JPS60220926A - Vertical vapor growth device - Google Patents

Vertical vapor growth device

Info

Publication number
JPS60220926A
JPS60220926A JP7652284A JP7652284A JPS60220926A JP S60220926 A JPS60220926 A JP S60220926A JP 7652284 A JP7652284 A JP 7652284A JP 7652284 A JP7652284 A JP 7652284A JP S60220926 A JPS60220926 A JP S60220926A
Authority
JP
Japan
Prior art keywords
sample
stand
furnace
gas
tapered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7652284A
Other languages
Japanese (ja)
Inventor
Yuhei Muto
武藤 雄平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7652284A priority Critical patent/JPS60220926A/en
Publication of JPS60220926A publication Critical patent/JPS60220926A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides

Abstract

PURPOSE:To eliminate positioned deviation to generate in each replacement of sample and to obtain a grown layer with a uniform film thickness by a method wherein a tapered recess part has been prepared bored in the back surface of a susceptor for high-frequency heating, which is housed in the interior of the reaction furnace in such a way as to be able to detach freely, and a tapered protrusion part of the supporting stand is made to fit in the tapered recess part. CONSTITUTION:An RG coil 16 wound around on the outer periphery of a vertical vapor phase reacion furnace 1 provided with a gas lead-in duct 11 on its upper part and a gas lead-out duct 10 outside of its lower part, and a diffusion plate 12, which is located under the lower direction of the duct 11 and is used for making gas disperse homogeneously, and a sample stand 3, on which a sample 2 is placed, are housed in the interior of the furnace 1. A supporting rod made to penetrate the base of the furnace 1 is made to revolve by a rotating unit 9 provided outside of the furnace 1, the point of the rotating unit 9 is made to abut on the base of the sample stand 3 and the sample stand 3 is made to revolve in a prescribed number of revolutions. In this constitution, a tapered recess part 5 has been prepared bored in the central part of the back surface of the sample stand 3. A supporting stand 6 provided with a tapered protrusion part 7 is made to fit in this recess part 5 and the rotating shaft of the rotating unit 9 is fitted in a cylindrical frame 8 protruding in the lower direction from the supporting stand 6.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は化合物半導体薄膜を成長形成する気相成長装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a vapor phase growth apparatus for growing a compound semiconductor thin film.

〔従来技術とその問題点〕[Prior art and its problems]

半導体レーザ、例えばガリウムアルミニウム砒素(Ga
ALAs )半導体レーザの製造方法としては、有機金
属の一種であるトリメチルガリウム(TMG)。
Semiconductor lasers, such as gallium aluminum arsenide (Ga
ALAs) As a method for manufacturing semiconductor lasers, trimethyl gallium (TMG), which is a type of organic metal, is used.

トリメチルアルミニウム(TMA)と砒素の水素化合物
であるアルシン(AsHs)との熱分解を利用して行う
有機金属熱分解気相成長法(Metal Organi
cChemical Vapor Depositio
n :MOCVD法)が知られている。MOCVD法を
実施するに際しては。
Metal Organ pyrolysis vapor phase epitaxy (Metal Organ) is a method that utilizes the thermal decomposition of trimethylaluminum (TMA) and arsine (AsHs), a hydrogen compound of arsenic.
cChemical Vapor Depositio
n: MOCVD method) is known. When implementing the MOCVD method.

原料ガス節約の観点から縦形の気相成長装置が多く使用
されている。すなわち、縦形の気相成長炉においては原
料である結晶基板の上面に略垂直に原料ガスが供給され
るので、ガスの供給方向と気相成長方向が一致し、この
ため少ないガスの供給で気相成長を行うことができる。
From the viewpoint of saving raw material gas, vertical vapor phase growth apparatuses are often used. In other words, in a vertical vapor phase growth furnace, the raw material gas is supplied almost perpendicularly to the upper surface of the crystal substrate, which is the raw material, so the direction of gas supply and the direction of vapor phase growth coincide, and therefore the gas growth can be achieved with a small supply of gas. Phase growth can be performed.

