JPH0722323A - Vapor deposition device - Google Patents

Vapor deposition device

Info

Publication number
JPH0722323A
JPH0722323A JP18710593A JP18710593A JPH0722323A JP H0722323 A JPH0722323 A JP H0722323A JP 18710593 A JP18710593 A JP 18710593A JP 18710593 A JP18710593 A JP 18710593A JP H0722323 A JPH0722323 A JP H0722323A
Authority
JP
Japan
Prior art keywords
substrate
gas
reaction tube
raw material
vapor phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18710593A
Other languages
Japanese (ja)
Other versions
JP2500773B2 (en
Inventor
Hirokiyo Unosawa
浩精 宇野沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP18710593A priority Critical patent/JP2500773B2/en
Publication of JPH0722323A publication Critical patent/JPH0722323A/en
Application granted granted Critical
Publication of JP2500773B2 publication Critical patent/JP2500773B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To produce the multi-element semiconductor crystal having excellent evenness in the title vapor deposition device comprising a vertical reaction tube for compound semiconductor. CONSTITUTION:This vapor deposition device comprising vertical reaction tube having three each of gas leading-in ports 4, 5, 6 assuming the two 5, 6 of the three as the material gas introducing ports is provided with two each of conic material gas blowing-out ports (horns 7, 8) on the axis of the center of a reaction tube 1 concentrically as well as a gas diffusion bar 10 on the central part of the inner side blowing-out port (horn 7). Through these procedures, the concentration of the material gas in the central part during the low pressure growing step can be avoided by the gas diffusion bar 10. Furthermore, the length and thickness of the gas diffusion bar 10 can be arbitrarily changed thereby enabling the flow of the material gas to be arbitrarily adjusted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、気相成長装置に関し、
特に有機金属を用いた化合物半導体などの結晶成長に用
いる気相成長装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vapor phase growth apparatus,
In particular, it relates to a vapor phase growth apparatus used for crystal growth of a compound semiconductor or the like using an organic metal.

【0002】[0002]

【従来の技術】化合物半導体などの結晶成長に用いる気
相成長装置については、これまで各種の提案がなされて
いる。その一例として特開平4−177721号公報に記載の
気相成長装置を挙げ、図8に基づいて説明する。
2. Description of the Related Art Various proposals have been made so far for a vapor phase growth apparatus used for crystal growth of a compound semiconductor or the like. As an example thereof, the vapor phase growth apparatus described in Japanese Patent Laid-Open No. 4-177721 will be cited and described with reference to FIG.

【0003】図8は、従来の気相成長装置の断面図であ
って、この装置は、縦型反応管81内にサセプタ82を配
し、このサセプタ82上に基板83を載置し、該基板83上に
結晶薄膜を成長する気相成長装置であり、次のように構
成されている。上記反応管81の中心を軸とした円錐形ホ
−ン(A)87を基板83上に設置し、この円錐形ホ−ン(A)87
内にガスを導入する原料ガス導入口(A)85を設け、さら
に上記円錐形ホ−ン(A)87の外側に、該ホ−ン(A)87と同
心円状の開口部を持つ円錐形ホ−ン(B)88を配設し、こ
の円錐形ホ−ン(B)88内にガスを導入する原料ガス導入
口(B)86を設けた構成からなる。なお図8中の84は、キ
ャリアガス導入口である。
FIG. 8 is a sectional view of a conventional vapor phase growth apparatus. In this apparatus, a susceptor 82 is arranged in a vertical reaction tube 81, a substrate 83 is placed on the susceptor 82, and This is a vapor phase growth apparatus for growing a crystal thin film on a substrate 83, and has the following configuration. A conical horn (A) 87 having the center of the reaction tube 81 as an axis is installed on the substrate 83, and the conical horn (A) 87 is installed.
A raw material gas introduction port (A) 85 for introducing gas is provided inside, and further outside the conical horn (A) 87, a conical shape having a concentric opening with the horn (A) 87. A horn (B) 88 is provided, and a raw material gas inlet (B) 86 for introducing gas is provided in the conical horn (B) 88. In addition, 84 in FIG. 8 is a carrier gas inlet.

【0004】次に、上記気相成長装置を用いて基板83上
に化合物半導体結晶を成長させる従来法を説明する。反
応管81の上部に位置するキャリアガス導入口84より水素
を導入し、原料ガス導入口(A)85及び原料ガス導入口(B)
86にインジウム等のIII族原料とアルシン、フォスフィ
ンのV族原料の混合ガスを導入し、サセプタ82上に載置
した基板83上に供給し、加熱系(図示せず)により基板83
を加熱し、基板83上に化合物半導体結晶を成長させる。
Next, a conventional method of growing a compound semiconductor crystal on the substrate 83 using the vapor phase growth apparatus will be described. Hydrogen is introduced from a carrier gas inlet 84 located at the upper part of the reaction tube 81, and a raw material gas inlet (A) 85 and a raw material gas inlet (B)
A mixed gas of a group III raw material such as indium and a group V raw material of arsine and phosphine is introduced into 86 and supplied onto a substrate 83 placed on a susceptor 82, and a substrate 83 is heated by a heating system (not shown).
Are heated to grow a compound semiconductor crystal on the substrate 83.

【0005】原料ガス導入口(A)85及び原料ガス導入口
(B)86から導入された原料ガスは、基板83上になるべく
均一に供給されるように、ホ−ン(A)87及びホ−ン(B)88
によって図8中の点線に示すような速度分布で拡散させ
る。通常、基板83上に、より均一に原料が供給されるよ
うに、サセプタ82を回転させて結晶成長を行う。膜厚が
均一な化合物半導体結晶を得るために、同じ成分のガス
が導入される原料ガス導入口(A)85、同(B)86の流量を流
量制御系により独立に制御している。
Raw material gas inlet (A) 85 and raw material gas inlet
The raw material gas introduced from (B) 86 is supplied to the substrate 83 as uniformly as possible on the horn (A) 87 and the horn (B) 88.
Is diffused with a velocity distribution as shown by the dotted line in FIG. Usually, the crystal is grown by rotating the susceptor 82 so that the raw material is more uniformly supplied onto the substrate 83. In order to obtain a compound semiconductor crystal with a uniform film thickness, the flow rates of the raw material gas introduction ports (A) 85 and (B) 86 into which the gas of the same component is introduced are independently controlled by the flow rate control system.

【0006】[0006]

【発明が解決しようとする課題】従来の上記気相成長装
置は、V族のガスとしてフォスフィン(PH3)及びアルシ
ン(AsH3)を用いる旨前記特開平4−177721号公報に記載
されていることから、リン(P)系及び砒素(As)系等複数
種の化合物半導体結晶を成長することを意図した気相成
長装置である。
The above-mentioned conventional vapor phase growth apparatus is disclosed in Japanese Patent Laid-Open No. 4-177721, which uses phosphine (PH 3 ) and arsine (AsH 3 ) as the group V gas. Therefore, the vapor phase growth apparatus is intended for growing a plurality of types of compound semiconductor crystals such as phosphorus (P) -based and arsenic (As) -based.

【0007】上記公報に明示的記載がなされていない
が、一般的に良好な結晶性を持つp系の結晶成長を行う
ためには、原料ガス導入口(A)85、同(B)86から基板83上
まで乱流のない層流状態のガスの流れを形成する必要が
ある。このため、反応管81の内圧を30〜70Torrの減圧状
態にして反応管81内のガス流速を速くし、これにより安
定した層流状態を形成する。
Although not explicitly described in the above publication, in order to grow a p-type crystal having generally good crystallinity, the raw material gas introduction ports (A) 85 and (B) 86 are used. It is necessary to form a laminar gas flow without turbulence onto the substrate 83. Therefore, the internal pressure of the reaction tube 81 is reduced to 30 to 70 Torr to increase the gas flow velocity in the reaction tube 81, thereby forming a stable laminar flow state.

【0008】このような減圧状態においては、ホ−ン
(A)87内のガスの速度分布は、図8中の点線に示すよう
な速度分布で拡散させることができず、原料ガス導入口
(A)85から導入された原料ガスは、ホ−ン(A)87に沿って
拡がることなく中央に集中したまま基板83まで到達する
ことになる。このため、基板83上の原料ガスの供給量分
布は、基板中央部で大きくなり、外周部ほど小さくな
る。
In such a depressurized state, the horn
(A) The velocity distribution of the gas in 87 cannot be diffused with the velocity distribution shown by the dotted line in FIG.
The raw material gas introduced from (A) 85 reaches the substrate 83 while being concentrated in the center without spreading along the horn (A) 87. Therefore, the supply amount distribution of the source gas on the substrate 83 becomes large in the central portion of the substrate and becomes smaller in the outer peripheral portion.

【0009】その結果、基板83の中央部分の膜圧は厚く
なり、膜厚の均一性が得られなくなるという問題が生じ
る。その上、このように基板83の中央部に原料ガスが集
中して供給されると、基板中央部の温度が周辺部よりも
低下し、基板表面に温度分布が生じる。
As a result, the film pressure at the central portion of the substrate 83 becomes thicker, and there arises a problem that the uniformity of the film thickness cannot be obtained. Moreover, when the source gas is concentratedly supplied to the central portion of the substrate 83, the temperature of the central portion of the substrate is lower than that of the peripheral portion, and a temperature distribution is generated on the substrate surface.

【0010】従来の気相成長装置では、上記したよう
に、基板表面に温度分布が生じるため、格子整合を要す
る結晶では、基板半径方向に格子定数の分布を持った結
晶が成長してしまうという欠点を有している。なお、
“格子定数の分布を持つ”と言うことは、“組成分布が
ある”と言うことになる。
In the conventional vapor phase growth apparatus, since the temperature distribution is generated on the substrate surface as described above, a crystal having a lattice constant distribution in the radial direction of the substrate grows in a crystal requiring lattice matching. It has drawbacks. In addition,
"Having a distribution of lattice constants" means "having a composition distribution".

