of the axially symmetrical gas flow path in the CVD method, making the gas flow path dispersed and unsteady, and making the contact conditions with the gas flow uniform within the wide substrate crystal surface during epitaxial growth. The in-plane uniformity of the quality of the growth layer can be dramatically improved.

化合物半導体デパイヌの進展にともなって、近年、化合
物半導体の基板の直径は急速に増大し、かかる大型の基
板結晶に対して良好な面内均一性を実現するMO−CV
Dエピタキシャル成長の製造装置が要請されており、本
発明は、化合物半導体による超高周波集積回路および光
集積回路の高性能化、高密度化、高歩留り化、低コスト
化等に大いに貢献し、極めて優れた工業的な効果がある
With the development of compound semiconductor technology, the diameter of compound semiconductor substrates has increased rapidly in recent years, and MO-CV technology has developed to achieve good in-plane uniformity for such large substrate crystals.
There is a demand for manufacturing equipment for D-epitaxial growth, and the present invention greatly contributes to higher performance, higher density, higher yield, lower cost, etc. of ultra-high frequency integrated circuits and optical integrated circuits using compound semiconductors, and is extremely excellent. It has industrial effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の化合物半導体薄膜の製造装置の一例を
具体的に示す断面構造図、第2図は、本発明のガス噴出
板に係る他の実施例図、第3図は従来の化合物半導体薄
膜の製造装置の一例を示す断面構造図である。 1.31・・・反応塔、2,32・・・流水口、3゜3
3・・・排水口、4,34・・・支柱、5,35・・・
ペデスタル、6,36・・・高周波線輪、7,37・・
・化合物半導体基板結晶、8,38・・・ガス供給口、
9゜39・・・排ガス口、10・・・ガス誘導管、11
・・・ガス噴出板、12,22,23,24,25・・
・ガス噴出口、13・・・駆動アーム、14・・・永久
磁石、15・・・回転永久磁石、16.41−・・混合
空間、26゜27・・・R板、40・・・メツシュ板、
42・・・メツジュロ。 特許出願人 沖電気工業株式会社 第1図 (a)          (b) (c)          (d) (e)          (f) 〃゛ス111反都、構入 第2図 先行状イ・訂。表! 第3図 1、事件の表示 昭和60年 特 許 項第 95587  号2、発明
の名称 化合物半導体薄膜の製造装置 3、補正をする者 事件との関係      特 許 出 願 人住 所(
〒105)  東京都港区虎ノ門1丁目7番12号4、
代理人 6、補正の内容 明細書第7項第13行目に口特徴的ゆ
、」とあるのを「特徴は、」と補正する。
FIG. 1 is a cross-sectional structural diagram specifically showing an example of the compound semiconductor thin film manufacturing apparatus of the present invention, FIG. 2 is a diagram of another embodiment of the gas ejection plate of the present invention, and FIG. 3 is a diagram of a conventional compound semiconductor thin film manufacturing apparatus. FIG. 1 is a cross-sectional structural diagram showing an example of a semiconductor thin film manufacturing apparatus. 1.31... Reaction tower, 2,32... Water outlet, 3゜3
3... Drain port, 4, 34... Support, 5, 35...
Pedestal, 6, 36... High frequency wire ring, 7, 37...
・Compound semiconductor substrate crystal, 8, 38... gas supply port,
9゜39...Exhaust gas port, 10...Gas guide pipe, 11
...Gas ejection plate, 12, 22, 23, 24, 25...
・Gas outlet, 13... Drive arm, 14... Permanent magnet, 15... Rotating permanent magnet, 16.41-... Mixing space, 26° 27... R plate, 40... Mesh board,
42...Metsujuro. Patent applicant: Oki Electric Industry Co., Ltd. Figure 1 (a) (b) (c) (d) (e) (f) table! Figure 3 1, Indication of the case 1985 Patent No. 95587 2, Name of the invention Apparatus for manufacturing compound semiconductor thin film 3, Person making the amendment Relationship with the case Patent application Person's address (
105) 1-7-12-4 Toranomon, Minato-ku, Tokyo.
Agent 6, content of amendment: In paragraph 7, line 13 of the specification, the phrase ``characteristic of the mouth'' is amended to read ``characteristics are''.

Claims (2)

【特許請求の範囲】[Claims] (1)有機金属化合物熱分解法によるエピタキシャル成
長層の製造装置において、軸非対称な位置に1個あるい
は複数個のガス噴出口を有するガス噴出板を設け、該ガ
ス噴出板を支持するガス誘導管とガス噴出板とで形成さ
れる空間内で、反応に関与する原料ガスおよびキャリヤ
ガスを拡散混合しガス噴出口からの噴出せしめるように
なし、該ガス噴出板とガス誘導管とを回転させて、中心
軸上で静止あるいは回転しているペデスタル上の化合物
半導体基板結晶に対して、回転しながら軸非対称なガス
流を照射するように構成したことを特徴とする化合物半
導体薄膜の製造装置。
(1) In an apparatus for producing an epitaxially grown layer using an organometallic compound pyrolysis method, a gas ejection plate having one or more gas ejection ports is provided at an axially asymmetrical position, and a gas guide tube supporting the gas ejection plate is provided. In a space formed by the gas ejection plate, the raw material gas and carrier gas involved in the reaction are diffused and mixed and ejected from the gas ejection port, and the gas ejection plate and the gas guide pipe are rotated, 1. An apparatus for manufacturing a compound semiconductor thin film, characterized in that the compound semiconductor substrate crystal on a pedestal, which is stationary or rotating on a central axis, is irradiated with an axially asymmetrical gas flow while rotating.
(2)有機金属化合物熱分解法によるエピタキシャル成
長層の製造装置において、軸非対称な位置に1個あるい
は複数個のガス噴出口と軸非対称な翼板とを有するガス
噴出板を設け、該ガス噴出板を支持するガス誘導管とガ
ス噴出板とで形成される空間内で、反応に関与する原料
ガスおよびキャリヤガスを拡散混合しガス噴出口からの
噴出せしめるようになし、該ガス噴出板とガス誘導管と
を回転させて、中心軸上で静止あるいは回転しているペ
デスタル上の化合物半導体基板結晶に対して、ガス噴出
板とペデスタルとの間のガスを回転させながら軸非対称
なガス流を照射するように構成したことを特徴とする化
合物半導体薄膜の製造装置。
(2) In an apparatus for producing an epitaxially grown layer using an organometallic compound pyrolysis method, a gas ejection plate having one or more gas ejection ports and an axially asymmetrical blade plate is provided at an axially asymmetrical position, and the gas ejection plate The raw material gas and carrier gas involved in the reaction are diffused and mixed in the space formed by the gas guide tube and the gas ejection plate supporting the gas ejection port, and are ejected from the gas ejection port. The compound semiconductor substrate crystal on the pedestal, which is stationary or rotating on the central axis, is irradiated with an axially asymmetrical gas flow while rotating the gas between the gas ejection plate and the pedestal. An apparatus for manufacturing a compound semiconductor thin film, characterized in that it is configured as follows.
JP9558785A 1985-05-07 1985-05-07 Manufacturing device for compound semiconductor thin film Granted JPS61253822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9558785A JPS61253822A (en) 1985-05-07 1985-05-07 Manufacturing device for compound semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9558785A JPS61253822A (en) 1985-05-07 1985-05-07 Manufacturing device for compound semiconductor thin film

Publications (2)

Publication Number Publication Date
JPS61253822A true JPS61253822A (en) 1986-11-11
JPH039609B2 JPH039609B2 (en) 1991-02-08

Family

ID=14141712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9558785A Granted JPS61253822A (en) 1985-05-07 1985-05-07 Manufacturing device for compound semiconductor thin film

Country Status (1)

Country Link
JP (1) JPS61253822A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5275686A (en) * 1991-09-25 1994-01-04 University Of New Mexico Radial epitaxial reactor for multiple wafer growth
JP2022547508A (en) * 2019-09-09 2022-11-14 アプライド マテリアルズ インコーポレイテッド Process system and method of supplying reactant gases
US11959169B2 (en) 2019-01-30 2024-04-16 Applied Materials, Inc. Asymmetric injection for better wafer uniformity

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5275686A (en) * 1991-09-25 1994-01-04 University Of New Mexico Radial epitaxial reactor for multiple wafer growth
US11959169B2 (en) 2019-01-30 2024-04-16 Applied Materials, Inc. Asymmetric injection for better wafer uniformity
JP2022547508A (en) * 2019-09-09 2022-11-14 アプライド マテリアルズ インコーポレイテッド Process system and method of supplying reactant gases

Also Published As

Publication number Publication date
JPH039609B2 (en) 1991-02-08

Similar Documents

Publication Publication Date Title
JP4422295B2 (en) CVD equipment
JPH09330884A (en) Epitaxial growth device
JPS61253822A (en) Manufacturing device for compound semiconductor thin film
JPH03255618A (en) Vertical type cvd device
JP4581868B2 (en) Epitaxial growth apparatus and manufacturing method thereof
JP4381489B2 (en) Chemical vapor deposition equipment
JPS61248517A (en) Manufacturing equipment for compound semiconductor thin film
WO2021227133A1 (en) Reaction chamber turbine structure for chemical vapor deposition (cvd) apparatus
JP2020102533A (en) SiC CHEMICAL VAPOR DEPOSITION APPARATUS
JPS61248518A (en) Manufacturing equipment for compound semiconductor thin film
JP3038524B2 (en) Semiconductor manufacturing equipment
JP2007109685A (en) Apparatus and method for manufacturing compound semiconductor
JPH09266173A (en) Org. metal chemical vapor deposition apparatus
JP2733535B2 (en) Semiconductor thin film vapor deposition equipment
JPH0722323A (en) Vapor deposition device
JP2001058124A (en) Static type fluid mixer and apparatus and fluid mixing method using same apparatus
JPH0235814Y2 (en)
JPS61224315A (en) Epitaxial growth method for semiconductor
JPH01297820A (en) Apparatus and method for applying film to board
JP2022129261A (en) Vapor-phase growth apparatus for high temperature and growth method for semiconductor crystal film
JPS6334920A (en) Vapor growth apparatus
JPH10163115A (en) Vapor growth device
JP2501436Y2 (en) Vapor phase growth equipment
JPH07273036A (en) Formation of compound semiconductor crystal
JPS6353160B2 (en)