有機金属の熱分解による気相成長法において、試料1台
は高周波加熱時の熱源となるのでカーボン等で作られて
いる。一般にこれらの試料台は試料の交換を容易にする
ため石英製の支持台等に載せ、着脱可能となっている。
In the vapor phase growth method using thermal decomposition of organic metals, each sample is made of carbon or the like because it serves as a heat source during high-frequency heating. In general, these sample stands are mounted on a support stand made of quartz or the like and are removable to facilitate sample exchange.

この支持台には前記試料台を安定に支えるための7う/
ジが設けられ、一方、試料台底部にはこれと嵌合する凹
部が設けられ、振動等によシ試料台がズレないようにな
っている。しかし、支持台は石英ガラスでできているた
め寸法精度が低く、試料台底部の凹部は、支持台フラン
ジよシも直径で略2w程度のクリアランスを見込んで形
成されている。従って、試料を交換する毎に、試料台の
位置が反応管に対して変化することになる。このようが
ことはAtを含む系で特に問題となる。即ちhtを含む
系では、Atが極めて酸化され易いため成長系への酸素
及び水分の混入を防ぐことが良質な結晶を得る上で重要
である。また成長系への酸素や水分の混入を防ぐために
は、反応炉内部への酸素・水分の吸着を防止することが
必要である。このため、反応炉へのウェハの出し入れに
際しては、反応炉内壁や試料台等に酸素・水分が吸着す
るのを防ぐため、特別に工夫した前室を設けることによ
って反応炉内部が外気に露されないようにして行われて
いる。このような反応系においては試料台の炉内配置が
直接子ではなく、機械を介して行われることになり。
This support stand has seven racks for stably supporting the sample stand.
On the other hand, a recess is provided at the bottom of the sample stage to fit into the recess to prevent the sample stage from shifting due to vibrations or the like. However, since the support stand is made of quartz glass, its dimensional accuracy is low, and the recess at the bottom of the sample stand is formed with a clearance of approximately 2W in diameter from the support stand flange. Therefore, each time the sample is replaced, the position of the sample stage changes with respect to the reaction tube. This problem is particularly problematic in systems containing At. That is, in a system containing ht, since At is extremely easily oxidized, it is important to prevent oxygen and moisture from entering the growth system in order to obtain high quality crystals. Furthermore, in order to prevent oxygen and moisture from entering the growth system, it is necessary to prevent oxygen and moisture from being adsorbed inside the reactor. For this reason, when loading and unloading wafers into the reactor, a specially devised front chamber is installed to prevent the inside of the reactor from being exposed to the outside air in order to prevent oxygen and moisture from adsorbing on the reactor inner walls, sample stand, etc. This is how it is done. In such a reaction system, the sample stage is placed in the reactor not directly, but through a machine.

石英などで作成した台の上に毎回精度良く配置すること
が特に難しくなる。このようなことから反応管内壁と試
料台として形成される環状空隙が試料台の円周で異なり
、結果として毎回原料ガスの流量が円周方向で異々る。
It becomes particularly difficult to place the objects accurately each time on a table made of quartz or the like. For this reason, the annular gap formed between the inner wall of the reaction tube and the sample stage differs around the circumference of the sample stage, and as a result, the flow rate of the raw material gas differs in the circumferential direction each time.

このよう力場台、成長層の厚さが試料の置かれた位置に
よりウェハ面内の膜厚分布が低下し、結晶成長の再現性
が乏しく歩留シが低かった。
As described above, depending on the force field table and the position where the sample was placed, the film thickness distribution within the wafer surface deteriorated, resulting in poor crystal growth reproducibility and low yield.

〔発明の目的〕[Purpose of the invention]

本発明の目的は試料を載置する試料台が、試料交換の毎
に位置ズレを起こすことなく、再現性よく配置されるこ
とにより、結晶成長層の膜厚が均一でかつ組成の安定し
た成長層を形成することが可能た気相成長装置を提供す
ることにある。
The purpose of the present invention is to ensure that the sample stage on which the sample is placed is placed with good reproducibility without causing any positional shift each time the sample is replaced, thereby achieving growth with a uniform thickness and stable composition of the crystal growth layer. An object of the present invention is to provide a vapor phase growth apparatus capable of forming a layer.

