JPS6334920A - Vapor growth apparatus - Google Patents

Vapor growth apparatus

Info

Publication number
JPS6334920A
JPS6334920A JP17763986A JP17763986A JPS6334920A JP S6334920 A JPS6334920 A JP S6334920A JP 17763986 A JP17763986 A JP 17763986A JP 17763986 A JP17763986 A JP 17763986A JP S6334920 A JPS6334920 A JP S6334920A
Authority
JP
Japan
Prior art keywords
gas
susceptor
substrate
crystal substrate
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17763986A
Other languages
Japanese (ja)
Inventor
Yuji Nakada
裕二 中田
Hideo Iwasaki
秀夫 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17763986A priority Critical patent/JPS6334920A/en
Publication of JPS6334920A publication Critical patent/JPS6334920A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To uniformize the concentration gradients of material gas on the surface and periphery of a crystal substrate thereby to easily obtain a thin film crystal having a uniform thickness by supplying gas to be reacted substantially perpendicularly from below the surface of the substrate to be held by a susceptor. CONSTITUTION:Reaction gas which contains material gas is supplied from a reaction gas supply port 9 of a reaction furnace body 1 toward the surface of a crystal substrate 7 held on the lower surface of a susceptor 5. The supplied reaction gas is guided by a diffuser 13 to arrive at the substrate 7, heated to a predetermined temperature by a high frequency induction heater 17, reacted on the surface of the substrate 7 rotated by a rotational shaft 3, decomposed to become a crystal and grown on the substrate 7. The reaction gas which is finished to react and decompose on the substrate rises in a space 15 between the peripheral edge 5a of the susceptor 5 and the inner wall 1b of the body 1, and is led from an outlet 11 at the top of the body 1 to an exhaust gas processor.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、半導体の気相成長装置に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a semiconductor vapor phase growth apparatus.

(従来の技術) 従来のこの種の気相成長装置として、例えば第2図に示
すようなものがある。すなわち、この気相成長装置は上
部に反応ガスの供給口101を。
(Prior Art) As a conventional vapor phase growth apparatus of this type, there is one shown in FIG. 2, for example. That is, this vapor phase growth apparatus has a reactant gas supply port 101 at the top.

下部に反応ガスの排出口103を有する反応炉体105
を備えている。この反応炉体105は供給口101から
所定の拡大率、換言すれば一定の拡大角αで漸次拡大し
たデイフユーザ106を備えている。この反応炉体10
5内で前記デイフユーザ106の拡大端(下端)と同じ
高さに結晶基板107を保持するサセプタ109が設置
されている。サセプタ109は反応炉体105の底壁1
05aに回転自在に支承された回転軸111に取付けら
れ、図示しないモータ等によって回転される。前記反応
炉体105の周囲には前記結晶基板107を加熱する加
熱手段として高周波誘導加熱装置113が設けられてい
る。
Reactor body 105 having a reaction gas outlet 103 at the bottom
It is equipped with This reactor body 105 includes a diff user 106 that is gradually expanded from the supply port 101 at a predetermined expansion rate, in other words, at a constant expansion angle α. This reactor body 10
A susceptor 109 for holding a crystal substrate 107 is installed within the diff user 5 at the same height as the enlarged end (lower end) of the diff user 106 . The susceptor 109 is the bottom wall 1 of the reactor body 105.
It is attached to a rotating shaft 111 that is rotatably supported by the motor 05a, and is rotated by a motor or the like (not shown). A high frequency induction heating device 113 is provided around the reactor body 105 as a heating means for heating the crystal substrate 107.

そして、結晶させるべき原料ガスを含む反応ガス(原料
ガス及びキャリアガス)を反応ガス供給口101から反
応炉体105内に導入する。導入された反応ガスはデイ
フユーザ106によって案内され、サセプタ109上に
保持され高周波誘導加熱装置113によって所定温度(
700℃〜800℃)に加熱された結晶基板107に向
けて流れ。
Then, a reactive gas (raw material gas and carrier gas) containing the raw material gas to be crystallized is introduced into the reactor body 105 from the reactive gas supply port 101 . The introduced reaction gas is guided by a diffuser 106, held on a susceptor 109, and heated to a predetermined temperature (
Flows toward the crystal substrate 107 heated to 700° C. to 800° C.).

結晶基板107表面での反応、分解作用によって結晶成
長が行なわれる。反応、分解を終了した反応ガスは、サ
セプタ109の周縁部109aと反応炉体105の内壁
105bとの間の空間部115を流れて反応ガス排出口
103から図外の排ガス処理装置へ導かれる。
Crystal growth is performed by reaction and decomposition action on the surface of the crystal substrate 107. The reaction gas that has been reacted and decomposed flows through the space 115 between the peripheral edge 109a of the susceptor 109 and the inner wall 105b of the reactor body 105, and is led from the reaction gas outlet 103 to an exhaust gas treatment device (not shown).

ところで、この種の気相成長装置においては、量産化を
前提にして結晶基板107表面での結晶膜厚の均一性が
要求されている。
Incidentally, in this type of vapor phase growth apparatus, uniformity of the crystal film thickness on the surface of the crystal substrate 107 is required on the premise of mass production.

しかしながら、従来の気相成長装置にあっては、デイフ
ユーザ106が一定の拡大角αで漸次拡大しているもの
であるため、サセプタ109の周縁部109aと反応炉
体105の内壁105bとの間の空間部115の断面積
がサセプタ109上部の断面積に対して急激に狭くなる
。従って、反応炉体105内に導入された反応ガスが空
間部115を流れるときに加速され、反応ガス中に含ま
れる原料ガスの等濃度線は、第3図に示すようにサセプ
タ】09の周縁部109a下方に押し流されるようにな
る。このため1等濃度線は、サセプタ109の周縁部1
09aで密な分布となり、結晶基板107表面に形成さ
れる膜厚分布は、第4図に示すようにサセプタ109の
中心部から外周に向って単調増加のプロフィールとなり
、結晶膜厚の均一性が悪くなるという問題点があった。
However, in the conventional vapor phase growth apparatus, since the diff user 106 gradually expands at a constant expansion angle α, the gap between the peripheral edge 109a of the susceptor 109 and the inner wall 105b of the reactor body 105 increases. The cross-sectional area of the space 115 becomes sharply narrower than the cross-sectional area of the upper part of the susceptor 109. Therefore, the reaction gas introduced into the reactor body 105 is accelerated when flowing through the space 115, and the isoconcentration line of the raw material gas contained in the reaction gas is located at the periphery of the susceptor 09 as shown in FIG. The portion 109a is swept downward. Therefore, the first isodensity line is the peripheral edge 1 of the susceptor 109.
09a, the film thickness distribution formed on the surface of the crystal substrate 107 has a monotonically increasing profile from the center to the outer periphery of the susceptor 109, as shown in FIG. 4, and the uniformity of the crystal film thickness is The problem was that it got worse.

この反応ガスの急激な加速を避けるため1例えば、反応
炉体105内圧力を高めて、ガス流速を全体的に低減さ
せる方法が考えられるが、この場合反応ガスの密度が増
大し、それにともなって結晶基板付近で熱せられたガス
に作用する浮力が増大して、大きな熱対流が発生する。
In order to avoid this rapid acceleration of the reaction gas, for example, a method of increasing the internal pressure of the reactor body 105 to reduce the overall gas flow rate can be considered, but in this case, the density of the reaction gas increases, and as a result, The buoyant force acting on the heated gas near the crystal substrate increases, generating large thermal convection.

そして、この熱対流によって結晶基板付近の流れ場が乱
されて。
This thermal convection then disturbs the flow field near the crystal substrate.

均一な膜厚の薄膜結晶の成長をさまたげていた。This hindered the growth of thin film crystals with uniform thickness.

(発明が解決しようとする問題点) 上述したように従来の気相成長装置にあっては。(Problem that the invention attempts to solve) As mentioned above, in the conventional vapor phase growth apparatus.

結晶基板の周辺部で原料ガスの濃度勾配が不均一となり
、これを避けるため反応ガスの圧力を高めると熱対流が
発生し、結局膜厚分布が均一の薄膜結晶を得ることがで
きなかった。
The concentration gradient of the raw material gas becomes non-uniform around the crystal substrate, and when the pressure of the reaction gas is increased to avoid this, thermal convection occurs, and in the end it is not possible to obtain a thin film crystal with a uniform film thickness distribution.

本発明は上記事情に鑑みてなされたもので、その目的と
するところは、結晶基板表面上及び周辺部の原料ガスの
濃度勾配を均一にし、均一な厚さの薄膜結晶が容易に得
られる気相成長装置を提供することにある。
The present invention has been made in view of the above circumstances, and its purpose is to make the concentration gradient of the raw material gas on the surface of the crystal substrate and the surrounding area uniform, so that thin film crystals with uniform thickness can be easily obtained. An object of the present invention is to provide a phase growth device.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明の気相成長装置においては、サセプタに保持され
る結晶基板表面に下方からほぼ垂直に反応させるべきガ
スを供給している。
(Means for Solving the Problems) In the vapor phase growth apparatus of the present invention, the gas to be reacted is supplied from below substantially perpendicularly to the surface of the crystal substrate held by the susceptor.

(作用) このように構成されたものにおいては1反応させるガス
を下方から上方へ供給するようにしているため、従来ガ
スの流速を低減する目的で圧力を増加させた際に発生し
ていた熱対流が生じない。
(Function) In the device configured in this way, the gas for one reaction is supplied from the bottom to the top, so the heat generated when the pressure is increased in order to reduce the flow rate of the gas is reduced. No convection occurs.

したがって、結晶基板の全面で結晶基板に平行な等濃度
線、つまり均一な濃度の上下方向勾配が実現される。
Therefore, iso-concentration lines parallel to the crystal substrate, that is, uniform concentration gradients in the vertical direction are realized over the entire surface of the crystal substrate.

(実施例) 以下、図面を参照して本発明の詳細な説明する。(Example) Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は、本発明に係る気相成長装置の断面図を示し、
反応炉体1内に回転軸3に支承されたサセプタ5が配置
されている。このサセプタ5の下面には結晶基板7が、
押え板23を介して、例えばネジ等により、固定されて
いる。回転軸3、サセプタ5は1反応炉体1の上底壁1
aにスラスト軸受25によって回転自在に支持され図示
しないモータ等によって回転、駆動される。
FIG. 1 shows a cross-sectional view of a vapor phase growth apparatus according to the present invention,
A susceptor 5 supported on a rotating shaft 3 is disposed within the reactor body 1 . On the lower surface of this susceptor 5, a crystal substrate 7 is placed.
It is fixed via a presser plate 23, for example, with screws or the like. The rotating shaft 3 and the susceptor 5 are 1. The upper bottom wall 1 of the reactor body 1
A is rotatably supported by a thrust bearing 25 and rotated and driven by a motor (not shown) or the like.

反応炉体1の下部中央部には、原料ガスを含む反応ガス
を反応炉体1内に供給する供給口9が設けられている。
A supply port 9 for supplying a reaction gas containing a raw material gas into the reactor body 1 is provided at the lower central portion of the reactor body 1 .

この供給口9から上方に向って供給され1反応ガス通路
13を通って、結晶基板7付近に達した反応ガスは、結
晶基板7の下部表面上で反応、分解しつつ流れ方向を垂
直方向から水平方向に変える。サセプタ5の外周部には
、ガスの流れを乱さないよう滑らかな形状を有する押え
板23が配置され、この側面を通過したガスは、反応炉
体1の上部にある排気口】1から排出され。
The reaction gas that is supplied upward from the supply port 9, passes through the first reaction gas passage 13, and reaches the vicinity of the crystal substrate 7 reacts and decomposes on the lower surface of the crystal substrate 7 while changing the flow direction from the vertical direction. change horizontally. A presser plate 23 having a smooth shape is placed on the outer periphery of the susceptor 5 so as not to disturb the gas flow. .

図外の排ガス処理装置へ導びかれる。The vehicle is led to an exhaust gas treatment device (not shown).

本実施例では1反応炉体1は供給口9から上方へ所定の
拡大率で漸次拡大したデイフユーザ−13を備えており
、このデイフユーザ13の拡大率はサセプタ5側で大き
くなっているがこれに限られるものではない。反応炉体
1は炉支持27により、支えられ、反応炉体1の周囲に
は、サセプタ5に保持された結晶基板7を所定温度(7
00℃〜800℃)に加熱するための加熱手段たる高周
波誘導加熱装置17が設けられている。
In this embodiment, one reactor body 1 is equipped with a differential user 13 that is gradually expanded upward from the supply port 9 at a predetermined expansion rate. It is not limited. The reactor body 1 is supported by a furnace support 27, and around the reactor body 1, a crystal substrate 7 held by a susceptor 5 is heated to a predetermined temperature (7
A high frequency induction heating device 17 is provided as a heating means for heating to 00°C to 800°C.

このように構成された気相成長装置においては、反応炉
体1の反応ガスの供給口9から原料ガスを含んだ反応ガ
スが、サセプタ5の下面に保持される結晶基板7の表面
に向けて供給される。この反応ガスは、例えば■族元素
の有機金属トリメチルガリウム((CH* )mGa)
とV族元素の水素化物アルシンガス(AS−H3)及び
水素ガス(H3)の混合ガスにより組成されている。そ
して供給された反応ガスはデイフユーザ13で案内され
て結晶基板7の上に至り、高周波誘導加熱装置17によ
って所定温度(700℃〜800℃)に加熱されると共
に回転軸3で回転されている結晶基板7の表面で反応1
分解し、ヒ化ガリウム(GaAs)の結晶となって結晶
基板7表面で成長する。結晶基板7表面での反応、分解
を終了した反応ガスは、サセプタ5の周縁部5aと反応
炉体lの内壁1bとの間の空間部15を上昇し、反応炉
体1上部の排出口11から図外の排ガス処理装置へ導か
れる。
In the vapor phase growth apparatus configured in this manner, the reaction gas containing the raw material gas is directed from the reaction gas supply port 9 of the reactor body 1 toward the surface of the crystal substrate 7 held on the lower surface of the susceptor 5. Supplied. This reaction gas is, for example, organometallic trimethylgallium ((CH*)mGa), a group II element.
It is composed of a mixed gas of arsine gas (AS-H3), a hydride of group V elements, and hydrogen gas (H3). The supplied reaction gas is guided by the diffuser 13 and reaches the top of the crystal substrate 7, where it is heated to a predetermined temperature (700°C to 800°C) by the high frequency induction heating device 17 and the crystal rotated by the rotating shaft 3. Reaction 1 on the surface of substrate 7
It decomposes, becomes a gallium arsenide (GaAs) crystal, and grows on the surface of the crystal substrate 7. The reaction gas that has completed the reaction and decomposition on the surface of the crystal substrate 7 rises in the space 15 between the peripheral edge 5a of the susceptor 5 and the inner wall 1b of the reactor body 1, and reaches the exhaust port 11 in the upper part of the reactor body 1. The gas is then led to an exhaust gas treatment device (not shown).

第2図は、本発明の他の実施例を示すものであり、第1
図と同一部分若しくは相当する部分には同一符号を付し
て説明は省略する。
FIG. 2 shows another embodiment of the present invention, and shows the first embodiment.
The same parts as those in the figures or corresponding parts are given the same reference numerals, and the description thereof will be omitted.

第2図においては、サセプタ5の下面に結晶基板7を複
数(例えば−2枚、4枚等)保持できるようにしたもの
であり、量産化に適している。
In FIG. 2, a plurality of crystal substrates 7 (eg -2, 4, etc.) can be held on the lower surface of the susceptor 5, and is suitable for mass production.

第3図と第4図はさらに他の実施例を示す断面図であり
、第1図及び第2図と同一部分若しくは相当する部分に
は同一符号を付してその説明は省略する。
FIGS. 3 and 4 are sectional views showing still another embodiment, and the same or corresponding parts as in FIGS. 1 and 2 are given the same reference numerals, and the explanation thereof will be omitted.

第3図のように構成されたもの1こおいては、供給口9
から供給され、結晶基板7付近に達した反応ガスは、結
晶基板7表面上で反応1分解しつつ流れ方向を上下方向
から水平方向Iこ変える。サセプタ5の外周部には、軸
対称の排気ダクト21が設けられ1反応後のガスが排出
口11′を通過して。
In the case 1 configured as shown in FIG. 3, the supply port 9
The reaction gas that is supplied from the crystal substrate 7 and reaches the vicinity of the crystal substrate 7 undergoes reaction and decomposition on the surface of the crystal substrate 7 while changing its flow direction from the vertical direction to the horizontal direction. An axially symmetrical exhaust duct 21 is provided on the outer periphery of the susceptor 5, and the gas after one reaction passes through the exhaust port 11'.

図外の排ガス処理装置へ導ひかれる。本実施例では5ガ
スの流れを乱さないよう、排気ダクト21の上面21a
は結晶基板7およびサセプタ5の下面とほぼ上下方向同
一位置に設定されている。
The vehicle is led to an exhaust gas treatment device (not shown). In this embodiment, the upper surface 21a of the exhaust duct 21 is
is set at substantially the same position as the lower surfaces of the crystal substrate 7 and the susceptor 5 in the vertical direction.

本実施例の構成によれば、原料ガスの上下方向の濃度勾
配が結晶基板7上で均一となるように排気ダクト21を
設けたため、第4図に示すような。
According to the configuration of this embodiment, the exhaust duct 21 is provided so that the concentration gradient of the source gas in the vertical direction is uniform on the crystal substrate 7, as shown in FIG. 4.

はぼ理想に近い、均一の濃度勾配が実現され、従って均
一膜厚の薄膜結晶が容易に得られる。これは、従来装置
にあっては、サセプタの外周付近で。
A nearly ideal, uniform concentration gradient is achieved, and therefore a thin film crystal with a uniform thickness can be easily obtained. In conventional equipment, this occurs near the outer periphery of the susceptor.

反応ガスが急激に加速され、濃度分布を乱していたのに
対し1本実施例の構成では、反応ガスの加減速が非常に
ゆるやかとなるためである。
This is because the reaction gas is rapidly accelerated and the concentration distribution is disturbed, whereas in the configuration of this embodiment, the acceleration and deceleration of the reaction gas is very gradual.

なお、反応後のガスの排出口11は反応炉体1の外周部
全体に設けても、反応炉体外周部に複数個設けてもよい
。複数個設ける場合には望ましくはほぼ軸対称に排気す
るようにする。
Note that the exhaust ports 11 for the gas after the reaction may be provided on the entire outer circumference of the reactor body 1, or may be provided in plural on the outer circumference of the reactor body. If a plurality of pumps are provided, it is preferable to exhaust the air approximately axially symmetrically.

また、量産化のためサセプタ5の下面に結晶基板7を複
数保持できるようlこしてもよい。
Further, for mass production, a plurality of crystal substrates 7 may be held on the lower surface of the susceptor 5.

本発明の構成によれば、加熱され高温となる結晶基板7
が比較的低温の反応ガス供給口9の上方に位置している
ため、ガス流速を低減する目的で圧力を上昇させたとし
ても密度差に起因する熱対流が発生しにくい。したがっ
て、均一な膜厚の薄膜結晶が容易に得られる。また、サ
セプタ5は反応ガス供給口9と垂直に設けられているた
め、薄膜を成長させたい結晶基板7に反応ガスが垂直に
供給されたため反応ガスの反応効率が良い。また。
According to the configuration of the present invention, the crystal substrate 7 is heated to a high temperature.
is located above the relatively low-temperature reaction gas supply port 9, so even if the pressure is increased to reduce the gas flow rate, thermal convection due to the density difference is unlikely to occur. Therefore, thin film crystals with uniform thickness can be easily obtained. Further, since the susceptor 5 is provided perpendicularly to the reactive gas supply port 9, the reactive gas is supplied vertically to the crystal substrate 7 on which a thin film is to be grown, so that the reaction efficiency of the reactive gas is good. Also.

圧力を増大させれば薄膜成長速度が大きくなり。Increasing the pressure increases the thin film growth rate.

短時間で所定の厚さの薄膜結晶が得られる。A thin film crystal of a predetermined thickness can be obtained in a short time.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように本発明によれば、容易に均一な膜厚
の薄膜結晶が得られる。
As detailed above, according to the present invention, a thin film crystal having a uniform thickness can be easily obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

8g1図は、本発明の気相成長装置の一実施例を示す断
面図、第2図から第4図は5本発明の気相成長装置の他
の実施例を示す断面図、第5図は従来例による気相成長
装置の断面図、第6図は従来例による気相成長装置にお
ける原料ガスの等濃度線図、第7図は従来例による気相
成長装置によって得られる膜厚分布を示す説明図である
。 1・・・反応炉体、5・・・サセプタ、7・・・結晶基
板、9・・・供給口、11・・・排気口% 13・・・
デイフユーザ。 17・・・高周波誘導加熱装置% 23・・・押え板。 代理人 弁理士 則 近 憲 佑 同    竹 花 喜久男 プ 第1図 q 第2図 第3図    第4図 第5図 第6図 第7図
8g1 is a cross-sectional view showing one embodiment of the vapor phase growth apparatus of the present invention, FIGS. 2 to 4 are cross-sectional views showing other embodiments of the vapor phase growth apparatus of the present invention, and FIG. A cross-sectional view of a conventional vapor phase growth apparatus, FIG. 6 shows an isoconcentration diagram of source gas in a conventional vapor growth apparatus, and FIG. 7 shows a film thickness distribution obtained by a conventional vapor phase growth apparatus. It is an explanatory diagram. DESCRIPTION OF SYMBOLS 1... Reactor body, 5... Susceptor, 7... Crystal substrate, 9... Supply port, 11... Exhaust port% 13...
Deaf user. 17... High frequency induction heating device% 23... Holding plate. Agent Patent Attorney Nori Ken Yudo Takehana Kikuo Pu Figure 1 q Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7

Claims (3)

【特許請求の範囲】[Claims] (1)結晶基板を加熱しながらこの結晶基板上に反応さ
せるべきガスを供給して気相成長層を堆積させる気相成
長装置において、 前記ガスの供給口から上方へ前記ガスを導く通路を有す
る反応炉体と、この反応炉体内で前記通路の上方に配置
され、前記ガスの供給方向に対して前記結晶基板をほぼ
垂直に保持するサセプタと反応後のガスを排出する排気
口とを具備することを特徴とする気相成長装置。
(1) A vapor phase growth apparatus that deposits a vapor phase growth layer by supplying a gas to be reacted onto the crystal substrate while heating the crystal substrate, comprising a passageway for guiding the gas upward from the gas supply port. A reactor body, a susceptor that is disposed above the passage in the reactor body and holds the crystal substrate substantially perpendicular to the gas supply direction, and an exhaust port that discharges the gas after the reaction. A vapor phase growth apparatus characterized by:
(2)前記排気口は、前記サセプタの周囲近傍で前記反
応炉体に放射状に設けられていることを特徴とする特許
請求の範囲第1項記載の気相成長装置。
(2) The vapor phase growth apparatus according to claim 1, wherein the exhaust port is provided radially in the reactor body near the periphery of the susceptor.
(3)前記排気口は、前記サセプタの下面及び前記結晶
基板とほぼ同一平面位置に設けられていることを特徴と
する特許請求の範囲第2項記載の気相成長装置。
(3) The vapor phase growth apparatus according to claim 2, wherein the exhaust port is provided at substantially the same plane as the lower surface of the susceptor and the crystal substrate.
JP17763986A 1986-07-30 1986-07-30 Vapor growth apparatus Pending JPS6334920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17763986A JPS6334920A (en) 1986-07-30 1986-07-30 Vapor growth apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17763986A JPS6334920A (en) 1986-07-30 1986-07-30 Vapor growth apparatus

Publications (1)

Publication Number Publication Date
JPS6334920A true JPS6334920A (en) 1988-02-15

Family

ID=16034510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17763986A Pending JPS6334920A (en) 1986-07-30 1986-07-30 Vapor growth apparatus

Country Status (1)

Country Link
JP (1) JPS6334920A (en)

Similar Documents

Publication Publication Date Title
US4033286A (en) Chemical vapor deposition reactor
JPS6334920A (en) Vapor growth apparatus
JPS636832A (en) Vapor growth apparatus
JPH0547669A (en) Vapor growth apparatus
JP2004134625A (en) Method and apparatus for manufacturing semiconductor device
JPS607378B2 (en) CVD equipment
JPS6343315A (en) Reduced pressure cvd equipment
JPH10158100A (en) Vapor growth device
JP3071591U (en) Vapor phase epitaxial growth equipment
JPH0551294A (en) Vapor growth device
JPH01297820A (en) Apparatus and method for applying film to board
JPS62191494A (en) Vapor growth device
JPH0235814Y2 (en)
JPS622524A (en) Vapor-phase growth device
JPS612318A (en) Semiconductor growing device
JPH039609B2 (en)
JPS6153197A (en) Crystal growth device
JPH10163115A (en) Vapor growth device
JPH02146725A (en) Organic metal vapor growth device
JPS61242012A (en) Vapor-phase growth device
JPS59111323A (en) Vapor phase growth device
JPS603122A (en) Vapor growth device
JPS62291021A (en) Vapor growth device
JPS61284915A (en) Thin film vapor growth apparatus
JPS62119919A (en) Device for crystal growth of compound semiconductor