JPH10163115A - Vapor growth device - Google Patents

Vapor growth device

Info

Publication number
JPH10163115A
JPH10163115A JP31958296A JP31958296A JPH10163115A JP H10163115 A JPH10163115 A JP H10163115A JP 31958296 A JP31958296 A JP 31958296A JP 31958296 A JP31958296 A JP 31958296A JP H10163115 A JPH10163115 A JP H10163115A
Authority
JP
Japan
Prior art keywords
susceptor
gas
flow path
path forming
forming body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31958296A
Other languages
Japanese (ja)
Inventor
Hisashi Koaizawa
久 小相澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP31958296A priority Critical patent/JPH10163115A/en
Publication of JPH10163115A publication Critical patent/JPH10163115A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce the uneveness of the thickness and carrier concentration of a semiconductor film within a wide region of a susceptor by making symmetrical and uniform the flow of a feed gas in a reactor container during the growth of a semiconductor deposition film, and at the same time stabilizing the decomposition of the feed gas on the susceptor. SOLUTION: A feed gas is supplied from a gas introduction port 7 provided at the reverse side of a susceptor 4, is diffused radially on the reverse side of the susceptor, allowed to flow on the surface of the susceptor 4 along a channel formation body 20 provided on the susceptor 4, and is discharged from an exhaust port 10 provided at the center of the susceptor 4. Also, by heating or cooling the channel formation body 20 as needed, temperature control in the diameter direction of the susceptor 4 is performed precisely and easily, thus extremely reducing uneveness of the thickness of a deposition film and the characteristics of a semiconductor film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、気相成長法の一種
である有機金属化学気相成長法(MOCVD)を実施す
るための気相成長装置の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a vapor phase growth apparatus for performing metal organic chemical vapor deposition (MOCVD), which is a kind of vapor phase growth method.

【0002】[0002]

【従来の技術】一般に、MOCVD法は、異種基板上に
結晶成長が可能であることから、低価格の基板を用い、
安価で大量の結晶を供給することができる。図2は従来
の縦型気相成長装置の断面構造を示したもので、図にお
いて、1は反応容器、2は反応ガス吹き出し口、4は反
応容器内に設けられ半導体基板3を載置するためのサセ
プタ、5はサセプタ4を加熱するための加熱装置、7は
原料ガス導入口、6はサセプタ4を支持しかつ回転させ
るための駆動軸で、駆動モ−タ9と歯車機構8とにより
回転させる。10は原料ガスの排気口である。
2. Description of the Related Art In general, the MOCVD method uses a low-cost substrate because crystals can be grown on a heterogeneous substrate.
A large amount of crystals can be supplied at low cost. FIG. 2 shows a cross-sectional structure of a conventional vertical vapor phase growth apparatus. In the figure, reference numeral 1 denotes a reaction vessel, 2 denotes a reaction gas outlet, and 4 denotes a semiconductor substrate provided in the reaction vessel. 5 is a heating device for heating the susceptor 4, 7 is a raw material gas inlet, 6 is a drive shaft for supporting and rotating the susceptor 4, and includes a drive motor 9 and a gear mechanism 8. Rotate. Reference numeral 10 denotes a material gas exhaust port.

【0003】次に動作について説明する。前記反応容器
1内に設けられたサセプタ4は、該反応容器内に設けら
れた加熱装置5によって所定温度(500〜800℃)
に加熱される。この時原料ガス導入口から送られてきた
ガスはガス吹き出し口2からサセプタ4上に載置された
基板3上に達し、熱分解により前記基板3表面に半導体
結晶膜を成長させる。さらに原料ガスは反応容器1とサ
セプタ4との隙間11を通って排気口10より排気され
る。ここで膜の成長中は駆動軸6の回転によりサセプタ
4を回転させ、回転方向での結晶成長の均一性を図って
いる。
Next, the operation will be described. The susceptor 4 provided in the reaction vessel 1 is heated to a predetermined temperature (500 to 800 ° C.) by a heating device 5 provided in the reaction vessel.
Heated. At this time, the gas sent from the raw material gas inlet reaches the substrate 3 placed on the susceptor 4 from the gas outlet 2 and grows a semiconductor crystal film on the surface of the substrate 3 by thermal decomposition. Further, the source gas is exhausted from the exhaust port 10 through the gap 11 between the reaction vessel 1 and the susceptor 4. Here, during the film growth, the susceptor 4 is rotated by the rotation of the drive shaft 6 to achieve uniform crystal growth in the rotation direction.

