JPS61155292A - Vapor growth device - Google Patents
Vapor growth deviceInfo
- Publication number
- JPS61155292A JPS61155292A JP27732784A JP27732784A JPS61155292A JP S61155292 A JPS61155292 A JP S61155292A JP 27732784 A JP27732784 A JP 27732784A JP 27732784 A JP27732784 A JP 27732784A JP S61155292 A JPS61155292 A JP S61155292A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- reaction tube
- substrate
- reaction
- raw material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の属する技術分野〕
本発明は気相成長装置に関し、特に半導体素子の製造等
において用いられる気相成長装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Technical Field to which the Invention Pertains] The present invention relates to a vapor phase growth apparatus, and more particularly to a vapor phase growth apparatus used in the manufacture of semiconductor elements.
高集積回路、゛1′−導体レーザ及び光検出等の微細構
造を有する半導体装置を作成するにあたり、薄膜成長は
きわめて重要なT稈の−っである。薄膜成長方法として
は気相成長法、液相成長法及び分子線エビタクシ−法が
用いられているが、気相成長法は原料ガスから結晶基板
への直接成長という有利さから量産1−1”の市で最も
優れている。Thin film growth is an extremely important step in producing semiconductor devices with fine structures such as highly integrated circuits, 1'-conductor lasers, and photodetectors. Vapor-phase epitaxy, liquid-phase epitaxy, and molecular beam epitaxy are used as thin film growth methods, but vapor-phase epitaxy has the advantage of direct growth from raw material gas to a crystal substrate, making it suitable for mass production. The best in the city.
気相成ト法による従来の気相成長装置において、原料ガ
スはガスポンへより又液体原料の場合はバブラー仰ab
hler )より輸送ガスとともに反応管に供給される
。結晶基板は反応管内において抵抗加熱、高周波加熱等
により加熱され、送られてきた原料ガスは結晶基板」−
又はその近傍において化学反応を起こし結晶基板上にエ
ピタキシャル成長する。In a conventional vapor phase growth apparatus using the vapor phase deposition method, the raw material gas is passed through a gas pump, or in the case of liquid raw material, it is passed through a bubbler.
hler) to the reaction tube together with the transport gas. The crystal substrate is heated in the reaction tube by resistance heating, high frequency heating, etc., and the raw material gas sent is heated to the crystal substrate.
A chemical reaction occurs at or near the crystal substrate and epitaxial growth occurs on the crystal substrate.
結晶基板は室温にて反応管内に導入され、反応管内のガ
ス交換及び反応管の昇温を終え、成長条件が整ってはじ
めて成長が開始される。このような状態において従来の
気相成長装置ではたとえばl・リメチルガリウム(tr
imethyle gallium)及びアルシン(A
rsine)を用いる■−■族の結晶成長の場合、前回
の成長時に反応管壁に生じた砒素及びガリうム砒素が基
板の装着及び取出しの際、基板表面に落下して表面に付
着し、m膜結晶の表面の状態を悪くするという欠点があ
る。そこで結晶成長ごとに反応管を洗うという対策が施
されているが、このときに水分及び大気が反応管内に導
入するため、成長した結晶の電気的特性が不安定になる
という新たな問題が生じていた。The crystal substrate is introduced into the reaction tube at room temperature, and growth is started only after gas exchange within the reaction tube and temperature rise of the reaction tube are completed and growth conditions are established. In such a state, in a conventional vapor phase growth apparatus, for example, l.trimethylgallium (tr
imethyle gallium) and arsine (A
In the case of crystal growth of the ■-■ group using rsine), arsenic and gallium arsenic produced on the reaction tube wall during the previous growth fall onto the substrate surface and adhere to the surface when the substrate is loaded and unloaded. This has the disadvantage of worsening the surface condition of the m-film crystal. Therefore, a countermeasure has been taken to wash the reaction tube after each crystal growth, but at this time, moisture and air are introduced into the reaction tube, which causes a new problem in that the electrical characteristics of the grown crystal become unstable. was.
本発明の目的は反応管の構造に工夫を施すことにより上
記欠点及び問題点を解決し、結晶表面の状態を向上し得
る気相成長装置を提供することにある。An object of the present invention is to solve the above-mentioned drawbacks and problems by devising the structure of the reaction tube, and to provide a vapor phase growth apparatus that can improve the condition of the crystal surface.
本発明は、原料ガスを供給する入口と、基板を装着し及
び取出すサンプル導入口と、基板を配置する支持台とを
有する反応管を備える気相成長装置において、前記反応
管が、前記原料ガスのガス流に関して前記支持台から前
記サンプル導入口に至る下流部に、反応に不活性なガス
を送り込むガス導入口と、前記原料ガスと前記不活性な
ガスとを排出するガス排出口とを備え、前記ガス排出口
と前記サンプル導入口との間の反応管の管壁に結晶が生
成しないようにしたことを特徴としている。The present invention provides a vapor phase growth apparatus equipped with a reaction tube having an inlet for supplying a raw material gas, a sample introduction port for mounting and taking out a substrate, and a support stand for arranging a substrate, in which the reaction tube is connected to the raw material gas. A gas inlet for feeding an inert gas into the reaction and a gas outlet for discharging the raw material gas and the inert gas are provided downstream from the support stand to the sample inlet with respect to the gas flow. The present invention is characterized in that crystals are not generated on the wall of the reaction tube between the gas outlet and the sample inlet.
次に図面を参照j〜で本発明の詳細な説明する。 Next, the present invention will be described in detail with reference to the drawings.
第1図は本発明の気相成長装置の一実施例であるたとえ
ばガリウム砒素気相成長装置の断面図である。FIG. 1 is a sectional view of, for example, a gallium arsenide vapor phase growth apparatus which is an embodiment of the vapor phase growth apparatus of the present invention.
この気相成長装置は石英反応管1を備えており、この石
英反応管1は原料ガスを送り込むための反応管人口2と
、ガス流の下流部に位置し結晶基板を装着及び取出すた
めのサンプル導入[13とを有しており、反応管1内に
は結晶基板を配置するためのグラファイト支持台4が設
けられている。さらに石英反応管1はグラファイト支持
台4の下流側に、反応に不活性なガスを反応管内に送り
込むためのガス導入口5と、グラファイト支持台4に隣
接し原料ガス、輸送ガス及び不活性ガスを排…するため
のガス排出口6とを備えている。この石英反応管1の外
部であってグラファイト支持台4の位置する箇所には高
周波加熱用の高周波コイル7が設けられている。This vapor phase growth apparatus is equipped with a quartz reaction tube 1, and this quartz reaction tube 1 has a reaction tube 2 for feeding raw material gas, and a sample located downstream of the gas flow for mounting and taking out a crystal substrate. In the reaction tube 1, a graphite support 4 for placing a crystal substrate is provided. Further, the quartz reaction tube 1 has a gas inlet 5 downstream of the graphite support 4 for feeding a gas inert to the reaction into the reaction tube, and a gas inlet 5 adjacent to the graphite support 4 for supplying raw material gas, transport gas, and inert gas. It is equipped with a gas exhaust port 6 for discharging the gas. A high frequency coil 7 for high frequency heating is provided outside the quartz reaction tube 1 at a location where the graphite support 4 is located.
このような構成のガリウム砒素気相成長装置において、
石英反応管1内に設置したグラファイト支持台4にガリ
ウム砒単結晶基板(以下単に結晶基板という)8をサン
プル導入口3より配置し、高周波コイル7により結晶基
板8の近傍を加熱する。一方、有機金属原料であるトリ
メチルガリウム及び砒素の原料であるアルシンは反応管
人口2より反応管1に送りこまれ、加熱された結晶基板
近傍で熱分解し結晶基板8の表面でエピタキシャル成長
する。これと同時にガス導入口5より反応に不活性なガ
スを反応管1に送りこむ。したがって結晶基板近傍の反
応部を通過した原料ガスはサンプル導入口3の方向に向
って流れることなく速やかにガス排出口6より排出され
る。このとき結晶基板8の結晶表面ばかりでなく加熱さ
れたグラファイト支持台4およびグラファイト支持台4
の近傍の反応管壁にガリウム砒素がわずかに析出するが
従来の気相成長装置にみられるように反応管壁の下流部
全面に析出し付着するということがな(なる。したがっ
て薄膜成しを終えた結晶基板8を、サンプル導入口3よ
り取出す際に基板表面にガリウム砒素が落下することが
ない。さらに反応管壁に析出した付着物は塩化水素ガス
により結晶基板を配置していない状態で増り除くことが
できるので、次にサンプル導入口3より結晶基板8を装
着する際にガリウム砒素が展板表面に落下してくるおそ
れは全くなくなる。このように本実施例によれば結晶基
板の表面の状態を良好に保持することが可能となる。In a gallium arsenide vapor phase growth apparatus with such a configuration,
A gallium arsenide single crystal substrate (hereinafter simply referred to as a crystal substrate) 8 is placed on a graphite support stand 4 installed in a quartz reaction tube 1 through a sample introduction port 3, and the vicinity of the crystal substrate 8 is heated by a high frequency coil 7. On the other hand, trimethylgallium, which is an organic metal raw material, and arsine, which is a raw material for arsenic, are fed into the reaction tube 1 from the reaction tube 2, thermally decomposed near the heated crystal substrate, and epitaxially grown on the surface of the crystal substrate 8. At the same time, a gas inert to the reaction is fed into the reaction tube 1 from the gas inlet 5. Therefore, the raw material gas that has passed through the reaction section near the crystal substrate is quickly discharged from the gas outlet 6 without flowing in the direction of the sample introduction port 3. At this time, not only the crystal surface of the crystal substrate 8 but also the heated graphite support 4 and the graphite support 4
Although a small amount of gallium arsenide precipitates on the reaction tube wall near the reactor, it does not precipitate and adhere to the entire downstream part of the reaction tube wall as in conventional vapor phase growth equipment. When the finished crystal substrate 8 is taken out from the sample introduction port 3, gallium arsenide does not fall onto the substrate surface.Furthermore, deposits deposited on the reaction tube wall are removed by hydrogen chloride gas without the crystal substrate being placed. Since gallium arsenide can be added and removed, there is no risk of gallium arsenide falling onto the surface of the spread plate when the crystal substrate 8 is next mounted from the sample introduction port 3. In this way, according to this embodiment, the crystal substrate It becomes possible to maintain the surface condition well.
第2図は本発明の気相成長装置の他の実施例であって、
ガリウム砒素及びアルミニうム砒素を成長させることの
できる実施例の断面図を示す。FIG. 2 shows another embodiment of the vapor phase growth apparatus of the present invention,
Figure 3 shows a cross-sectional view of an embodiment in which gallium arsenide and aluminum arsenide can be grown.
この気相成長装置は内管10と外管11との2重構造よ
りなる石英反応管12を備えている。このように反応管
12を2重構造とするのは、ガス流の制御を第1図の実
施例よりもより容易にするためである。石英反応管12
の内管10の端部には原料ガスをjXり込むための反応
前人「113が形成されており、内管10の内壁には結
晶基板を配置するためのグラファイ1〜支持台14が設
けられている。グラファイト支持台14の下流側に隣接
する内管壁部には内管lOと外管IIとの間の空間15
に通じる内部ガス排出口16が形成されている。内管1
0の下流側端部17は図示のように内部に突き出た外管
の突出部18につながっている。そして内管と外側の外
管と番J−緒になって閉じた(内部ガス(J[出口16
を除いて)空間15を形成する。突出r:y1sより下
流側の外管部には反応に不活性なガスを送りこむための
ガス導入口19が形成され、及び空間15を形成する外
管部には原料ガス、輸送ガス及び不活性ガスを排出する
ためのガス排出D 20が形成されている。外管11の
下流側端部に番1r結晶基板を装着及び地山ずためのサ
ンプル導入口21が形成され、グラファイト支持台14
が位置する反応管12の外部には高17.1液加fi%
川の高周波コイル22が設けられている。This vapor phase growth apparatus is equipped with a quartz reaction tube 12 having a double structure of an inner tube 10 and an outer tube 11. The reason why the reaction tube 12 has a double structure is to make it easier to control the gas flow than in the embodiment shown in FIG. Quartz reaction tube 12
At the end of the inner tube 10, a reaction preform 113 is formed for introducing the raw material gas, and on the inner wall of the inner tube 10, graphite 1 to a support 14 for placing a crystal substrate are provided. There is a space 15 between the inner tube lO and the outer tube II in the inner tube wall adjacent to the downstream side of the graphite support 14.
An internal gas outlet 16 is formed which leads to an internal gas outlet 16 . Inner tube 1
The downstream end 17 of the tube 0 is connected to an inwardly protruding protrusion 18 of the outer tube as shown. Then, the inner tube and the outer outer tube were closed in sequence (internal gas (J[outlet 16
) to form a space 15. A gas inlet 19 for feeding an inert gas into the reaction is formed in the outer tube portion downstream of the protrusion r:y1s, and a gas inlet 19 for feeding an inert gas into the reaction is formed in the outer tube portion that forms the space 15. A gas outlet D 20 is formed for discharging gas. At the downstream end of the outer tube 11, a sample inlet 21 is formed for attaching a No. 1r crystal substrate and for ground formation, and a graphite support 14 is formed.
The outside of the reaction tube 12 where the
A high frequency coil 22 is provided.
このような構成の気相成長装置において、結晶基板23
をグラファイト支持台14にサンプル導入口21より配
置し、高周波コイル22により結晶基板23の近傍を加
熱する。結晶基板23は高周波誘導により加熱されたグ
ラファイト支持台14により600℃〜850 ’Cに
17持される。そしてガリウム及び゛?ルミュウムの原
料であるトリメチルガリウム及びl・リメチルアルミニ
ウム(trim’ethyle aluminum )
及び砒素原料であるアルシンを、反応前人[113より
反応管12の内管10の内部に送り込む。送り込まれた
トリメチルガリウムおよびトリメチルアルミニカム及び
アルシンは結晶)、I:1ff123の近傍において熱
分解しガリウノ・砒素及びアルミニ+1フム1ift素
として析出する。これと同時に反応に不活性なガス、こ
こでは水素をガス導入口19より導入する。したがって
結晶基板近傍の反応部を通過した原料ガスはサンプル導
入[121の方向に向って流れるごとなく内部ガス排出
[116及びガス1)jlllF−120を通り反応管
12より速やかにtj[出される。この結果内部ガスt
JY出口16よりサンプル導入口21までに至る管壁に
はガリウム砒素およびアルミニウム砒素が全く付着する
ことがない。In a vapor phase growth apparatus having such a configuration, the crystal substrate 23
is placed on the graphite support stand 14 through the sample introduction port 21, and the vicinity of the crystal substrate 23 is heated by the high frequency coil 22. The crystal substrate 23 is held at 600 DEG C. to 850 DEG C. by a graphite support 14 heated by high frequency induction. And gallium and ゛? Trimethyl gallium and trim'ethyle aluminum are the raw materials for Lumium.
and arsine, which is an arsenic raw material, are sent into the interior of the inner tube 10 of the reaction tube 12 from the reaction precursor [113]. The fed trimethylgallium, trimethylaluminum, and arsine (crystals) are thermally decomposed in the vicinity of I:1ff123 and precipitated as gallium, arsenic, and aluminum+1hum1ift element. At the same time, a gas inert to the reaction, in this case hydrogen, is introduced from the gas inlet 19. Therefore, the raw material gas that has passed through the reaction section near the crystal substrate flows in the direction of the sample introduction [121], passes through the internal gas discharge [116 and gas 1], and is quickly discharged from the reaction tube 12. As a result, the internal gas t
Gallium arsenide and aluminum arsenide do not adhere to the tube wall extending from the JY outlet 16 to the sample inlet 21 at all.
本実施例の気相成長装置によって実験した結果、従来の
気相成長装置によって成トされる薄膜にみられるような
結晶表面の欠陥(,1000f固/ cl)は100〜
500(囚/ cl以下となることが判明した。As a result of experiments using the vapor phase growth apparatus of this example, it was found that defects on the crystal surface (,1000f solids/cl) found in thin films formed by conventional vapor phase growth apparatuses ranged from 100 to 100.
It turned out to be less than 500 (prisoners/cl).
以−1−の説明から明らかなように本発明によれば結晶
表面の汚染を抑え良好な結晶表面を得ることができるの
で従来の気相成長装置に比較して半導体素子の歩留りを
格段に向上させることが可能となる。As is clear from the explanation in -1- below, according to the present invention, contamination of the crystal surface can be suppressed and a good crystal surface can be obtained, so the yield of semiconductor devices can be significantly improved compared to conventional vapor phase growth equipment. It becomes possible to do so.
第1図は本発明の一実施例を示す断面図、第2図は本発
明の他の実施例を示す断面図である。
1.12・・・石英反応管
2.13−−・TV′応管入[1
3,21・・・4)ンプル導入L1
4.14・・・グラファイト支持台
5.19・・・ガス導入口
6.20・・・ガスを井出[1
7,22・・・高周波コイル
8.23・・・結晶基1に
10・・・・・内管
2・・・・・外管
15・・・・・空間FIG. 1 is a sectional view showing one embodiment of the invention, and FIG. 2 is a sectional view showing another embodiment of the invention. 1.12...Quartz reaction tube 2.13--TV' reaction tube entry [1 3,21...4) Sample introduction L1 4.14...Graphite support stand 5.19...Gas introduction Port 6.20...Gas Ide[1 7,22...High frequency coil 8.23...Crystal group 1 to 10...Inner tube 2...Outer tube 15... ··space
Claims (1)
出すサンプル導入口と、基板を配置する支持台とを有す
る反応管を備える気相成長装置において、前記反応管が
、前記原料ガスのガス流に関して前記支持台から前記サ
ンプル導入口に至る下流部に、反応に不活性なガスを送
り込むガス導入口と、前記原料ガスと前記不活性なガス
とを排出するガス排出口とを備え、前記ガス排出口と前
記サンプル導入口との間の反応管の管壁に結晶が生成し
ないようにしたことを特徴とする気相成長装置。(1) In a vapor phase growth apparatus equipped with a reaction tube having an inlet for supplying the raw material gas, a sample inlet for mounting and taking out the substrate, and a support stand for placing the substrate, the reaction tube is configured to supply the raw material gas. A gas inlet for feeding an inert gas into the reaction and a gas outlet for discharging the raw material gas and the inert gas are provided downstream from the support base to the sample inlet with respect to the gas flow; A vapor phase growth apparatus characterized in that crystals are not generated on the tube wall of the reaction tube between the gas outlet and the sample inlet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27732784A JPS61155292A (en) | 1984-12-26 | 1984-12-26 | Vapor growth device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27732784A JPS61155292A (en) | 1984-12-26 | 1984-12-26 | Vapor growth device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61155292A true JPS61155292A (en) | 1986-07-14 |
JPH0529637B2 JPH0529637B2 (en) | 1993-05-06 |
Family
ID=17581980
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27732784A Granted JPS61155292A (en) | 1984-12-26 | 1984-12-26 | Vapor growth device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61155292A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02291113A (en) * | 1989-04-29 | 1990-11-30 | Toyoda Gosei Co Ltd | Vapor growth apparatus for compound semiconductor |
US5180571A (en) * | 1990-05-30 | 1993-01-19 | Idemitsu Petrochemical Company Limited | Process for the preparation of diamond |
-
1984
- 1984-12-26 JP JP27732784A patent/JPS61155292A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02291113A (en) * | 1989-04-29 | 1990-11-30 | Toyoda Gosei Co Ltd | Vapor growth apparatus for compound semiconductor |
US5180571A (en) * | 1990-05-30 | 1993-01-19 | Idemitsu Petrochemical Company Limited | Process for the preparation of diamond |
Also Published As
Publication number | Publication date |
---|---|
JPH0529637B2 (en) | 1993-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7906411B2 (en) | Deposition technique for producing high quality compound semiconductor materials | |
JPH11508531A (en) | Apparatus and method for growing an object epitaxially by CVD | |
JP3231996B2 (en) | Vapor phase growth equipment | |
JPS6054919B2 (en) | low pressure reactor | |
JPS61155292A (en) | Vapor growth device | |
JPS60112694A (en) | Gas-phase growth method of compound semiconductor | |
JP3221318B2 (en) | Vapor phase growth method of III-V compound semiconductor | |
JP2881828B2 (en) | Vapor phase growth apparatus and vapor phase growth method | |
JPS61155291A (en) | Vapor growth process | |
JP2000031064A (en) | Method and device for horizontal vapor phase epitaxial growth | |
JPS61177713A (en) | Apparatus for vapor phase epitaxial growth of silicon carbide compound semiconductor | |
JPS62182196A (en) | Vapor growth apparatus | |
JPH06151339A (en) | Apparatus and method for growth of semiconductor crystal | |
JPS6389491A (en) | Vapor growth device | |
JPS6117494A (en) | Device for vapor-phase growth | |
JPS63287015A (en) | Vapor growth apparatus for compound semiconductor thin film | |
JPH0383893A (en) | Gaseous phase growth device | |
JPH05251360A (en) | Film-forming device | |
JPS63227007A (en) | Vapor growth method | |
JPH01294598A (en) | Vapor growth unit | |
JPH0760803B2 (en) | Method for manufacturing semiconductor wafer | |
JPH06302516A (en) | Vapor growth method | |
JPH01224295A (en) | Gas source molecular beam crystal growing apparatus | |
JPS59198717A (en) | Semiconductor vapor growth device | |
JPS61114519A (en) | Vapor growth equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |