JPH10158100A - Vapor growth device - Google Patents
Vapor growth deviceInfo
- Publication number
- JPH10158100A JPH10158100A JP31958196A JP31958196A JPH10158100A JP H10158100 A JPH10158100 A JP H10158100A JP 31958196 A JP31958196 A JP 31958196A JP 31958196 A JP31958196 A JP 31958196A JP H10158100 A JPH10158100 A JP H10158100A
- Authority
- JP
- Japan
- Prior art keywords
- susceptor
- gas
- forming body
- flow path
- path forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、気相成長法の一種
である有機金属化学気相成長法(MOCVD)を実施す
るための気相成長装置の改良に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a vapor phase growth apparatus for performing metal organic chemical vapor deposition (MOCVD), which is a kind of vapor phase growth method.
【0002】[0002]
【従来の技術】一般に、MOCVD法は、異種基板上に
結晶成長が可能であることから、低価格の基板を用い、
安価で大量の結晶を供給することができる。図4は従来
の縦型気相成長装置の断面構造を示したもので、図にお
いて、1は反応容器、2は反応ガス吹き出し口、4は反
応容器内に設けられ半導体基板3を載置するためのサセ
プタ、5はサセプタ4を加熱するための加熱装置、7は
原料ガス導入口、6はサセプタ4を支持しかつ回転させ
るための駆動軸で、駆動モ−タ9と歯車機構8とにより
回転させる。10は原料ガスの排気口である。2. Description of the Related Art In general, the MOCVD method uses a low-cost substrate because crystals can be grown on a heterogeneous substrate.
A large amount of crystals can be supplied at low cost. FIG. 4 shows a cross-sectional structure of a conventional vertical vapor phase growth apparatus. In the figure, reference numeral 1 denotes a reaction vessel, 2 denotes a reaction gas outlet, and 4 denotes a semiconductor substrate provided in the reaction vessel. 5 is a heating device for heating the susceptor 4, 7 is a raw material gas inlet, 6 is a drive shaft for supporting and rotating the susceptor 4, and includes a drive motor 9 and a gear mechanism 8. Rotate. Reference numeral 10 denotes a material gas exhaust port.
【0003】次に動作について説明する。前記反応容器
1内に設けられたサセプタ4は、該反応容器内に設けら
れた加熱装置5によって所定温度(500〜800℃)
に加熱される。この時原料ガス導入口から送られてきた
ガスはガス吹き出し口2からサセプタ4上に載置された
基板3上に達し、熱分解により前記基板3表面に半導体
結晶膜を成長させる。さらに原料ガスは反応容器1とサ
セプタ4との隙間11を通って排気口10より排気され
る。ここで膜の成長中は駆動軸6の回転によりサセプタ
4を回転させ、回転方向での結晶成長の均一性を図って
いる。Next, the operation will be described. The susceptor 4 provided in the reaction vessel 1 is heated to a predetermined temperature (500 to 800 ° C.) by a heating device 5 provided in the reaction vessel.
Heated. At this time, the gas sent from the raw material gas inlet reaches the substrate 3 placed on the susceptor 4 from the gas outlet 2 and grows a semiconductor crystal film on the surface of the substrate 3 by thermal decomposition. Further, the source gas is exhausted from the exhaust port 10 through the gap 11 between the reaction vessel 1 and the susceptor 4. Here, during the film growth, the susceptor 4 is rotated by the rotation of the drive shaft 6 to achieve uniform crystal growth in the rotation direction.
【0004】[0004]
【発明が解決しようとする課題】従来の縦型気相成長装
置は以上のように構成されており、ガスの吹き出し口2
がサセプタの中央にあるため、吹き出し口の近傍ではガ
スの流れは均一であるが、サセプタの外周部では均一な
流れを得ることが難しく、またガスの排気口10の位置
がサセプタ4に対して非対称であるため、サセプタの径
が大きい場合あるいは薄い堆積膜を必要とする場合等に
おいてはガスの流れの不均一が原因となって堆積膜の厚
さにバラツキが生ずることがあった。さらに導入ガスの
吹き出し口2はノズル状になっているため、吹き出し口
近傍では原料の分解反応が安定せず、堆積膜中でのキャ
リア濃度までバラツキが生ずるという問題があった。本
発明は半導体堆積膜の成長中に反応容器内での原料ガス
の流れを対称かつ均一にすると共に、原料ガスの分解を
サセプタ上で安定化させ、サセプタの広い領域内で半導
体膜の膜厚やキャリア濃度のバラツキを小さくすること
を目的とする。The conventional vertical vapor phase epitaxy apparatus is constructed as described above,
Is located at the center of the susceptor, the gas flow is uniform near the outlet, but it is difficult to obtain a uniform flow at the outer periphery of the susceptor, and the position of the gas exhaust port 10 is Due to the asymmetry, when the diameter of the susceptor is large, or when a thin deposited film is required, the thickness of the deposited film may vary due to uneven gas flow. Furthermore, since the introduction gas outlet 2 has a nozzle shape, there is a problem that the decomposition reaction of the raw material is not stable in the vicinity of the outlet, and the carrier concentration in the deposited film varies. The present invention makes the flow of the source gas in the reaction vessel symmetric and uniform during the growth of the semiconductor deposited film, stabilizes the decomposition of the source gas on the susceptor, and increases the thickness of the semiconductor film in a wide area of the susceptor. And to reduce the variation in carrier concentration.
【0005】[0005]
【課題を解決するための手段】請求項1の発明による気
相成長装置はパンケ−キ型の縦型気相成長装置におい
て、反応ガスはサセプタの基板搭載面のほぼ中央部から
供給すると共に、サセプタ基板搭載面の上方に流路形成
体を設け、これによって原料ガスをサセプタの外周方向
に一旦広げた後、基板表面上に一様に流し、反応容器の
ほぼ中央部から排気することを特徴とする。According to a first aspect of the present invention, there is provided a vapor phase growth apparatus according to the present invention, wherein a reaction gas is supplied from a substantially central portion of a substrate mounting surface of a susceptor. A flow path forming body is provided above the susceptor substrate mounting surface, whereby the raw material gas is once spread in the outer peripheral direction of the susceptor, then is uniformly flowed on the substrate surface, and exhausted from almost the center of the reaction vessel. And
【0006】請求項2の発明による気相成長装置は請求
項1の発明において、サセプタ表面と流路形成体との間
に形成される空間と、サセプタ裏面と反応容器の間の空
間との気圧のバランスを調整するガス供給口を反応容器
に設けたことを特徴とする。According to a second aspect of the present invention, in the vapor phase growth apparatus according to the first aspect of the present invention, the pressure between the space formed between the surface of the susceptor and the flow path forming body and the space formed between the back surface of the susceptor and the reaction vessel. A gas supply port for adjusting the balance of the pressure is provided in the reaction vessel.
【0007】[0007]
【実施例】以下、本発明を図面を参照して詳細に説明す
る。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings.
【0008】(実施例1)本実施例に係る方法の1例を
図1に示す。なお、以下の図面において、従来法による
図4と同一構成部品については同一符号を付してその詳
細説明は省略する。図1について、MOCVD法により
GaAs基板上にGaAs膜をエピタキシャル成長させ
る場合を例に取り説明する。図1において、図示しない
ガス供給装置より反応容器1の中央上部に設けたガス導
入口7を経て、水素ガスをキャリアとしてトリメチルガ
リウム(TMG)とアルシン(AsH3 )を供給した。
複数枚の基板3を載置したサセプタ4は、RF加熱装置
5により600℃に加熱され、図示しない熱電対によっ
て制御されている。20は本発明の特徴である流路形成
体で、支持腕状の、または多数の貫通孔を設けた流路形
成体受け21により反応容器1に固定されている。サセ
プタ4の中央には吸気のための孔が設けられており、サ
セプタ駆動軸6の中心部に設けた排気口10につながっ
ている。サセプタ4は駆動モ−タ9により駆動軸6を介
して回転出来るように構成されている。また反応容器1
と流路形成体20とのクリアランスL1 は5〜30mm
の値とした。(Embodiment 1) FIG. 1 shows an example of a method according to the present embodiment. In the following drawings, the same components as those in FIG. 4 according to the conventional method are denoted by the same reference numerals, and detailed description thereof will be omitted. FIG. 1 will be described taking as an example a case where a GaAs film is epitaxially grown on a GaAs substrate by MOCVD. In FIG. 1, trimethylgallium (TMG) and arsine (AsH 3 ) were supplied from a gas supply device (not shown) via a gas inlet 7 provided at the upper center of the reaction vessel 1 using hydrogen gas as a carrier.
The susceptor 4 on which the plurality of substrates 3 are placed is heated to 600 ° C. by the RF heating device 5 and controlled by a thermocouple (not shown). Reference numeral 20 denotes a flow path forming body which is a feature of the present invention, and is fixed to the reaction vessel 1 by a flow path forming body receiver 21 having a support arm shape or having a large number of through holes. A hole for intake is provided at the center of the susceptor 4, and is connected to an exhaust port 10 provided at the center of the susceptor drive shaft 6. The susceptor 4 is configured to be rotatable by the drive motor 9 via the drive shaft 6. Reaction vessel 1
And the clearance L1 between the flow path forming body 20 and 5 to 30 mm
Value.
【0009】ガス導入口7を介して導入されたガスは、
流路形成体20により径方向に均一に広げられ、流路形
成体20の裏面とサセプタ4の面で囲まれたガス流路内
を、サセプタ4の外周側からサセプタ4の中央排気口1
0に向かって流れる。流路形成体20は、原料ガスがサ
セプタ4の基板載置面上を均一に流れるように、図1に
示す如く、上面が平滑で裏面中央が窪んでいる。即ち断
面形状が外周部が厚く、中心に向かって薄くなるような
形状になっている。The gas introduced through the gas inlet 7 is
The central exhaust port 1 of the susceptor 4 extends from the outer peripheral side of the susceptor 4 in the gas flow path which is uniformly spread in the radial direction by the flow path forming body 20 and is surrounded by the back surface of the flow path forming body 20 and the surface of the susceptor 4.
Flow towards zero. As shown in FIG. 1, the flow path forming body 20 has a smooth upper surface and a concave rear center so that the raw material gas flows uniformly on the substrate mounting surface of the susceptor 4. That is, the cross-sectional shape is such that the outer peripheral portion is thicker and thinner toward the center.
【0010】図1において反応容器1とサセプタ4との
間には隙間25が存在するために、この隙間25を通し
て原料ガスがサセプタ4の裏側のデッドスペ−ス26に
流れ込み、サセプタ面上のガスの流れの均一性を乱す恐
れがある。これを防止するために反応容器1の内周部に
遮蔽板22を設けると共に、反応容器1の台座1aに設
けたガス導入口23からパ−ジガスをデッドスペ−ス2
6内に導入し、駆動軸6に設けたパ−ジガス排出孔24
より排気する。パ−ジガスの圧力を調整することによ
り、原料ガスがデッドスペ−ス27内に流れ込むことが
なく、サセプタ4の表面上の原料ガスの流れを均一に保
つ事が出来る。In FIG. 1, since a gap 25 exists between the reaction vessel 1 and the susceptor 4, the raw material gas flows into the dead space 26 on the back side of the susceptor 4 through the gap 25, and the gas on the susceptor surface is removed. This may disrupt flow uniformity. In order to prevent this, a shield plate 22 is provided on the inner periphery of the reaction vessel 1, and a purge gas is supplied from a gas inlet 23 provided in the base 1 a of the reaction vessel 1 to the dead space 2.
And a purge gas discharge hole 24 provided in the drive shaft 6.
More exhaust. By adjusting the pressure of the purge gas, the source gas does not flow into the dead space 27 and the flow of the source gas on the surface of the susceptor 4 can be kept uniform.
【0011】更に、サセプタ4の表面上の反応ガスの流
れを均一に保つための条件として反応容器1の中心軸と
流路形成体20の中心軸とを出来るだけ一致させること
が重要であり、これは流路形成体受け21の位置調整に
よって達成される。反応容器1と流路形成体20の中心
軸のズレ(同軸度)は反応容器の直径が200mm以下
の場合は0.5mm以下、200mm以上の場合には
1.0mm以下にすることが望ましい。また、流路形成
体20の裏面とサセプタ4との間隔L2 は20〜60m
mであり、かつ、上述したようにL2 の値はサセプタ4
の外周部から中心に向かって大きくなっている。Further, as a condition for keeping the flow of the reaction gas on the surface of the susceptor 4 uniform, it is important that the center axis of the reaction vessel 1 and the center axis of the flow path forming body 20 coincide as much as possible. This is achieved by adjusting the position of the channel forming member receiver 21. It is desirable that the deviation (coaxiality) between the central axes of the reaction vessel 1 and the flow path forming body 20 be 0.5 mm or less when the diameter of the reaction vessel is 200 mm or less, and 1.0 mm or less when the diameter of the reaction vessel is 200 mm or more. The distance L 2 between the rear surface and the susceptor 4 of the passage forming body 20 20~60m
m, and the value of L 2 is susceptor 4 as described above.
From the outer periphery toward the center.
【0012】上述した如き装置によってGaAs膜をエ
ピタキシアル成長させた結果、サセプタ面上の原料ガス
の流れを極めて均一にすることが出来、その結果、従来
基板面内の膜厚均一性が±1.5%であったものが±
1.0%以内に納めることが出来た。また、同一サセプ
タ上の基板8枚の膜厚のバラツキも±2.1%から±
1.6%に改善された。As a result of the epitaxial growth of the GaAs film by the above-described apparatus, the flow of the source gas on the susceptor surface can be made extremely uniform. What was 0.5% was ±
It was within 1.0%. In addition, the variation in the thickness of the eight substrates on the same susceptor was also reduced from ± 2.1% to ± 2.1%.
It was improved to 1.6%.
【0013】図2に第1実施例の変形例を示す。図1に
おいては反応容器1の上面部は反応容器台座1aにほぼ
平行であったが、図2においては反応容器1の断面形状
は半球形または半楕円形あるいは両者を組み合わせた形
状をしており、流路形成体20もこれと相似の形状をし
ている。図2の例は特に反応容器が大型の場合に容易に
反応ガスを均一に流すことが出来る点で有利である。FIG. 2 shows a modification of the first embodiment. In FIG. 1, the upper surface of the reaction vessel 1 is substantially parallel to the reaction vessel pedestal 1a, but in FIG. 2, the cross-sectional shape of the reaction vessel 1 is hemispherical, semi-elliptical, or a combination of both. The flow path forming body 20 has a similar shape. The example of FIG. 2 is advantageous in that the reaction gas can be easily and uniformly flowed particularly when the reaction vessel is large.
【0014】(実施例2)図3に本発明による第2実施
例を示す。第1実施例では基板はサセプタ4の上面に載
置されていたが、本実施例では基板はサセプタ4の下面
に取り付けたいわゆるフェイスダウン方式を用いてい
る。このため、基板3はサセプタ4に設けた図示してい
ない複数個の爪によってサセプタに固定されている。フ
ェイスダウン方式の場合は基板上に埃等が付着しないと
いう利点がある。フェイスダウン方式の本実施例では流
路形成体20も実施例1とは反対方向に設けられ、ま
た、サセプタ4と流路形成体20とは独立に回転出来る
ようになっている。すなわち駆動モ−タ9’によってサ
セプタ駆動軸6を、駆動モ−タ9によって流路形成体駆
動軸27をそれぞれ回転制御する。(Embodiment 2) FIG. 3 shows a second embodiment according to the present invention. In the first embodiment, the substrate is mounted on the upper surface of the susceptor 4, but in the present embodiment, the substrate is of a so-called face-down type mounted on the lower surface of the susceptor 4. For this reason, the substrate 3 is fixed to the susceptor by a plurality of claws (not shown) provided on the susceptor 4. The face-down method has an advantage that dust and the like do not adhere to the substrate. In this embodiment of the face-down system, the flow path forming body 20 is also provided in the direction opposite to that of the first embodiment, and the susceptor 4 and the flow path forming body 20 can be rotated independently. That is, the rotation of the susceptor drive shaft 6 is controlled by the drive motor 9 ′, and the flow path forming member drive shaft 27 is controlled by the drive motor 9.
【0015】原料ガスは反応容器の下部円筒部1bに設
けた導入口より流路形成体20の回転軸27に沿って供
給され、流路形成体20によって一旦径方向に流れが拡
散された後、流路形成体20とサセプタ4との間の流路
を流れ、流路形成体20の中央に設けた排気口10によ
り排気される。反応容器1とサセプタ4との空間はデッ
ドスペ−スになるため、反応容器1に設けたガスの導入
口23及び排出孔24により、パ−ジガスを供給・排気
出来るようになっている。さらにこのデッドスペ−ス内
に原料ガスが回り込むのを防ぐため、反応容器1の内部
に遮蔽板22が設けられている。The raw material gas is supplied from an inlet provided in the lower cylindrical portion 1b of the reaction vessel along the rotation axis 27 of the flow path forming body 20, and after the flow is once diffused in the radial direction by the flow path forming body 20, Then, the gas flows through the flow path between the flow path forming body 20 and the susceptor 4 and is exhausted by the exhaust port 10 provided at the center of the flow path forming body 20. Since the space between the reaction vessel 1 and the susceptor 4 has a dead space, a purge gas can be supplied and exhausted by the gas inlet 23 and the discharge hole 24 provided in the reaction vessel 1. Further, a shielding plate 22 is provided inside the reaction vessel 1 in order to prevent the raw material gas from flowing into the dead space.
【0016】サセプタ4の加熱は抵抗加熱方式、赤外線
ランプ加熱方式の何れも採用可能である。また、本実施
例の場合、サセプタ4並びに流路形成体20を独立に回
転制御するため、サセプタ4を大型化してもサセプタ4
の表面上の原料ガスの流れを均一にすることが容易とな
り、多数枚の基板の堆積処理が可能となる。The susceptor 4 can be heated by either a resistance heating method or an infrared lamp heating method. In the case of this embodiment, since the rotation of the susceptor 4 and the flow path forming body 20 is controlled independently, even if the susceptor 4 is enlarged,
It is easy to make the flow of the source gas on the surface of the substrate uniform, and it is possible to perform deposition processing on a large number of substrates.
【0017】本実施例による方法を用いて実施例2に記
載したと同一構造の膜を堆積させ、膜厚及びキャリア濃
度のバラツキについて従来法との比較を行ったところ、
面内の膜厚均一性については±1.5%から±1.2%
に、同一サセプタに搭載した16枚の基板についての面
間の膜厚のバラツキは±2.1%から±1.6%に、ま
た、基板16枚についてのキャリア濃度のバラツキは±
2.3%から±1.5%にそれぞれ改善出来た。Using the method according to the present embodiment, a film having the same structure as that described in Embodiment 2 was deposited, and the film thickness and the carrier concentration were compared with the conventional method.
± 1.5% to ± 1.2% for in-plane thickness uniformity
The variation in the film thickness between the surfaces of the 16 substrates mounted on the same susceptor is from ± 2.1% to ± 1.6%, and the variation in the carrier concentration of the 16 substrates is ±
Each of them was improved from 2.3% to ± 1.5%.
【0018】[0018]
【発明の効果】以上、詳細に説明したように、本発明に
よれば、原料ガスをサセプタのほぼ中心位置から供給
し、かつ、サセプタのほぼ中心位置から排気する構造と
し、流路形成体により原料ガスを一旦サセプタの直径方
向に広げた後、サセプタに搭載した基板表面上の原料ガ
スを均一に流れるようにした結果、基板の面内での堆積
膜厚の均一性及び複数の基板間での膜厚のバラツキが著
しく改善出来た。また、サセプタ用加熱装置に加えて、
流路形成体自体に加熱または冷却装置を付加し、サセプ
タの基板載置面の温度分布をサセプタの径方向で制御す
ることにより、キャリア濃度の均一性を向上することが
出来た。As described above in detail, according to the present invention, the material gas is supplied from substantially the center of the susceptor and exhausted from substantially the center of the susceptor. After the source gas is once expanded in the diameter direction of the susceptor, the source gas on the surface of the substrate mounted on the susceptor is made to flow uniformly, and as a result, the uniformity of the deposited film thickness in the plane of the substrate and the The variation in the film thickness was remarkably improved. In addition to the susceptor heating device,
By adding a heating or cooling device to the flow path forming body itself and controlling the temperature distribution on the substrate mounting surface of the susceptor in the radial direction of the susceptor, the uniformity of the carrier concentration can be improved.
【図1】本発明の第1実施例を示す構成図である。FIG. 1 is a configuration diagram showing a first embodiment of the present invention.
【図2】本発明の第1実施例の変形例である。FIG. 2 is a modification of the first embodiment of the present invention.
【図3】本発明の第2実施例を示す構成図である。FIG. 3 is a configuration diagram showing a second embodiment of the present invention.
【図4】従来例による気相成長装置の構成図である。FIG. 4 is a configuration diagram of a vapor phase growth apparatus according to a conventional example.
1 反応容器 2 ガス吹き出し口 3 基板 4 サセプタ 5 加熱装置 6 駆動軸 7 ガス導入口 8 ギヤ 9 駆動モ−タ 10 排気口 20 流路形成体 21 流路形成体受け 22 遮蔽板 23 パ−ジガス導入口 24 パ−ジガス排出口 27 流路形成体駆動軸 DESCRIPTION OF SYMBOLS 1 Reaction container 2 Gas outlet 3 Substrate 4 Susceptor 5 Heating device 6 Drive shaft 7 Gas inlet 8 Gear 9 Drive motor 10 Exhaust port 20 Flow path forming body 21 Flow path forming body receiver 22 Shielding plate 23 Purging gas introduction Port 24 purge gas discharge port 27 channel forming body drive shaft
フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 21/205 H01L 21/205 Continued on the front page (51) Int.Cl. 6 Identification code FI H01L 21/205 H01L 21/205
Claims (2)
基板を保持するサセプタと、該反応容器内に原料ガスを
供給するガス導入口と、反応容器内で不要になったガス
を排気する排気口を有する縦型(パンケ−キ型)反応炉
において、前記ガス導入口とサセプタとの間にガス流路
形成体が設けられており、ガス導入口から流路形成体中
央部に向けて導入される原料ガスを流路形成体で一旦放
射状に拡散させてから、サセプタの基板載置面上をサセ
プタ中央部に向かって導くように構成したことを特徴と
する気相成長装置。1. A reaction container, a susceptor for holding a substrate provided in the reaction container, a gas inlet for supplying a source gas into the reaction container, and exhausting unnecessary gas in the reaction container. In a vertical (pancake-type) reaction furnace having an exhaust port that vents, a gas flow path forming body is provided between the gas introduction port and the susceptor, and the gas flow path is directed from the gas introduction port to the center of the flow path forming body. A gas phase growth apparatus characterized in that a source gas to be introduced is once diffused radially by a flow path forming body and then guided toward the center of the susceptor on the substrate mounting surface of the susceptor.
て、サセプタ表面と流路形成体の間に形成される空間
と、サセプタ裏面と反応容器の間の空間との気圧のバラ
ンスを調整するガス供給口を反応容器に設けたことを特
徴とする気相成長装置。2. The vapor phase epitaxy apparatus according to claim 1, wherein a pressure between a space formed between the susceptor surface and the flow path forming body and a space between the susceptor back surface and the reaction vessel are adjusted. A gas phase growth apparatus wherein a gas supply port to be adjusted is provided in a reaction vessel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31958196A JPH10158100A (en) | 1996-11-29 | 1996-11-29 | Vapor growth device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31958196A JPH10158100A (en) | 1996-11-29 | 1996-11-29 | Vapor growth device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10158100A true JPH10158100A (en) | 1998-06-16 |
Family
ID=18111872
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31958196A Pending JPH10158100A (en) | 1996-11-29 | 1996-11-29 | Vapor growth device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10158100A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001019590A (en) * | 1999-07-06 | 2001-01-23 | Sony Corp | Gaseous phase growth device |
JP2003076946A (en) * | 2001-09-05 | 2003-03-14 | Toppan Forms Co Ltd | Rf-id inspection system |
-
1996
- 1996-11-29 JP JP31958196A patent/JPH10158100A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001019590A (en) * | 1999-07-06 | 2001-01-23 | Sony Corp | Gaseous phase growth device |
JP2003076946A (en) * | 2001-09-05 | 2003-03-14 | Toppan Forms Co Ltd | Rf-id inspection system |
JP4656779B2 (en) * | 2001-09-05 | 2011-03-23 | トッパン・フォームズ株式会社 | RF-ID inspection system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6547876B2 (en) | Apparatus for growing epitaxial layers on wafers by chemical vapor deposition | |
US20190032244A1 (en) | Chemical vapor deposition system | |
KR20090131384A (en) | Top plate and apparatus for depositing thin film on wafer using the same | |
KR940011099B1 (en) | Vapour deposition apparatus | |
JP4381489B2 (en) | Chemical vapor deposition equipment | |
US6194030B1 (en) | Chemical vapor deposition velocity control apparatus | |
JPH10158100A (en) | Vapor growth device | |
JP4341647B2 (en) | Chemical vapor deposition equipment | |
WO2013143241A1 (en) | Chemical vapour deposition method for organic metal compound and apparatus therefor | |
JP7002731B2 (en) | Vapor deposition equipment | |
JPH01256118A (en) | Vapor phase reaction equipment | |
JP2000031064A (en) | Method and device for horizontal vapor phase epitaxial growth | |
JP2003142411A (en) | Semiconductor manufacturing device | |
JPH05166736A (en) | Thin film vapor growth apparatus | |
JPH118199A (en) | Thin film growing equipment | |
JPH10163115A (en) | Vapor growth device | |
JPS60152675A (en) | Vertical diffusion furnace type vapor growth device | |
JPS6153197A (en) | Crystal growth device | |
JP3071591U (en) | Vapor phase epitaxial growth equipment | |
JPS636832A (en) | Vapor growth apparatus | |
JPS6334920A (en) | Vapor growth apparatus | |
JP2018522401A (en) | Self-centered wafer carrier system for chemical vapor deposition. | |
JPH0235814Y2 (en) | ||
JPH10167897A (en) | Method for growing gan film | |
JPH01297820A (en) | Apparatus and method for applying film to board |