【0004】[0004]

【発明が解決しようとする課題】従来の縦型気相成長装
置は以上のように構成されており、ガスの吹き出し口2
がサセプタの中央にあるため、吹き出し口の近傍ではガ
スの流れは均一であるが、サセプタの外周部では均一な
流れを得ることが難しく、またガスの排気口10の位置
がサセプタ4に対して非対称であるため、サセプタの径
が大きい場合あるいは薄い堆積膜を必要とする場合等に
おいてはガスの流れの不均一が原因となって堆積膜の厚
さにバラツキが生ずることがあった。さらに導入ガスの
吹き出し口2はノズル状になっているため、吹き出し口
近傍では原料の分解反応が安定せず、堆積膜中でのキャ
リア濃度までバラツキが生ずるという問題があった。本
発明は半導体堆積膜の成長中に反応容器内での原料ガス
の流れを対称かつ均一にすると共に、原料ガスの分解を
サセプタ上で安定化させ、サセプタの広い領域内で半導
体膜の膜厚やキャリア濃度のバラツキを小さくすること
を目的とする。
The conventional vertical vapor phase epitaxy apparatus is constructed as described above,
Is located at the center of the susceptor, the gas flow is uniform near the outlet, but it is difficult to obtain a uniform flow at the outer periphery of the susceptor, and the position of the gas exhaust port 10 is Due to the asymmetry, when the diameter of the susceptor is large, or when a thin deposited film is required, the thickness of the deposited film may vary due to uneven gas flow. Furthermore, since the introduction gas outlet 2 has a nozzle shape, there is a problem that the decomposition reaction of the raw material is not stable in the vicinity of the outlet, and the carrier concentration in the deposited film varies. The present invention makes the flow of the source gas in the reaction vessel symmetric and uniform during the growth of the semiconductor deposited film, stabilizes the decomposition of the source gas on the susceptor, and increases the thickness of the semiconductor film in a wide area of the susceptor. And to reduce the variation in carrier concentration.

【0005】[0005]

【課題を解決するための手段】請求項1の発明による気
相成長装置はパンケ−キ型の縦型気相成長装置におい
て、原料ガスはサセプタの裏面側に設けたガス導入口か
ら供給し、サセプタ基板載置裏面で一旦放射状に拡散さ
せた後、サセプタの基板載置面上部に設けたガス流路形
成体に沿ってサセプタ表面上に流し、サセプタ中央に設
けた排気口から反応容器外に排気することを特徴とす
る。
According to a first aspect of the present invention, there is provided a vapor phase growth apparatus according to the present invention, wherein a raw material gas is supplied from a gas inlet provided on a back side of a susceptor. Once diffused radially on the susceptor substrate mounting back surface, it flows on the susceptor surface along the gas flow path forming body provided on the susceptor substrate mounting surface, and out of the reaction vessel from the exhaust port provided in the center of the susceptor. It is characterized by exhausting.

【0006】請求項2の発明による気相成長装置は請求
項1の発明において、流路形成体を加熱または冷却する
ことが可能な構造としたことを特徴としている。
[0006] A vapor phase growth apparatus according to a second aspect of the present invention is characterized in that, in the first aspect of the invention, the flow path forming body has a structure capable of heating or cooling.

【0007】[0007]

【発明の実施の形態】以下、本発明について実施例に基
づき詳細に説明する。図1は本発明の実施形態を、図1
に基づき詳細に説明する。なお、図1において、従来法
による図2と同一構成部品については同一符号を付して
その詳細説明は省略する。図1について、MOCVD法
によりGaAs基板上にGaAs膜をエピタキシャル成
長させる場合を例に取り説明する。反応容器1の下部円
筒部1bに設けたガス導入口7から図示しないガス供給
装置より、水素ガスをキャリアとしてトリメチルガリウ
ム(TMG)とアルシン(AsH3 )から成る原料ガス
を供給した。反応ガスはサセプタ駆動軸6下部より駆動
軸6に沿って流れ、サセプタ4の裏面にてサセプタの径
の大きくなる方向に拡散した後、サセプタ4の基板載置
面と流路形成体20とで形成される流路を流れ、サセプ
タ4の中央に設けた排気口10から排出する。流路形成
体20は図1に示すようにサセプタ4の上部に設けら
れ、容器1に設けたフランジ部16に固定されている。
流路形成体20の形状は、サセプタ4の基板載置面上で
の原料ガスの流れを均一にするために、サセプタ4と流
路形成体20の下面との間隔がサセプタ4の外周部から
内周部に向かう程大きくなるように設計されている。サ
セプタ4は駆動モ−タ9により駆動軸6を介して回転出
来るように構成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on embodiments. FIG. 1 shows an embodiment of the present invention, and FIG.
This will be described in detail based on FIG. In FIG. 1, the same components as those in FIG. 2 according to the conventional method are denoted by the same reference numerals, and detailed description thereof will be omitted. FIG. 1 will be described taking as an example a case where a GaAs film is epitaxially grown on a GaAs substrate by MOCVD. A raw material gas composed of trimethylgallium (TMG) and arsine (AsH 3 ) was supplied from a gas supply device (not shown) through a gas inlet 7 provided in the lower cylindrical portion 1b of the reaction vessel 1 using hydrogen gas as a carrier. The reaction gas flows from the lower part of the susceptor drive shaft 6 along the drive shaft 6, and diffuses on the back surface of the susceptor 4 in the direction in which the diameter of the susceptor increases, and then flows between the substrate mounting surface of the susceptor 4 and the flow path forming body 20. It flows through the formed flow path and is discharged from an exhaust port 10 provided at the center of the susceptor 4. As shown in FIG. 1, the flow path forming body 20 is provided above the susceptor 4 and is fixed to the flange 16 provided on the container 1.
In order to make the flow of the source gas on the substrate mounting surface of the susceptor 4 uniform, the shape of the flow path forming body 20 is set such that the distance between the susceptor 4 and the lower surface of the flow path forming body 20 is from the outer periphery of the susceptor 4. It is designed to be larger toward the inner periphery. The susceptor 4 is configured to be rotatable by the drive motor 9 via the drive shaft 6.

【0008】サセプタ4の加熱は流路形成体20と反応
容器1との間に設けた赤外線ランプ5a、5bによって
行う。サセプタ4の表面温度を一様に保つために、赤外
線ランプ5a、5bはサセプタ4の中央部と周辺部の2
ゾ−ンで独立に制御出来るようになっている。赤外線ラ
ンプ5a、5bは流路形成体20の上部に設けられてい
るため、流路形成体20の材料として赤外線に透明な石
英等を用いる。図1の例においては、流路形成体20は
空洞構造となっており、空洞内にガスを出し入れするガ
スの導入口12及び排出口13が反応容器1を貫通して
設けられている。ガス導入口12から加熱用または冷却
用ガスを流路形成体内に導入し、排出口13から排出す
ることにより、サセプタの温度制御は一層容易に実施し
得る。流路形成体20の形状は加熱または冷却する必要
がない場合は空洞にする必要はなく、板状の形状であっ
ても良いことは勿論である。
The susceptor 4 is heated by infrared lamps 5a and 5b provided between the flow path forming body 20 and the reaction vessel 1. In order to keep the surface temperature of the susceptor 4 uniform, the infrared lamps 5a and 5b
The zone can be controlled independently. Since the infrared lamps 5 a and 5 b are provided above the flow path forming body 20, quartz or the like that is transparent to infrared rays is used as the material of the flow path forming body 20. In the example of FIG. 1, the flow path forming body 20 has a hollow structure, and a gas inlet 12 and a gas outlet 13 for introducing and removing gas into and from the hollow are provided through the reaction vessel 1. By introducing a heating or cooling gas into the flow path forming body through the gas inlet 12 and discharging the gas through the outlet 13, the temperature of the susceptor can be more easily controlled. When it is not necessary to heat or cool the flow path forming body 20, it is not necessary to make it hollow, and it is a matter of course that the flow path forming body 20 may have a plate shape.

【0009】サセプタ4と流路形成体20との間の空間
60と、反応容器1と流路形成体20との空間70との
圧力差が無くなるように、反応容器1に設けたガス導入
口14よりパ−ジガスを供給し、同じくガス排出口15
より排出して、図示しない圧力計によって圧力制御を行
っている。
A gas inlet provided in the reaction vessel 1 so that the pressure difference between the space 60 between the susceptor 4 and the flow path forming body 20 and the space 70 between the reaction vessel 1 and the flow path forming body 20 is eliminated. A purge gas is supplied from an outlet 14 and a gas outlet 15
The pressure is controlled by a pressure gauge (not shown).

【実施例】【Example】

【0010】図1に示した装置を用いてGaAs基板上
に高抵抗のGaAs膜を0.5μm堆積し、その上にS
iをド−プしたGaAsの活性層を0.3μm堆積し、
さらにその上に高抵抗のGaAs膜を0.1μm堆積し
て、C−V測定により膜厚分布とキャリア濃度分布とを
求めた。その結果、従来法による面内の膜厚均一性が±
1.5%であったのに対し、本方法では±1.0%以内
に納めることが出来た。また、同一サセプタ上の基板1
0枚の面間の膜厚のバラツキは従来法の場合の±2.1
%から±1.6%に改善され、さらにキャリア濃度のバ
ラツキは、従来法における基板10枚の面間で±2.3
%であったのが、本発明の場合±1.3%に改善するこ
とが出来た。
Using a device shown in FIG. 1, a 0.5 μm high-resistance GaAs film is deposited on a GaAs substrate.
An active layer of GaAs doped with i is deposited to a thickness of 0.3 μm,
Further, a high-resistance GaAs film was deposited thereon at 0.1 μm, and a film thickness distribution and a carrier concentration distribution were obtained by CV measurement. As a result, the in-plane film thickness uniformity by the conventional method is ±
In contrast to 1.5%, the method was able to fall within ± 1.0%. Also, the substrate 1 on the same susceptor
The variation in the film thickness between the zero faces is ± 2.1 in the case of the conventional method.
% To ± 1.6%, and the variation in carrier concentration is ± 2.3% between 10 substrates in the conventional method.
% Was improved to ± 1.3% in the case of the present invention.

【0011】[0011]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、サセプタの基板載置裏面側に設けたガス導入口
から原料ガスを導入し、サセプタ裏面で一旦放射状に拡
散させた後、サセプタの基板載置面上に設けたガス流路
形成体に沿ってサセプタ表面に流し、サセプタの中央に
設けた排気口から反応容器の外部に排気するようにした
ため、サセプタに搭載した基板表面上の反応ガスの流れ
を極めて均一にすることが出来た。その結果、基板の面
内での堆積膜厚の均一性及び複数の基板間での膜厚のバ
ラツキが著しく改善出来た。また、サセプタ用加熱装置
に加えて、流路形成体自体に加熱または冷却装置を付加
し、サセプタの基板載置面の温度分布をサセプタの径方
向で制御することにより、キャリア濃度の均一性を向上
することが出来た。
As described above in detail, according to the present invention, after the source gas is introduced from the gas inlet provided on the back surface side of the susceptor on which the substrate is mounted, and once diffused radially on the back surface of the susceptor, The gas flows along the gas flow path forming body provided on the substrate mounting surface of the susceptor to the susceptor surface, and is evacuated to the outside of the reaction vessel from an exhaust port provided at the center of the susceptor. The flow of the above reaction gas could be made very uniform. As a result, the uniformity of the deposited film thickness in the plane of the substrate and the variation in the film thickness among a plurality of substrates were significantly improved. In addition to the heating device for the susceptor, a heating or cooling device is added to the flow path forming body itself, and the temperature distribution of the substrate mounting surface of the susceptor is controlled in the radial direction of the susceptor, so that the carrier concentration uniformity is improved. Could be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例を示す構成図である。FIG. 1 is a configuration diagram showing a first embodiment of the present invention.

【図2】従来例による気相成長装置の構成図である。FIG. 2 is a configuration diagram of a vapor phase growth apparatus according to a conventional example.

【符号の説明】[Explanation of symbols]

1 反応容器 2 ガス吹き出し口 3 基板 4 サセプタ 5, 5a, 5b 加熱装置 6 駆動軸 7, 12 ガス導入口 8 ギヤ 9 駆動モ−タ 10, 13 排気口 14 パ−ジガス導入口 15 パ−ジガス排出口 16 反応容器フランジ部 20 流路形成体 DESCRIPTION OF SYMBOLS 1 Reaction container 2 Gas outlet 3 Substrate 4 Susceptor 5, 5a, 5b Heater 6 Drive shaft 7, 12 Gas inlet 8 Gear 9 Drive motor 10, 13 Exhaust port 14 Page gas inlet 15 Page gas exhaust Outlet 16 Reaction vessel flange 20 Flow path forming body

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 反応容器と、この反応容器内に設けられ
た基板を保持するサセプタと、該反応容器の中央部に設
けられ、サセプタの中央部に向けて原料ガスを供給する
ガス導入口と、反応容器内で不要になったガスを排気す
る排気口を有する縦型(パンケ−キ型)反応炉におい
て、前記ガス導入口はサセプタの裏面側に設けられ、該
ガス導入口から導入される原料ガスは、サセプタの基板
載置裏面で一旦放射状に拡散させてからサセプタの基板
載置面上に設けた流路形成体に沿ってサセプタ表面上に
流し、サセプタ中央に設けた排気口から反応容器の外部
に排気するように構成したことを特徴とする気相成長装
置。
1. A reaction container, a susceptor provided in the reaction container for holding a substrate, a gas inlet provided in a central portion of the reaction container and supplying a raw material gas toward the central portion of the susceptor. In a vertical (pancake-type) reactor having an exhaust port for exhausting unnecessary gas in the reaction vessel, the gas inlet is provided on the back side of the susceptor and is introduced from the gas inlet. The raw material gas is once diffused radially on the back surface of the susceptor on which the substrate is mounted, then flows on the susceptor surface along the flow path forming body provided on the susceptor on the substrate mounting surface, and reacts from an exhaust port provided in the center of the susceptor. A vapor phase growth apparatus configured to exhaust gas to the outside of a container.
【請求項2】 前記流路形成体は加熱または冷却するこ
とが可能な構造であることを特徴とする請求項1記載の
気相成長装置。
2. The vapor phase growth apparatus according to claim 1, wherein the flow path forming body has a structure that can be heated or cooled.
JP31958296A 1996-11-29 1996-11-29 Vapor growth device Pending JPH10163115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31958296A JPH10163115A (en) 1996-11-29 1996-11-29 Vapor growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31958296A JPH10163115A (en) 1996-11-29 1996-11-29 Vapor growth device

Publications (1)

Publication Number Publication Date
JPH10163115A true JPH10163115A (en) 1998-06-19

Family

ID=18111883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31958296A Pending JPH10163115A (en) 1996-11-29 1996-11-29 Vapor growth device

Country Status (1)

Country Link
JP (1) JPH10163115A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101060756B1 (en) * 2008-05-19 2011-08-31 삼성엘이디 주식회사 Chemical vapor deposition apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101060756B1 (en) * 2008-05-19 2011-08-31 삼성엘이디 주식회사 Chemical vapor deposition apparatus

Similar Documents

Publication Publication Date Title
US6837940B2 (en) Film-forming device with a substrate rotating mechanism
JPH11209199A (en) Synthesis method of gallium nitride single crystal
KR20090131384A (en) Top plate and apparatus for depositing thin film on wafer using the same
KR940011099B1 (en) Vapour deposition apparatus
JP3376809B2 (en) Metal organic chemical vapor deposition equipment
US4348981A (en) Vertical type vapor-phase growth apparatus
JPH097953A (en) Manufacture of single crystal thin film
JP2007109685A (en) Apparatus and method for manufacturing compound semiconductor
JPH10163115A (en) Vapor growth device
JPS62263629A (en) Vapor growth device
JP2000031064A (en) Method and device for horizontal vapor phase epitaxial growth
JPH01253229A (en) Vapor growth device
JPH10158100A (en) Vapor growth device
JPH02262331A (en) Vapor growth apparatus
JPS6343315A (en) Reduced pressure cvd equipment
JP2006344615A (en) Compound semiconductor manufacturing apparatus and method thereof
JP3071591U (en) Vapor phase epitaxial growth equipment
JPS61242994A (en) Vertical unit for vapor growth
JPH01297820A (en) Apparatus and method for applying film to board
JP2003234297A (en) Vapor phase thin film epitaxial growth device and vapor phase thin film epitaxial growth method
JPH02239187A (en) Method and device for vapor growth
JPH09246190A (en) Multi-charge lateral gas phase growing method and its device
JPS60220926A (en) Vertical vapor growth device
JPH0234909A (en) Compound semiconductor vapor growth method and device
JPH01168022A (en) Vapor growth apparatus