【0011】また、ド−ピング特性においても、基板半
径方向に分布を持ってしまう。このような状態では、結
晶成長条件の自由度の低下、ひいては特性の揃ったデバ
イスが歩留まり良く得られないと言う欠点を有する。
In addition, the doping characteristics also have a distribution in the radial direction of the substrate. In such a state, there is a drawback that the degree of freedom of the crystal growth condition is lowered, and consequently a device having uniform characteristics cannot be obtained with a high yield.

【0012】更に、図8に示す気相成長装置において、
前記特開平4−177721号公報によれば「V族原料とIII族
原料を混合して供給する」旨記載されており、このよう
な供給手段を採用した場合、V族原料とIII族原料の種
類によっては中間反応を起こすことがあり、そのため良
質な半導体結晶が得られないという問題もある。
Further, in the vapor phase growth apparatus shown in FIG.
According to the above-mentioned Japanese Patent Laid-Open No. 4-177721, it is described that "group V raw material and group III raw material are mixed and fed". When such a feeding means is adopted, the group V raw material and the group III raw material are mixed. There is also a problem that a good quality semiconductor crystal cannot be obtained because an intermediate reaction may occur depending on the kind.

【0013】本発明は、従来の気相成長装置における上
記問題点、欠点を解消することを技術的課題とするもの
であり、特に多元素の半導体結晶を基板上に均一に成長
させることができる気相成長装置を提供することを目的
とする。
The present invention has a technical object to solve the above problems and drawbacks in the conventional vapor phase growth apparatus, and in particular, a multi-element semiconductor crystal can be uniformly grown on a substrate. An object is to provide a vapor phase growth apparatus.

【0014】[0014]

【課題を解決するための手段】本発明の気相成長装置
は、(A) 反応管の中心を軸とした2個の円錐形の原料ガ
ス吹き出し口にIII族原料とV族原料をそれぞれ独立に
供給し得るようにし、(B) 2個の円錐形の原料ガス吹き
出し口のうち、内側の吹き出し口の吹き出し口端中央部
にガス拡散棒を設け、(C) 2個のガス吹き出し口端のう
ち、内側のガス吹き出し口端をサセプタから遠ざけた、
構造からなることを特徴とし、これにより上記目的とす
る気相成長装置を提供するものである。
According to the vapor phase growth apparatus of the present invention, (A) a group III source and a group V source are independently provided in two conical source gas outlets having the center of the reaction tube as an axis. (B) Of the two conical raw material gas outlets, a gas diffusion rod is provided at the center of the inner outlet end of the two conical source gas outlets, and (C) the two gas outlet ends. Of the above, the inner gas outlet end was moved away from the susceptor,
A vapor phase growth apparatus of the above-mentioned object is provided, which is characterized by having a structure.

【0015】即ち、本発明は、「3個のガス導入口を有
し、このうち2個を原料ガス導入口とする縦型反応管内
にサセプタを配し、このサセプタ上に半導体基板を載置
し、該基板上に半導体結晶を成長する気相成長装置にお
いて、前記反応管の中心を軸とした円錐形の原料ガス吹
き出し口を同心円状に2個備え、前記2個の原料ガス吹
き出し口のうち内側の原料ガス吹き出し口を前記サセプ
タから遠ざけ、この内側の原料ガス吹き出し口の開口端
中央部にガス拡散棒を配設してなることを特徴とする気
相成長装置。」を要旨とする。
That is, according to the present invention, "a susceptor is arranged in a vertical reaction tube having three gas inlets, two of which are raw material gas inlets, and a semiconductor substrate is mounted on the susceptor. Then, in the vapor phase growth apparatus for growing a semiconductor crystal on the substrate, two conical source gas outlets concentrically with the center of the reaction tube as an axis are provided, and the two source gas outlets The raw material gas blowing port on the inner side is separated from the susceptor, and a gas diffusion rod is arranged at the central portion of the opening end of the raw material gas blowing port on the inner side. " .

【0016】[0016]

【実施例】次に本発明について図面を参照して説明す
る。図1は、本発明の一実施例である気相成長装置の断
面図であり、図2は、図1のA−A線断面図である。
The present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a vapor phase growth apparatus which is an embodiment of the present invention, and FIG. 2 is a sectional view taken along line AA of FIG.

【0017】図1(図2)に示す気相成長装置は、縦型石
英反応管1内に石英管9によって支持されたカ−ボン製
サセプタ2を配置し、このサセプタ2上に基板3を載置
し、該基板3上に結晶薄膜を成長する気相成長装置であ
り、上記反応管1の中心を軸とした2個の円錐形状の原
料ガス吹き出し口、即ちホ−ン(A)7、同(B)8を備えた
装置である。
In the vapor phase growth apparatus shown in FIG. 1 (FIG. 2), a carbon susceptor 2 supported by a quartz tube 9 is arranged in a vertical quartz reaction tube 1, and a substrate 3 is placed on the susceptor 2. This is a vapor phase growth apparatus for mounting and growing a crystal thin film on the substrate 3, and two conical source gas outlets having the center of the reaction tube 1 as an axis, that is, a horn (A) 7 , (B) 8.