〔発明の概要〕[Summary of the invention]

本発明の骨子は反応炉内の試料支持台の底部にテーパー
状の四部を設け、一方試料台を支える支持台の受部にも
前記試料支持台底部に設けられたテーパーと同一のテー
パー状凸部を設け、試料交換の毎に試料台の位置が実効
的に変化しhいことにある。
The gist of the present invention is that four tapered parts are provided at the bottom of the sample support in the reactor, and the receiving part of the support that supports the sample has the same taper-like convexity as the taper provided at the bottom of the sample support. The reason is that the position of the sample stage can be effectively changed each time the sample is replaced.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、試料台と支持台がテーパ一部を介して
嵌合することによシ機械的な位置ズレがなく、結晶成長
において、所望の厚さと組成をもつ結晶成長基板が効率
良く得られる。従って、本発明に基づく結晶成長を行っ
た基板を用ちいて、例えば半導体レーザを作成した場合
、発振波長の安定化をはかり得る。
According to the present invention, since the sample stage and the support stage fit together through a part of the taper, there is no mechanical positional shift, and a crystal growth substrate having a desired thickness and composition can be efficiently grown during crystal growth. can get. Therefore, when a semiconductor laser, for example, is manufactured using a substrate subjected to crystal growth according to the present invention, the oscillation wavelength can be stabilized.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の詳細を図示の実施例によって説明する。 Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.

第1図は本発明の一実施例に係わる縦形気相成長装置を
示す概略構成図である。図中1はAqf形の気相成長炉
で、この成長炉1内には試料2を載置した試料台3が配
置されている。試料台底部4にはテーパー状凹部5が形
成されており、一方これを支える支持台6VCは、前記
試料台底部4に形成されたテーパー状凹部5と同じテー
パーからなるテーパー状凸部7が形成されている。
FIG. 1 is a schematic diagram showing a vertical vapor phase growth apparatus according to an embodiment of the present invention. In the figure, reference numeral 1 denotes an Aqf type vapor phase growth furnace, and within this growth furnace 1 a sample stage 3 on which a sample 2 is placed is arranged. A tapered recess 5 is formed in the sample table bottom 4, and a support 6VC that supports this is formed with a tapered convex part 7 having the same taper as the tapered recess 5 formed in the sample table bottom 4. has been done.

試料支持台3はシャフトを介して回転機構9により回転
するようになっている。成長炉1の下部にはガス導出ダ
ク)10が接続され、また、反応炉1の上部にはガス導
入ダクト11が接続されている。そしてガス導入ダクト
11から導入された原料ガスは拡散板12によって分散
され、均質に混合した後反応炉1内で加熱分解され基板
2上に結晶を成長せしめ、しかる後ガス導出ダク)10
から排出され三方弁13を介して廃ガス処理装置14に
導ひかれ処理される。また、三方弁13には真空ポンプ
15が接続されておシ1反応炉1内のガスを排出できる
機構になっている。
The sample support stand 3 is rotated by a rotation mechanism 9 via a shaft. A gas outlet duct 10 is connected to the lower part of the growth furnace 1, and a gas introduction duct 11 is connected to the upper part of the reactor 1. The raw material gas introduced from the gas introduction duct 11 is dispersed by the diffusion plate 12, mixed homogeneously, and then thermally decomposed in the reactor 1 to grow crystals on the substrate 2.
The waste gas is discharged from the exhaust gas treatment unit 14 through the three-way valve 13 and is treated therein. Further, a vacuum pump 15 is connected to the three-way valve 13 to provide a mechanism for discharging the gas inside the reactor 1.

一方、・前記ガス導入ダクト11には原料ガス源(図示
せず)、流量制御弁(図示せず)が取り付けられている
。この実施例では、ガス源として水素で希釈したアルシ
ン(AsH3)ガス、水素で希釈したドーピングガスと
なる水素化セレン(H2Se)ガスと水素ガスの供給源
とに接続されており、この水素ガスによシ蒸気化されて
供給されるトリメチルガリウム(TMG)、)リメチル
アルミニウム(TMA)とドーピングガスとなるジェチ
ルジング(DBZ)とが接続されている。前記アルシン
、トリメチルガリウム、トリメチルアルミニウムは反応
炉内で熱分解されてガリウムアルミニウム砒素の気相成
長を界し、前記水素ガスはキャリアガスとして働く。同
、第1図申付号16は試料台3を介して試料を成長温度
に加熱するためのE、Fコイルである。
On the other hand, a source gas source (not shown) and a flow rate control valve (not shown) are attached to the gas introduction duct 11. In this example, arsine (AsH3) gas diluted with hydrogen as a gas source, hydrogenated selenium (H2Se) gas diluted with hydrogen as a doping gas, and a hydrogen gas supply source are connected. Trimethylgallium (TMG) and trimethylaluminum (TMA), which are vaporized and supplied, are connected to jettilizing (DBZ), which serves as a doping gas. The arsine, trimethylgallium, and trimethylaluminum are thermally decomposed in the reactor to facilitate the vapor phase growth of gallium aluminum arsenide, and the hydrogen gas serves as a carrier gas. Reference number 16 in FIG. 1 is coils E and F for heating the sample to the growth temperature via the sample stage 3.

次に、上記のような構成の気相成長装置を使用[−てガ
リウムアルミニウム砒素薄膜成長層を形成する場合につ
いて説明する。
Next, a case will be described in which a gallium aluminum arsenide thin film growth layer is formed using a vapor phase growth apparatus having the above configuration.

まず、鏡面研磨した10dの面積を有する面方位が(1
00)のGaAs基板2を有機溶剤で洗浄した後に、硫
酸系エツチング液で化学エッチする。次いで、上記基板
を乾燥後前記第2図に示す試料支持台3の上に載置する
。次に、反応炉内を真空排気した後水素ガスで置換する
。成長炉内のガス置換を十分に行った後RFコイル16
により約700℃に加熱する。そして、所望の濃度に混
合された原料ガスをガス導入ダクト11から流入させ、
反応炉の上方から下方に向ってこれら混合ガスを流すこ
とにより気相成長を行う。成長膜厚は■族ガス即ちトリ
メチルガリウム、トリメチルアルミニウムの供給量によ
って決まるので、予め成長時間と成長膜厚との関係を調
べておき、成長時間を制御することにより膜厚を制御す
ることができる。
First, the plane orientation (1
After cleaning the GaAs substrate 2 of 00) with an organic solvent, it is chemically etched with a sulfuric acid-based etching solution. Next, after drying the substrate, it is placed on the sample support stand 3 shown in FIG. 2. Next, the inside of the reactor is evacuated and replaced with hydrogen gas. After sufficient gas replacement in the growth reactor, the RF coil 16
Heat to approximately 700°C. Then, the raw material gas mixed to a desired concentration is introduced from the gas introduction duct 11,
Vapor phase growth is performed by flowing these mixed gases from the top to the bottom of the reactor. Since the thickness of the grown film is determined by the supply amount of Group III gases, namely trimethylgallium and trimethylaluminum, the film thickness can be controlled by examining the relationship between the growth time and the growth film thickness in advance and controlling the growth time. .

このような方法で成長を行ったものでは、成長毎に試料
台の位置ズレがなく、成長層の膜厚と組成の再現性に優
れ、本方法を使って成長した基板を使用して作成した半
導体レーザでは波長の再現性に優れたものが得られた。
In products grown using this method, there is no displacement of the sample stage during each growth, and the reproducibility of the film thickness and composition of the grown layer is excellent. A semiconductor laser with excellent wavelength reproducibility was obtained.

かくして、本実施例によれば、均一な成長膜厚で所望の
組成をもつ成長層が安定して得られるので歩留りが向上
し、その工業的価値は極めて大である。
Thus, according to this example, a grown layer having a desired composition with a uniform growth thickness can be stably obtained, so that the yield is improved and its industrial value is extremely large.

なお、本発明では上述した実施例に限定されるものでは
ない。前記実施例では有機金属と砒素の水素化合物とに
ょるGaAtAsの気相成長に適用したが、或いはG 
a AL As以外の化合物半導体の気相成長に適用す
ることも可能である。その他、本発明の要旨を逸脱しな
い範囲で種々変形しても実施することができる。
Note that the present invention is not limited to the embodiments described above. In the above embodiments, the organic metal and the hydrogen compound of arsenic were applied to the vapor phase growth of GaAtAs.
a AL It is also possible to apply to the vapor phase growth of compound semiconductors other than As. In addition, various modifications can be made without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係わる気相成長装置を示す
概略構成図、第2図は試料台の位置ズレを規制する試料
台と支持台の断面を示す図である。 1・・・成長炉、2・・・試料、3・・・試料台、6・
・・支持台、9・・・回転機構、10・・・ガス導出ダ
クト、11・・・ガス導入ダクト。 代理人 弁理士 則 近 憲 佑(ほか1名第1図 第2図
FIG. 1 is a schematic configuration diagram showing a vapor phase growth apparatus according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view of a sample stand and a support stand for regulating the positional deviation of the sample stand. 1...Growth furnace, 2...Sample, 3...Sample stand, 6...
...Support stand, 9...Rotation mechanism, 10...Gas derivation duct, 11...Gas introduction duct. Agent: Patent attorney Noriyuki Chika (and 1 other person) Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 反応炉内に収納された着脱可能な高周波加熱用サセプタ
底部にテーパー状からなる凹部を設け、これを支持する
側の支持台には前記形状と合致するテーパー状凸部を設
けたことを特徴とする縦形気相成長装置
A tapered concave portion is provided at the bottom of a removable high-frequency heating susceptor housed in a reactor, and a tapered convex portion that matches the shape is provided on the support base on the side that supports this. Vertical vapor phase growth equipment
JP7652284A 1984-04-18 1984-04-18 Vertical vapor growth device Pending JPS60220926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7652284A JPS60220926A (en) 1984-04-18 1984-04-18 Vertical vapor growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7652284A JPS60220926A (en) 1984-04-18 1984-04-18 Vertical vapor growth device

Publications (1)

Publication Number Publication Date
JPS60220926A true JPS60220926A (en) 1985-11-05

Family

ID=13607610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7652284A Pending JPS60220926A (en) 1984-04-18 1984-04-18 Vertical vapor growth device

Country Status (1)

Country Link
JP (1) JPS60220926A (en)

Similar Documents

Publication Publication Date Title
US3796182A (en) Susceptor structure for chemical vapor deposition reactor
US4063974A (en) Planar reactive evaporation method for the deposition of compound semiconducting films
US4290385A (en) Vertical type vapor-phase growth apparatus
JPS60220926A (en) Vertical vapor growth device
CN109075040B (en) Film forming apparatus
JP2007109685A (en) Apparatus and method for manufacturing compound semiconductor
JPH09266173A (en) Org. metal chemical vapor deposition apparatus
JPS63226917A (en) Vapor-phase treatment system for semiconductor
JP2000031064A (en) Method and device for horizontal vapor phase epitaxial growth
JPS61242994A (en) Vertical unit for vapor growth
JPH10163115A (en) Vapor growth device
JPS62182196A (en) Vapor growth apparatus
JPS61284915A (en) Thin film vapor growth apparatus
JPH10158100A (en) Vapor growth device
JPS6273618A (en) Vapor growth device
JPH10321530A (en) Heating furnace
JPH0234909A (en) Compound semiconductor vapor growth method and device
JPH06132230A (en) Organic metal vapor growth apparatus
JPH06151339A (en) Apparatus and method for growth of semiconductor crystal
JPH0562916A (en) Vapor growth method
CN116024655A (en) Silicon wafer epitaxial growth base support frame and device
JPS62235724A (en) Mocvd device
JPS61155291A (en) Vapor growth process
JPS61155292A (en) Vapor growth device
JPH1167671A (en) Gas control method and semiconductor manufacturing apparatus