【0018】そして、反応管1の中心を軸とした2個の
同心円状開口部を有するホ−ン(A)7及びホ−ン(B)8の
うち、内側のホ−ン(A)7については、基板3に対する
開口端の距離を、図1に示すように外側のホ−ン(B)8
よりも遠ざけて配設し、この内側のホ−ン(A)7の開口
端中央部に、ホ−ン(A)7に支持された石英製のガス拡
散棒10を配置した構成を有する。
Of the horn (A) 7 and the horn (B) 8 having two concentric circular openings centered on the center of the reaction tube 1, the inner horn (A) 7 As for the distance between the open end and the substrate 3, as shown in FIG.
The quartz gas diffusion rod 10 supported by the horn (A) 7 is arranged at the center of the opening end of the horn (A) 7 inside the horn (A) 7.

【0019】更に、ホ−ン(A)7及びホ−ン(B)8には、
各別に原料ガスを導入する原料ガス導入口(A)5及び原
料ガス導入口(B)6を接続し、また、反応管1の上部
に、水素(H2)ガスのみを導入するキャリアガス導入口4
を配置した構成を有する。
Further, in the horn (A) 7 and the horn (B) 8,
A carrier gas introduction (A) 5 for introducing the raw material gas and a raw material gas introduction port (B) 6 are connected to each other, and a carrier gas for introducing only hydrogen (H 2 ) gas is provided above the reaction tube 1. Mouth 4
Is arranged.

【0020】上記気相成長装置を用いて基板3上に半導
体結晶を成長する際、原料ガス導入口(A)5にアルシン
(AsH3)、ホスフィン(PH3)のV族ガス及びシラン(SiH4)
のド−パント用ガスを供給する。一方、原料ガス導入口
(B)6にIII族の原料となる有機金属及びド−パント用の
有機金属を供給する。
When a semiconductor crystal is grown on the substrate 3 by using the above vapor phase growth apparatus, arsine is introduced into the source gas introduction port (A) 5.
(AsH 3 ), V group gas of phosphine (PH 3 ) and silane (SiH 4 )
Gas for the dopant is supplied. On the other hand, raw gas inlet
(B) 6 is fed with an organic metal as a Group III raw material and an organic metal for a dopant.

【0021】基板3を載置したサセプタ2は、成長する
半導体結晶の均一性を高めるため、回転数10〜20rpmで
回転させる。サセプタ2とホ−ン(B)8との距離は、600
〜700℃に加熱するサセプタ2からの輻射熱の影響を和
らげるため、3.5cm程度離して配設する。
The susceptor 2 on which the substrate 3 is placed is rotated at a rotation speed of 10 to 20 rpm in order to improve the uniformity of the growing semiconductor crystal. The distance between the susceptor 2 and the horn (B) 8 is 600
In order to mitigate the effect of radiant heat from the susceptor 2 which is heated to ˜700 ° C., they are placed about 3.5 cm apart.

【0022】拡散棒10は、その両先端の形状を円錐形と
し、拡散棒10の先端におけるガスの流れがスム−ズにな
るように構成されている。そして、この拡散棒10のサセ
プタ2側の先端は、ホ−ン(B)8の吹き出し口端から5m
mとする。
The diffusion rod 10 has a conical shape at both ends thereof, and is constructed so that the gas flow at the tip of the diffusion rod 10 becomes smooth. The tip of the diffusion rod 10 on the susceptor 2 side is 5 m from the end of the horn (B) 8 outlet.
m.

【0023】この拡散棒10の支持方法は、図2に示すよ
うに、ホ−ン(A)7の吹き出し口端から突出して形成し
た1ヵ所切り欠きのあるリング状の石英に、拡散棒10に
付けたノッチ101を掛けて支持する構造である。そし
て、拡散棒10の取り外しは、切り欠き部分に拡散棒10の
ノッチ101を通して行うように構成されている。
As shown in FIG. 2, the method for supporting the diffusing rod 10 is as follows. As shown in FIG. It is a structure that hangs and supports a notch 101 attached to. The diffusion rod 10 is removed by passing the notch 101 of the diffusion rod 10 through the notch.

【0024】上記構造の気相成長装置において、原料ガ
ス導入口(A)5から導入されたV族原料ガスは、ホ−ン
(A)7内に拡散棒10が配置されているため、この拡散棒1
0によって強制的に反応管1の外周側に広がり、ホ−ン
(A)7の吹き出し口端の幅で放出される。一方、原料ガ
ス導入口(B)6から導入されたIII族原料は、ホ−ン(A)
7の下端まで流れた後、ホ−ン(A)7からのV族原料と
共に基板3面上に到達する。
In the vapor phase growth apparatus having the above structure, the group V source gas introduced from the source gas inlet (A) 5 is horn.
(A) Since the diffusion rod 10 is placed inside 7, this diffusion rod 1
0 forcefully spreads to the outer peripheral side of the reaction tube 1 and
(A) It is discharged in the width of the end of the outlet of 7. On the other hand, the group III raw material introduced from the raw material gas inlet (B) 6 is the horn (A)
After flowing to the lower end of 7, the group V raw material from the horn (A) 7 reaches the surface of the substrate 3.

【0025】基板3面上に到達する間にV族原料とIII
族原料は互いに拡散するので、反応管1の中央部にもII
I族原料が廻り込み、これが基板中央部の成長に寄与す
ることになる。基板中央部への原料ガスの廻り込みは、
拡散棒10の基板3側の先端以後で生じるので、拡散棒10
の長さにより基板中央部の原料供給量、即ち結晶成長速
度を調整することができる。従って、半導体結晶の膜厚
分布の改善は、拡散棒10の長さの調整で行うことができ
る。
While reaching the surface of the substrate 3, the group V raw material and III
Since the group raw materials diffuse into each other, II also appears in the center of the reaction tube 1.
The group I raw material wraps around and contributes to the growth of the central part of the substrate. The flow of raw material gas into the center of the substrate is
Since it occurs after the tip of the diffusion rod 10 on the substrate 3 side, the diffusion rod 10
It is possible to adjust the amount of raw material supplied to the center of the substrate, that is, the crystal growth rate, by adjusting the length. Therefore, the thickness distribution of the semiconductor crystal can be improved by adjusting the length of the diffusion rod 10.

【0026】(半導体結晶の成長例)上記構造の気相成
長装置を用い、2インチのGaAs(100)基板上に(AlX
Ga1-X)0.5In0.5P(x=0.6)の半導体結晶の成長を
行った。
(Example of Semiconductor Crystal Growth) Using a vapor phase growth apparatus having the above structure, a 2 inch GaAs (100) substrate (Al X
A semiconductor crystal of Ga 1-x ) 0.5 In 0.5 P (x = 0.6) was grown.

【0027】ガス供給量は、 ・キャリアガス導入口4から供給するH2ガス:2.5 SL
M、 ・ガス導入口(B)6から供給する有機金属及びキャリア
ガスであるH2ガスのト−タル量:2.5 SLM、 ・ガス導入口(A)5から供給するV族原料及びH2ガスの
ト−タル量:1.5 SLM、 とした。
The gas supply amount is as follows: H 2 gas supplied from the carrier gas inlet 4: 2.5 SL
M, total amount of organic metal and carrier gas H 2 gas supplied from gas inlet (B) 6: 2.5 SLM, V group raw material and H 2 gas supplied from gas inlet (A) 5 Total amount of: 1.5 SLM.

【0028】反応管1の内圧を30Torrとし、成長温度を
650℃とした。III族原料は、トリエチルガリウム(TEG
a)、トリメチルアルミニウム(TMAl)、トリメチルインジ
ウム(TMIn)を用い、結晶成長時のIII族とV族原料の流
量比V/III=400とした。
The internal pressure of the reaction tube 1 is set to 30 Torr, and the growth temperature is
It was set to 650 ° C. Group III raw material is triethylgallium (TEG
a), trimethylaluminum (TMAl), and trimethylindium (TMIn) were used, and the flow rate ratio V / III = 400 of the group III and group V raw materials during crystal growth was set.

【0029】上記の条件で成長した(AlXGa1-X)0.5
In0.5P結晶の成長速度の基板半径方向の分布を図3
に示す。図3から明らかなように、成長速度の分布は、
5%以内に収まっている。
(Al x Ga 1 -x ) 0.5 grown under the above conditions
Figure 3 shows the distribution of the growth rate of In 0.5 P crystals in the radial direction of the substrate.
Shown in. As is clear from FIG. 3, the distribution of growth rate is
It is within 5%.

【0030】また、GaAs基板の格子定数をa0
し、基板と成長した半導体結晶との格子定数差を△aと
したとき、格子整合度△a/a0の基板半径方向の分布
を図4に示す。図4から明らかなように、基板半径方向
の分布の幅は、5×10-4以内であり、デバイス設計の点
から十分な値である。
When the lattice constant of the GaAs substrate is a 0 and the lattice constant difference between the substrate and the grown semiconductor crystal is Δa, the distribution of the lattice matching degree Δa / a 0 in the radial direction of the substrate is shown in FIG. Shown in. As is clear from FIG. 4, the width of the distribution in the radial direction of the substrate is within 5 × 10 −4, which is a sufficient value in terms of device design.

【0031】次に、キャリア濃度の分布であるが、p型
ド−パントとしてジメチルジンク(DMZn)を用い、III族
原料と共に原料ガス導入口(B)6から供給した。一方、
n型ド−パントとしてシラン(SiH4)を用い、V族原料と
共に原料ガス導入口(A)5から供給した。基板半径方向
の分布を図5に示す。図5から、p型、n型ともに10%
以下の分布である。
Next, regarding the carrier concentration distribution, dimethyl zinc (DMZn) was used as the p-type dopant and was supplied from the source gas inlet (B) 6 together with the Group III source. on the other hand,
Silane (SiH 4 ) was used as the n-type dopant and was supplied from the source gas introduction port (A) 5 together with the group V source material. The distribution in the radial direction of the substrate is shown in FIG. From Figure 5, 10% for both p-type and n-type
It has the following distribution.

【0032】(半導体レ−ザの製造)本発明の気相成長
装置を用いて図6に示す半導体レ−ザを製作した。半導
体レ−ザの構造は、図6に示す構成からなり、これはn
型GaAs(100)基板11上に、 ・n型GaAsバッファ層12、 ・n型(Al0.6Ga0.4)0.5In0.5Pクラッド層13、 ・アンド−プGa0.5In0.5P活性層14、 ・p型(Al0.6Ga0.4)0.5In0.5Pクラッド層15、 ・p型Ga0.5In0.5P層16、 ・n型GaAs電流ブロック層17、 を1回目の結晶成長で積層した。
(Manufacture of Semiconductor Laser) The semiconductor laser shown in FIG. 6 was manufactured using the vapor phase growth apparatus of the present invention. The structure of the semiconductor laser has the structure shown in FIG.
On the n-type GaAs (100) substrate 11, n-type GaAs buffer layer 12, n-type (Al 0.6 Ga 0.4 ) 0.5 In 0.5 P cladding layer 13, and und Ga 0.5 In 0.5 P active layer 14, A type (Al 0.6 Ga 0.4 ) 0.5 In 0.5 P clad layer 15, a p-type Ga 0.5 In 0.5 P layer 16, an n-type GaAs current blocking layer 17, were laminated by the first crystal growth.

【0033】次に、フォトリソグラフ法によりレジスト
マスクを形成し、n型GaAs電流ブロック層17にp型
Ga0.5In0.5P層16まで達するストライプを形成した
後、2回目の結晶成長によりp型GaAsキャップ層18
を成長した。続いて、電極19、20を形成し、半導体レ−
ザを製作した。
Next, a resist mask is formed by the photolithography method, a stripe reaching the p-type Ga 0.5 In 0.5 P layer 16 is formed in the n-type GaAs current blocking layer 17, and then p-type GaAs is formed by the second crystal growth. Cap layer 18
Grew up. Subsequently, the electrodes 19 and 20 are formed, and the semiconductor laser is formed.
I made The.

【0034】この半導体レ−ザの基板半径方向の発振し
きい電流の分布を図7に示す。図7から明らかなよう
に、基板中央部から半径20mmまで、発振しきい電流の
そろった半導体レ−ザが得られていることが理解でき
る。
FIG. 7 shows the distribution of the oscillation threshold current in the radial direction of the substrate of this semiconductor laser. As is apparent from FIG. 7, it can be understood that a semiconductor laser having a uniform oscillation threshold current is obtained from the center of the substrate to a radius of 20 mm.

【0035】以上の実施例では、本発明の気相成長装置
を用い、AlGaInP系半導体結晶を成長させる例に
ついて記載したが、他のIII-V族半導体結晶の場合でも
同様の効果があることは言うまでもない。
In the above embodiments, an example of growing an AlGaInP based semiconductor crystal using the vapor phase growth apparatus of the present invention is described, but the same effect is obtained even in the case of other III-V group semiconductor crystals. Needless to say.

【0036】[0036]

【発明の効果】以上説明したように本発明の気相成長装
置では、III族原料とV族原料を別々に反応管内に導入
することで、従来の気相成長装置で懸念された“流量制
御系から反応管までの間のIII族原料とV族原料との中
間反応”を防止し得る効果が生じる。
As described above, in the vapor phase growth apparatus of the present invention, by introducing the group III source material and the group V source material into the reaction tube separately, the "flow rate control" which has been a concern in the conventional vapor phase growth apparatus. This has the effect of preventing the "intermediate reaction between the group III raw material and the group V raw material" between the system and the reaction tube.

【0037】また、拡散棒を設けることにより、半導体
基板中央部への原料ガスの集中を防ぐことができ、それ
による基板中央部の温度低下がほぼなくなり、 ・成長する半導体結晶の成長速度の面内分布を5%以下
に、 ・格子整合度の面内分布を5×10-4以下に、 ・キャリア濃度分布を10%以下に、 することができる効果が生じる。
Further, by providing the diffusion rod, it is possible to prevent the source gas from concentrating in the central portion of the semiconductor substrate, so that the temperature drop in the central portion of the substrate is almost eliminated, and the growth rate of the growing semiconductor crystal is reduced. The effect is that the inner distribution can be set to 5% or less, the in-plane distribution of the lattice matching degree can be set to 5 × 10 −4 or less, and the carrier concentration distribution can be set to 10% or less.

【0038】そして、本発明の気相成長装置を用いて製
作したAlGaInP系半導体レ−ザの発振しきい電流
の基板面内の分布は、基板中央から半径約20mmまで、
ほぼ同じ値を示し、高歩留のデバイス製造が可能となる
効果が生じる。
The distribution of the oscillation threshold current of the AlGaInP type semiconductor laser manufactured by using the vapor phase growth apparatus of the present invention within the substrate surface is about 20 mm from the substrate center to a radius of about 20 mm.
The values are almost the same, and an effect that high-yield device manufacturing is possible is produced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例である気相成長装置の断面
図。
FIG. 1 is a sectional view of a vapor phase growth apparatus that is an embodiment of the present invention.

【図2】図1のA−A線断面図。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】本発明の気相成長装置を用いて成長させた(Al
0.6Ga0.4)0.5In0.5Pの成長速度の基板半径方向の分布
図。
FIG. 3 is a plan view of growing a layer using the vapor phase growth apparatus of the present invention (Al
Distribution diagram of the growth rate of 0.6 Ga 0.4 ) 0.5 In 0.5 P in the radial direction of the substrate.

【図4】本発明の気相成長装置を用いて成長させた(Al
0.6Ga0.4)0.5In0.5Pの格子整合度の基板半径方向の分布
図。
FIG. 4 is a plan view of growing a layer using the vapor phase growth apparatus of the present invention (Al
0.6 Ga 0.4 ) 0.5 In 0.5 P lattice matching distribution in the radial direction of the substrate.

【図5】本発明の気相成長装置を用いて成長させた(Al
0.6Ga0.4)0.5In0.5Pのp型、n型キャリア濃度の基板半
径方向の分布図。
FIG. 5 shows the case of growing using the vapor phase growth apparatus of the present invention (Al
0.6 Ga 0.4 ) 0.5 In 0.5 P p-type and n-type carrier concentration distribution diagram in the radial direction of the substrate.

【図6】本発明の気相成長装置を用いて成長させた半導
体レ−ザの断面図。
FIG. 6 is a sectional view of a semiconductor laser grown by using the vapor phase growth apparatus of the present invention.

【図7】半導体レ−ザの基板半径方向の発振しきい電流
の分布を示す図。
FIG. 7 is a diagram showing a distribution of an oscillation threshold current in a substrate radius direction of a semiconductor laser.

【図8】従来の気相成長装置の断面図。FIG. 8 is a sectional view of a conventional vapor phase growth apparatus.

【符号の説明】[Explanation of symbols]

1、81 反応管 2、82 サセプタ 3、83 基板 4、84 キャリアガス導入口 5、85 原料ガス導入口(A) 6、86 原料ガス導入口(B) 7、87 ホ−ン(A) 8、88 ホ−ン(B) 9 石英管 10 ガス拡散棒 11 n-GaAs基板 12 n-GaAsバッファ層 13 n-(Al0.6Ga0.4)0.5In0.5Pクラッド層 14 アンド−プGa0.5In0.5P活性層 15 p-(Al0.6Ga0.4)0.5In0.5Pクラッド層 16 p-Ga0.5In0.5P層 17 n-GaAs電流ブロック層 18 p-GaAsキャップ層 19 電極 20 電極 101 ノッチ1, 81 Reaction tube 2, 82 Susceptor 3, 83 Substrate 4, 84 Carrier gas inlet 5,85 Raw material gas inlet (A) 6, 86 Raw material gas inlet (B) 7, 87 Horn (A) 8 , 88 horn (B) 9 Quartz tube 10 Gas diffusion rod 11 n-GaAs substrate 12 n-GaAs buffer layer 13 n- (Al 0.6 Ga 0.4 ) 0.5 In 0.5 P Clad layer 14 And-Ga Ga 0.5 In 0.5 P Active layer 15 p- (Al 0.6 Ga 0.4 ) 0.5 In 0.5 P clad layer 16 p-Ga 0.5 In 0.5 P layer 17 n-GaAs current blocking layer 18 p-GaAs cap layer 19 electrode 20 electrode 101 notch

【手続補正書】[Procedure amendment]

【提出日】平成6年6月1日[Submission date] June 1, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Name of item to be amended] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【特許請求の範囲】[Claims]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 3個のガス導入口を有し、このうち2個
を原料ガス導入口とする縦型反応管内にサセプタを配
し、このサセプタ上に半導体基板を載置し、該基板上に
半導体結晶を成長する気相成長装置において、前記反応
管の中心を軸とした円錐形の原料ガス吹き出し口を同心
円状に2個備え、前記2個の原料ガス吹き出し口のうち
内側の原料ガス吹き出し口を前記サセプタから遠ざけ、
この内側の原料ガス吹き出し口の開口端中央部にガス拡
散棒を配設してなることを特徴とする気相成長装置。
1. A susceptor is disposed in a vertical reaction tube having three gas introduction ports, two of which are source gas introduction ports, and a semiconductor substrate is placed on the susceptor, and the susceptor is placed on the substrate. In the vapor phase growth apparatus for growing a semiconductor crystal, two conical source gas outlets concentric with the center of the reaction tube as an axis are provided, and the source gas inside the two source gas outlets is provided. Keep the air outlet away from the susceptor,
A vapor phase growth apparatus characterized in that a gas diffusion rod is arranged at the center of the opening end of the raw material gas outlet inside this.
JP18710593A 1993-06-30 1993-06-30 Vapor phase growth equipment Expired - Fee Related JP2500773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18710593A JP2500773B2 (en) 1993-06-30 1993-06-30 Vapor phase growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18710593A JP2500773B2 (en) 1993-06-30 1993-06-30 Vapor phase growth equipment

Publications (2)

Publication Number Publication Date
JPH0722323A true JPH0722323A (en) 1995-01-24
JP2500773B2 JP2500773B2 (en) 1996-05-29

Family

ID=16200195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18710593A Expired - Fee Related JP2500773B2 (en) 1993-06-30 1993-06-30 Vapor phase growth equipment

Country Status (1)

Country Link
JP (1) JP2500773B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013225684A (en) * 2013-06-11 2013-10-31 Tokyo Electron Ltd Gas supply device, processing apparatus and processing method
US20140209023A1 (en) * 2008-03-27 2014-07-31 Tokyo Electron Limited Gas supply device, processing apparatus, processing method, and storage medium
KR20140141701A (en) 2012-03-30 2014-12-10 도쿄엘렉트론가부시키가이샤 Film-forming apparatus
JP2017157678A (en) * 2016-03-01 2017-09-07 株式会社ニューフレアテクノロジー Deposition apparatus
JP2019057668A (en) * 2017-09-22 2019-04-11 株式会社東芝 Film deposition apparatus and film deposition method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140209023A1 (en) * 2008-03-27 2014-07-31 Tokyo Electron Limited Gas supply device, processing apparatus, processing method, and storage medium
KR20140141701A (en) 2012-03-30 2014-12-10 도쿄엘렉트론가부시키가이샤 Film-forming apparatus
US9441293B2 (en) 2012-03-30 2016-09-13 Tokyo Electron Limited Film-forming apparatus
JP2013225684A (en) * 2013-06-11 2013-10-31 Tokyo Electron Ltd Gas supply device, processing apparatus and processing method
JP2017157678A (en) * 2016-03-01 2017-09-07 株式会社ニューフレアテクノロジー Deposition apparatus
JP2019057668A (en) * 2017-09-22 2019-04-11 株式会社東芝 Film deposition apparatus and film deposition method

Also Published As

Publication number Publication date
JP2500773B2 (en) 1996-05-29

Similar Documents

Publication Publication Date Title
US5218216A (en) Gallium nitride group semiconductor and light emitting diode comprising it and the process of producing the same
EP0502209B1 (en) Method and apparatus for growing compound semiconductor crystals
JPH04364024A (en) Manufacture of semiconductor device
US4773355A (en) Growth of epitaxial films by chemical vapor deposition
JP2500773B2 (en) Vapor phase growth equipment
JPH0529218A (en) Organic metal molecular beam epitaxial growth method
JPH03263818A (en) Metal organic vapor growth apparatus
JPH1174202A (en) Vapor growth device of gallium nitride iii-v compound semiconductor and gallium nitride iii-v compound semiconductor device and its manufacture
JPH0296324A (en) Manufacture of semiconductor device and vapor growth device used for it
JPH0677136A (en) Method and device for vapor growing compound semiconductor thin film crystal
JPH11329980A (en) Organic metallic gaseous phase growing device and method therefor using the same
JPH0754802B2 (en) Vapor growth method of GaAs thin film
JP3035953B2 (en) (III)-(V) Group Compound Semiconductor Vapor Phase Growth Method
JP2004207545A (en) Semiconductor vapor phase growth system
JPS58223317A (en) Method and device for growing of compound semiconductor crystal
US6245144B1 (en) Doping control in selective area growth (SAG) of InP epitaxy in the fabrication of solid state semiconductor lasers
JPS612318A (en) Semiconductor growing device
JP2005085850A (en) Vapor phase epitaxial growth apparatus
JPH04338636A (en) Semiconductor vapor growth device
JPS6353160B2 (en)
JP3010739B2 (en) Method and apparatus for growing compound semiconductor crystal
JP2006093275A (en) Vapor phase epitaxial method
JP2004103713A (en) System for manufacturing semiconductor
JPH07122496A (en) Semiconductor thin film vapor growth equipment
JP2793239B2 (en) Method for manufacturing compound semiconductor thin film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees