JPH04219386A - Apparatus for production of silicon single crystal - Google Patents

Apparatus for production of silicon single crystal

Info

Publication number
JPH04219386A
JPH04219386A JP3075315A JP7531591A JPH04219386A JP H04219386 A JPH04219386 A JP H04219386A JP 3075315 A JP3075315 A JP 3075315A JP 7531591 A JP7531591 A JP 7531591A JP H04219386 A JPH04219386 A JP H04219386A
Authority
JP
Japan
Prior art keywords
single crystal
opening
silicon
heat
silicon single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3075315A
Other languages
Japanese (ja)
Other versions
JP2557003B2 (en
Inventor
Makoto Suzuki
真 鈴木
Yoshinobu Shima
島 芳延
Takeshi Kaneto
兼頭 武
Shuzo Fukuda
福田 脩三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP3075315A priority Critical patent/JP2557003B2/en
Publication of JPH04219386A publication Critical patent/JPH04219386A/en
Application granted granted Critical
Publication of JP2557003B2 publication Critical patent/JP2557003B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide the subject apparatus for production of a silicon single crystal. CONSTITUTION:An apparatus for production of a silicon single crystal 5 by Czochralski method, equipped with a fusion crucible 1 divided into a unit (C) for fusing a row material and a unit (D) for growth of the single crystal by a partition member 8 and with a heat-insulating cover 10 made of a metal plate and a thermoshielding member 12 made of a metal plate respectively covering the above-mentioned partition member 8. Both the heat-insulating cover and the thermoshielding member constitute a gas-circulating opening 21 for circulating an ambient gas and located at a position higher than an electrical resistance heater 3. There is no danger of generation of a coagulation at the partition member and SiO particles generated in an oven can be reduced. Thus the silicon single crystal can be stably produced over a long period.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、チョクラルスキー法に
よる大直径シリコン単結晶の製造装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for producing large diameter silicon single crystals using the Czochralski method.

【0002】0002

【従来の技術と課題】シリコン単結晶に要求される直径
は年々大径化する傾向にある。今日、最新鋭デバイスで
は直径6インチのシリコン単結晶が使われている。そし
て、将来直径10インチあるいはそれ以上のシリコン単
結晶が必要になるといわれている。
BACKGROUND OF THE INVENTION The diameter required for silicon single crystals tends to increase year by year. Today, cutting-edge devices use silicon single crystals that are 6 inches in diameter. It is said that silicon single crystals with a diameter of 10 inches or more will be needed in the future.

【0003】LSI分野で用いられるシリコン単結晶は
通常、回転している石英るつぼ内のシリコン溶融液に種
結晶を漬けてなじませた後、回転させながら徐々に引き
上げていく、チョクラルスキー法(CZ法)によって製
造されているが、このCZ法では、シリコン単結晶の成
長と共にるつぼ中のシリコン溶融液が減少する。従って
シリコン単結晶の成長とともにシリコン単結晶中のドー
パント濃度が上昇し、酸素濃度が低下する。即ち、シリ
コン単結晶の性質がその成長方向に変動する。LSIの
高密度化と共にシリコン単結晶に要求される品質が年々
厳しくなるのでこの問題は解決されなければならない。
Silicon single crystals used in the LSI field are usually manufactured using the Czochralski method (Czochralski method), in which a seed crystal is soaked in a silicon melt in a rotating quartz crucible and then gradually pulled up while rotating. In this CZ method, the silicon melt in the crucible decreases as the silicon single crystal grows. Therefore, as the silicon single crystal grows, the dopant concentration in the silicon single crystal increases and the oxygen concentration decreases. That is, the properties of the silicon single crystal vary in the direction of its growth. This problem must be solved because the quality required of silicon single crystals is becoming stricter year by year as the density of LSIs increases.

【0004】この問題を解決する手段として、CZ法の
石英るつぼ内をシリコン溶融液の小孔を有する円筒状の
石英製仕切り部材で仕切り、この仕切り部材の外側(原
料溶解部)に原料シリコンを供給しながら、仕切り部材
の内側(単結晶育成部)で円柱状のシリコン単結晶を育
成する方法が古くから知られている(例えば特公昭40
− 10184号公報、発明の詳細な説明、13行目か
ら28行目)。この方法の問題点は、特開昭62−24
1889号公報(2ページ、発明が解決しようとする問
題点、12行目から16行目)でも指摘している通り、
仕切り部材の内側で仕切り部材を起点としてシリコン溶
融液の凝固が発生しやすいことである。すなわち、結晶
育成部のシリコン溶融液液面と、仕切り部材と接触して
いる部分から凝固が発生する。この凝固は、温度の低い
るつぼ中央部に向かって成長し、シリコン単結晶の育成
を阻害する。この原因は仕切り部材として通常使用され
ている透明石英ガラスは熱線を貫通しやすく、しかも通
常の場合、仕切り部材上部のシリコン溶融液液面上に露
出している部分から、水冷された炉壁に対する放熱が大
きいため、シリコン溶融液中の熱は、仕切り部材中を上
方に伝達し、仕切り部材のシリコン溶融液面上に露出し
ている部分より放散される。従って仕切り部材近傍では
溶融液温度が大きく低下している。さらに、溶融液の強
い攪拌によって溶融液の表面温度は均一でしかも凝固温
度の直上になっている。このように仕切り部材に接触し
ている溶融液液面は非常に凝固が発生しやすい状態にな
っている。前記の特開昭62−241889号公報はこ
の問題を解決するため、仕切り部材を使用しない方法を
提案したものである。しかしこの方法は原料溶解部が狭
いため、とくに大直径のシリコン結晶を製造する場合、
シリコン単結晶の引上げ量に見合う原料シリコンを溶解
することが困難である。
As a means to solve this problem, the inside of the quartz crucible for the CZ method is partitioned with a cylindrical quartz partition member having small holes for the silicon melt, and the raw material silicon is placed outside of this partition member (raw material melting part). A method of growing a cylindrical silicon single crystal inside a partition member (single crystal growth section) while supplying the silicon has been known for a long time (for example,
- Publication No. 10184, Detailed Description of the Invention, lines 13 to 28). The problem with this method is that
As pointed out in Publication No. 1889 (page 2, problems to be solved by the invention, lines 12 to 16),
The silicon melt tends to solidify inside the partition member starting from the partition member. That is, solidification occurs from the surface of the silicon melt in the crystal growth section and the portion that is in contact with the partition member. This solidification grows toward the center of the crucible where the temperature is lower and inhibits the growth of silicon single crystals. The reason for this is that the transparent quartz glass normally used as a partition member is easily penetrated by hot rays, and in normal cases, the part exposed above the silicon melt surface at the top of the partition member is exposed to the water-cooled furnace wall. Since the heat radiation is large, the heat in the silicon melt is transmitted upward through the partition member and is radiated from the portion of the partition member exposed above the silicon melt surface. Therefore, the temperature of the molten liquid is greatly reduced near the partition member. Furthermore, due to strong stirring of the melt, the surface temperature of the melt is uniform and just above the solidification temperature. In this way, the surface of the molten liquid in contact with the partition member is in a state where solidification is very likely to occur. In order to solve this problem, the above-mentioned Japanese Patent Laid-Open No. 62-241889 proposes a method that does not use a partition member. However, this method has a narrow raw material melting zone, so it is especially difficult to manufacture silicon crystals with a large diameter.
It is difficult to melt enough raw material silicon to pull the silicon single crystal.

【0005】最近は、高品質の粒状シリコンが製造でき
るようになり、この粒状シリコンを原料シリコンとして
連続的にシリコン溶融液中に供給することは、比較的容
易であると考えられる。しかし、粒状シリコンがシリコ
ン溶融液液面に供給された際に、粒状シリコンに対して
十分な融解熱を与えられない場合には、粒状シリコンの
溶け残りが生じる可能性がある。そして粒状シリコンの
溶け残りから凝固が発生し拡大していくことが少くない
。これは、溶融液と粒状シリコンとの比重差のために、
固体の粒状シリコンが溶融液液面に浮かび、固体の方が
シリコン溶融液よりも放射率が大きいために熱が奪われ
やすくなるためである。特に、粒状シリコンが原料溶解
部のシリコン溶融液液面で仕切り部材に付着凝集した場
合には、前記の結晶育成部での凝固の場合と同じく、仕
切り部材を通して熱が急速に奪われるため、凝固の発生
・拡大が起こりやすい。この問題は、供給する原料シリ
コンが粒状以外の形態であっても本質的に変わるもので
はない。この問題に対して、特開昭61− 36197
号公報に示された方法では、原料溶解部の上に「熱絶縁
カバー」(特許請求の範囲第6項)を配置することによ
り、粒状シリコンの迅速な溶融を促進するようにしてい
る。
Recently, it has become possible to produce high-quality granular silicon, and it is considered relatively easy to continuously supply this granular silicon as raw material silicon into a silicon melt. However, if sufficient melting heat is not applied to the granular silicon when the granular silicon is supplied to the surface of the silicon melt, there is a possibility that the granular silicon remains undissolved. It is not rare for the undissolved particulate silicon to solidify and expand. This is due to the difference in specific gravity between the melt and the granular silicon.
This is because the solid granular silicon floats on the surface of the molten liquid, and because the solid has a higher emissivity than the silicon molten liquid, heat is easily removed. In particular, when granular silicon adheres to and aggregates on the partition member at the surface of the silicon melt in the raw material melting zone, heat is rapidly removed through the partition member, as in the case of solidification in the crystal growth zone, resulting in solidification. The occurrence and spread of this disease is likely to occur. This problem does not essentially change even if the raw material silicon to be supplied is in a form other than granular. Regarding this problem, Japanese Patent Application Laid-Open No. 61-36197
In the method disclosed in the publication, a "thermal insulation cover" (Claim 6) is disposed over the raw material melting section to promote rapid melting of the granular silicon.

【0006】仕切り部材を用い、かつ、それからの凝固
の発生を防止する方法を提案したものとして特開平 1
−153589号公報がある。この発明では仕切り部材
を保温カバーで完全に覆うことを提案している。この方
法により仕切り部材からの熱の放散は防止でき、従って
凝固の発生は防止できる。また、供給される原料シリコ
ンに対する溶解能力も十分にある。しかしシリコン単結
晶の育成を安定して行うには、この発明では不十分であ
ることがわかった。
[0006] Japanese Patent Application Laid-Open No. 1999-1992 proposes a method of using a partition member and preventing the occurrence of coagulation therefrom.
There is a publication No.-153589. This invention proposes to completely cover the partition member with a heat retaining cover. By this method, dissipation of heat from the partition member can be prevented, and therefore the occurrence of coagulation can be prevented. Furthermore, it has sufficient ability to dissolve the supplied raw material silicon. However, it has been found that this invention is insufficient for stable growth of silicon single crystals.

【0007】発明者らが種々検討したところ、特開平 
1−153589号公報で示された方法でシリコン単結
晶の育成を安定してできないのは、炉内の雰囲気ガス(
アルゴンガス)の流れが適切でないからであることが判
明した。 図11を用いてこのことを詳述する。特開平 1−15
3589号に示された方法では、保温カバー10が設置
されているために、雰囲気ガスの流れは図11中Bの様
になる。 即ち、引き上げチャンバー15内で炉内に導入された雰
囲気ガスのほとんどが保温カバー10下端とシリコン溶
融液7液面の間隙18、保温カバー10と仕切り部材8
の間隙、次いで石英るつぼ1ならびに黒鉛るつぼ2の上
端部に形成されている間隙、さらに、電気抵抗加熱体3
と黒鉛るつぼ2の間、または電気抵抗加熱体3と断熱材
6の間を通り、炉底より排出される。雰囲気ガスはおよ
そ室温であるため、シリコン溶融液液面近傍を通過する
際、シリコン溶融液液面より蒸発したSiO蒸気と混合
し、それを冷却する。この結果、シリコン溶融液液面近
傍でSiO微粒子が発生する。この微粒子が凝集してシ
リコン溶融液液面上に落下し、シリコン単結晶5の凝固
界面に付着する。これにより転位が発生しシリコン単結
晶が崩れる。炉内の圧力が大気圧(1気圧)の場合には
多少のSiO微粒子が発生しても落下する可能性は少い
。これは、SiO微粒子が雰囲気ガスの強い流れに乗っ
て排出されるからである。しかし、本発明のような、大
直径のシリコン単結晶を長時間にわたり育成することを
前提とした炉では、炉の内壁へのSiO微粒子の付着を
低減するため、また、炉内のカーボン材から発生した炭
素がシリコン単結晶に混入するのを防ぐため、炉内圧は
0.01乃至0.1気圧に減圧されている。従って、発
生したSiO微粒子は非常に落下しやすい。
[0007] After various studies, the inventors found that
The reason why silicon single crystals cannot be stably grown using the method disclosed in Publication No. 1-153589 is that the atmospheric gas in the furnace (
It turned out that this was due to an inappropriate flow of argon gas. This will be explained in detail using FIG. 11. Unexamined Patent Publication 1-15
In the method shown in No. 3589, since the heat insulating cover 10 is installed, the flow of atmospheric gas becomes as shown in B in FIG. That is, most of the atmospheric gas introduced into the furnace in the pulling chamber 15 is distributed between the lower end of the heat insulating cover 10 and the liquid surface 18 of the silicon melt 7, and between the heat insulating cover 10 and the partition member 8.
The gap, then the gap formed at the upper end of the quartz crucible 1 and the graphite crucible 2, and then the electric resistance heating element 3.
and the graphite crucible 2, or between the electric resistance heating element 3 and the heat insulating material 6, and is discharged from the bottom of the furnace. Since the atmospheric gas is at approximately room temperature, when passing near the silicon melt surface, it mixes with SiO vapor evaporated from the silicon melt surface and cools it. As a result, SiO fine particles are generated near the surface of the silicon melt. These fine particles aggregate and fall onto the surface of the silicon melt, and adhere to the solidification interface of the silicon single crystal 5. This causes dislocations and collapses the silicon single crystal. When the pressure inside the furnace is atmospheric pressure (1 atm), even if some SiO fine particles are generated, there is little possibility that they will fall. This is because the SiO fine particles are discharged along with the strong flow of atmospheric gas. However, in a furnace such as the present invention, which is designed to grow large-diameter silicon single crystals over a long period of time, in order to reduce the adhesion of SiO fine particles to the inner wall of the furnace, it is necessary to In order to prevent the generated carbon from being mixed into the silicon single crystal, the pressure inside the furnace is reduced to 0.01 to 0.1 atm. Therefore, the generated SiO fine particles are very likely to fall.

【0008】一方、特開昭61− 36197号公報に
示された方法では、原料溶解部を覆う形で「熱絶縁カバ
ー」が設けられているが、仕切り部材内側からの凝固の
発生に対しては対策が取られておらず、これを防止でき
ないという欠点があり実用化は難しい。
On the other hand, in the method disclosed in Japanese Patent Application Laid-Open No. 61-36197, a "thermal insulation cover" is provided to cover the raw material melting section, but this prevents solidification from occurring from inside the partition member. No countermeasures have been taken to prevent this, and it is difficult to put it into practical use.

【0009】この発明はかかる事情に鑑みてなされたも
のであって、仕切り部材からの凝固発生を防止し、かつ
、雰囲気中のSiO粒子のシリコン融液液面上への落下
を低減して、長時間にわたり安定してシリコン単結晶が
育成されるシリコン単結晶の製造装置を提供することを
目的とする。
The present invention has been made in view of the above circumstances, and it is possible to prevent the occurrence of solidification from the partition member, and to reduce the fall of SiO particles in the atmosphere onto the surface of the silicon melt. An object of the present invention is to provide a silicon single crystal manufacturing device that can stably grow silicon single crystals over a long period of time.

【0010】0010

【課題を解決するための手段】上記目的を達成するため
に、本発明のシリコン単結晶の製造装置は、シリコン溶
融液を収容する石英るつぼと、前記石英るつぼを側面か
ら加熱する電気抵抗加熱体と、前記石英るつぼ内でシリ
コン溶融液を単結晶育成部と原料溶解部とに分割しかつ
該シリコン溶融液が流通できる小孔を有する石英製仕切
り部材と、前記仕切り部材と前記原料溶解部を覆いその
上部に開口部を有する保温カバーと、前記原料溶解部に
原料シリコンを連続供給する原料供給装置と、炉内の圧
力を0.1気圧以下に減圧する減圧装置とを有するシリ
コン単結晶製造装置において、前記保温カバーの開口部
と金属板からなる熱遮蔽部材を前記加熱体の上端部より
高い位置に設け、前記熱遮蔽部材と保温カバーで形成さ
れるガス通流口の断面積が、保温カバー下端とシリコン
溶融液液面との間に形成される間隙よりも大きくなるよ
うに、上記熱遮蔽部材を上記開口部の上方もしくは下方
に設けることを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the silicon single crystal production apparatus of the present invention includes a quartz crucible containing a silicon melt, and an electric resistance heating element that heats the quartz crucible from the side. a quartz partition member that divides the silicon melt into a single crystal growth section and a raw material melting section in the quartz crucible and has a small hole through which the silicon melt can flow; Silicon single crystal manufacturing comprising: a heat insulating cover having an opening at the top; a raw material supply device that continuously supplies raw silicon to the raw material melting section; and a pressure reducing device that reduces the pressure in the furnace to 0.1 atmosphere or less. In the apparatus, a heat shielding member made of an opening of the heat insulating cover and a metal plate is provided at a position higher than the upper end of the heating body, and a cross-sectional area of a gas flow opening formed by the heat shielding member and the heat insulating cover is The heat shielding member is provided above or below the opening so as to be larger than the gap formed between the lower end of the heat insulating cover and the surface of the silicon melt.

【0011】上記熱遮蔽部材は、上記保温カバーの開口
部の上方または下方に設けて、熱遮蔽部材と保温カバー
で形成される開口部は炉の中心部に向かって開口されて
ある。これによって、炉内の大部分のガス流は液面の近
傍を通過せずに炉底から排出される。また、炉内ガス流
れの乱れをさらに抑えるため、熱遮蔽部材は、開口部に
おいて互いに平行な複数の金属板で構成されたものであ
ることが好ましい。
The heat shielding member is provided above or below the opening of the heat insulating cover, and the opening formed by the heat shielding member and the heat insulating cover opens toward the center of the furnace. As a result, most of the gas flow within the furnace is discharged from the bottom of the furnace without passing near the liquid level. Furthermore, in order to further suppress disturbances in the gas flow within the furnace, it is preferable that the heat shielding member is composed of a plurality of metal plates that are parallel to each other at the opening.

【0012】上記ガス通流口は、保温カバーの開口部に
対応した数が、炉の中央に向かって開口された円弧状に
設けられる。ガス通流口の幅は、炉内の構成と実用性を
考慮して、2乃至8cmとすることが望ましい。
[0012] The gas flow ports are provided in a circular arc shape opening toward the center of the furnace, the number of which corresponds to the openings of the heat insulating cover. The width of the gas flow port is preferably 2 to 8 cm, taking into consideration the internal configuration of the furnace and practicality.

【0013】[0013]

【作用】雰囲気ガスの大部分は炉内上部から開口部を通
り、シリコンるつぼと炉壁(19)の間を通って炉底部
の方へ流れ、炉外へ排出されるので、シリコン溶融液液
近傍の流れは、本発明の方法では、ほとんど生じない。 このような流れになるためには、保温材の開口部の高さ
はなるべく上の方、少くとも電気抵抗加熱体の上端部よ
り上が望ましい。また、開口部はガス流れの点からは大
きければ大きいほどよい。しかし、保温カバー10の本
来の目的にとっては大きな開口部の存在は望ましくない
。即ち、仕切り部材からの凝固を防止するという保温カ
バーの目的が損なわれるおそれがあるほか、特に、開口
部が原料溶解部の上方にある場合には、供給される原料
シリコンが速やかに溶融できなくなり、固体状態のまま
、やがて仕切り部材外側に堆積してしまう可能性がある
。開口部がある場合、シリコン溶融液液面は炉上方の水
冷された炉壁19と向かい合うことになるわけで、この
現象は極めて起こりやすい。特に、育成するシリコン単
結晶が大直径になり、あるいは、シリコン単結晶の引き
上げ速度が向上して、シリコン単結晶の引き上げ量が増
大し、それに見合う量の原料シリコンを供給しなければ
ならなくなると、この問題は極めて重要になる。
[Operation] Most of the atmospheric gas flows from the upper part of the furnace through the opening, passes between the silicon crucible and the furnace wall (19), flows toward the bottom of the furnace, and is discharged outside the furnace. Neighborhood flow is almost non-existent with the method of the invention. In order to achieve this flow, it is desirable that the height of the opening of the heat insulating material be as high as possible, at least above the upper end of the electrical resistance heating element. Further, from the viewpoint of gas flow, the larger the opening, the better. However, the presence of a large opening is not desirable for the original purpose of the heat retaining cover 10. In other words, there is a risk that the purpose of the heat insulating cover to prevent solidification from the partition member will be lost, and in particular, if the opening is located above the raw material melting section, the supplied raw material silicon will not be able to melt quickly. , there is a possibility that it will eventually accumulate on the outside of the partition member while remaining in a solid state. If there is an opening, the silicon melt surface will face the water-cooled furnace wall 19 above the furnace, and this phenomenon is extremely likely to occur. In particular, if the silicon single crystal to be grown becomes larger in diameter or the pulling speed of the silicon single crystal increases, the amount of silicon single crystal pulled increases, and it becomes necessary to supply a commensurate amount of raw silicon. , this issue becomes extremely important.

【0014】そこで本発明では、開口部11の上方もし
くは下方に熱遮蔽部材を設ける。この熱遮蔽部材は雰囲
気ガスの流れを妨げないような形状にする。こうして、
ガス流れに必要な開口部の大きさを確保しつつ、さらに
その開口部を覆う熱遮蔽部材を付加することにより、保
温カバーの本来の目的をも満足させることができる。
Therefore, in the present invention, a heat shielding member is provided above or below the opening 11. This heat shielding member is shaped so as not to obstruct the flow of atmospheric gas. thus,
By ensuring the size of the opening necessary for gas flow and further adding a heat shielding member to cover the opening, the original purpose of the heat insulating cover can be satisfied.

【0015】本発明は、該熱遮蔽部材を金属板により構
成することを特徴とする。この理由は次の通りである。 シリコン単結晶炉の炉内構成部品の材料として一般的に
用いられる黒鉛は、輻射率が大きいために、熱遮蔽効果
が小さく、場合によっては、むしろシリコン溶融液液面
からの放熱を促進してしまう可能性もある。金属板は輻
射率が小さいために、熱遮蔽効果が大きく、熱遮蔽部材
の使用目的によく合致している。
[0015] The present invention is characterized in that the heat shielding member is made of a metal plate. The reason for this is as follows. Graphite, which is commonly used as a material for the internal components of silicon single-crystal furnaces, has a high emissivity, so it has a small heat shielding effect, and in some cases, it may actually promote heat dissipation from the surface of the silicon melt. There is a possibility that it will go away. Since the metal plate has a low emissivity, it has a large heat shielding effect and is well suited for the purpose of use as a heat shield member.

【0016】さらに本発明は、保温カバーを金属板で構
成することを特徴とする。この理由は、保温カバーの材
料として黒鉛、セラミックスなどいろいろ考えられるが
、金属が保温効果が大きいからである。前記熱遮蔽部材
を設けたとしても、開口部を設けたことによる保温カバ
ーの保温効果の低下を避けることはできない。保温カバ
ーを金属で構成することにより、この保温効果の低下を
極力小さくすることができる。これによって、大直径の
シリコン単結晶を高速で引き上げる場合にも、仕切り部
材からの凝固や原料溶解部での供給原料の溶け残りを生
じることなく、安定した引き上げ操業が可能になる。
Furthermore, the present invention is characterized in that the heat insulating cover is made of a metal plate. The reason for this is that although various materials such as graphite and ceramics can be considered for the heat insulating cover, metal has a greater heat insulating effect. Even if the heat shielding member is provided, it is impossible to avoid a decrease in the heat retaining effect of the heat retaining cover due to the provision of the opening. By constructing the heat retaining cover from metal, this decrease in the heat retaining effect can be minimized as much as possible. As a result, even when pulling a large-diameter silicon single crystal at high speed, stable pulling operation is possible without solidification from the partition member or undissolved raw material remaining in the raw material melting section.

【0017】[0017]

【実施例】本発明による実施例を添付の図面を参照しな
がら詳細に説明する。図1は本実施例のシリコン単結晶
の製造装置を模式的に示した縦断面図である。図中、1
は石英るつぼ(直径20インチ)で、黒鉛るつぼ2によ
り支持されており、黒鉛るつぼ2はペデスタル4上に回
転可能な機構で支持されている。7はるつぼ1内に入れ
られたシリコン溶融液で、これから円柱状に育成された
シリコン単結晶5が引き上げられる。この実施例では、
シリコン単結晶の直径は6インチ、引き上げ速度は平均
毎分1.6mmである。3は黒鉛るつぼ2を取り囲む電
気抵抗加熱体、6はこの電気抵抗加熱体3を取り囲む断
熱材であり、これらはすべて炉壁13で囲まれたチャン
バーに収容されている。雰囲気ガス(アルゴンガス)は
引き上げチャンバー15の上方に設けられたガス流入口
(図示せず)から炉内に導入され炉底部にある排出口1
4から減圧装置20により排出される。炉内の圧力は0
.03気圧である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a vertical cross-sectional view schematically showing the silicon single crystal manufacturing apparatus of this example. In the figure, 1
is a quartz crucible (20 inches in diameter) supported by a graphite crucible 2, which is supported on a pedestal 4 by a rotatable mechanism. 7 is a silicon melt placed in the crucible 1, from which a silicon single crystal 5 grown in a cylindrical shape is pulled. In this example,
The diameter of the silicon single crystal is 6 inches, and the average pulling speed is 1.6 mm per minute. 3 is an electric resistance heating element surrounding the graphite crucible 2; 6 is a heat insulating material surrounding the electric resistance heating element 3; all of these are housed in a chamber surrounded by a furnace wall 13. Atmospheric gas (argon gas) is introduced into the furnace from a gas inlet (not shown) provided above the pulling chamber 15, and is introduced into the furnace through an exhaust port 1 located at the bottom of the furnace.
4 is discharged by a pressure reducing device 20. The pressure inside the furnace is 0
.. The pressure is 0.03 atm.

【0018】8は高純度石英ガラスからなり、るつぼ1
内にるつぼ1と同心に設けられた仕切り部材である。こ
の仕切り部材8には小孔9があけられており、原料溶解
部C(仕切り部材8より外側)のシリコン溶融液はこの
小孔9を通って単結晶育成部D(仕切り部材8より内側
)に流入する。この仕切り部材8の上縁部はシリコン溶
融液7の液面よりも上に露出しており、下縁部は石英る
つぼ1と予め融着されているか、もしくは初期に原料シ
リコンを溶解してシリコン溶融液7を作る際の熱によっ
て融着している。原料溶解部Cには、粒状シリコンが原
料供給チャンバー16から切り出し装置(図示せず)を
経由して、原料供給管17に導かれて連続的に供給され
る。供給量は、単結晶育成部Dからのシリコン単結晶引
き上げ量と等しい毎分約70gで一定である。
8 is made of high-purity quartz glass, and crucible 1
It is a partition member provided concentrically with the crucible 1 inside. A small hole 9 is bored in this partition member 8, and the silicon melt in the raw material melting section C (outside the partition member 8) passes through the small hole 9 into the single crystal growth section D (inside the partition member 8). flows into. The upper edge of this partition member 8 is exposed above the liquid level of the silicon melt 7, and the lower edge is either fused to the quartz crucible 1 in advance or made by melting the raw material silicon in the initial stage. They are fused together by the heat generated when the melt 7 is created. Particulate silicon is continuously supplied to the raw material melting section C from a raw material supply chamber 16 via a cutting device (not shown) and guided to a raw material supply pipe 17 . The supply amount is constant at approximately 70 g per minute, which is equal to the amount of silicon single crystal pulled from the single crystal growth section D.

【0019】10は保温カバーであり、板厚0.2mm
のタンタル板で構成されている。11が保温カバー10
にあけられた開口部で、図4に示すように保温カバーの
上部4か所にあけられており、保温カバー全周のおよそ
80パーセントが開口部11に相当している。これらの
開口部11の上方には、図5に示すように、原料供給管
17の導入位置を除いて、同じくタンタル板で構成され
た熱遮蔽部材12が載っており、外周側では保温カバー
10と熱遮蔽部材12との間はほぼ閉じているが、内周
側では高さ方向に5cmの幅で開いている。これによっ
て形成される炉内雰囲気ガスの通流口21の面積は、保
温カバー10の下端と単結晶育成部Dのシリコン溶融液
液面との間隙18の全周の面積よりも十分大きいので、
雰囲気ガスのほとんどが図8に示す流路Aをたどること
になる。図8は図1に示すシリコン単結晶の製造装置を
中心線で区切った部分的な図で、雰囲気ガスの流れを示
す。
[0019] 10 is a heat insulating cover, and the plate thickness is 0.2 mm.
It is made of tantalum plate. 11 is the thermal cover 10
As shown in FIG. 4, there are four openings in the upper part of the heat retaining cover, and approximately 80% of the entire circumference of the heat retaining cover corresponds to the openings 11. As shown in FIG. 5, above these openings 11, except for the introduction position of the raw material supply pipe 17, a heat shielding member 12 made of a tantalum plate is placed, and a heat insulation cover 10 is placed on the outer peripheral side. The space between the heat shielding member 12 and the heat shielding member 12 is almost closed, but there is a width of 5 cm in the height direction on the inner circumferential side. The area of the passage port 21 for the furnace atmosphere gas thus formed is sufficiently larger than the area of the entire circumference of the gap 18 between the lower end of the heat insulating cover 10 and the surface of the silicon melt in the single crystal growth section D.
Most of the atmospheric gas follows the flow path A shown in FIG. FIG. 8 is a partial diagram of the silicon single crystal production apparatus shown in FIG. 1 divided by a center line, and shows the flow of atmospheric gas.

【0020】なお、後述する図2、図3に対応する図9
、図10についても中心線で区切った部分的な図を示し
ている。
Note that FIG. 9 corresponds to FIGS. 2 and 3, which will be described later.
, FIG. 10 also shows a partial view separated by the center line.

【0021】雰囲気ガスは、図8に模式的に示すように
、炉中心・上方の引き上げチャンバー15から下方に向
かって流れ出し、炉上部の空間で、周辺側に向かって拡
がるように流れて、保温カバー10の開口部11から炉
底部へ向かって吸引されるので、このガス流れを乱さな
いよう、少くとも保温カバー10の炉内周側では保温カ
バー10と熱遮蔽部材12とを2cm以上8cm以下離
して、ガスの流路を確保する。ガス流路の確保という観
点からは、保温カバー10と熱遮蔽部材12との間隔は
広ければ広いほどよい。しかし、開口部11の幅よりも
大幅に広くすることは実用上は好ましくない。
As schematically shown in FIG. 8, the atmospheric gas flows downward from the pulling chamber 15 located at the center and upper part of the furnace, and spreads toward the periphery in the space above the furnace to maintain heat. Since the gas is sucked from the opening 11 of the cover 10 toward the bottom of the furnace, in order not to disturb this gas flow, the distance between the heat insulating cover 10 and the heat shielding member 12 is set at least 2 cm or more and 8 cm or less on the inner peripheral side of the furnace of the heat insulating cover 10. Separate them to ensure a gas flow path. From the viewpoint of ensuring a gas flow path, the wider the distance between the heat retaining cover 10 and the heat shielding member 12, the better. However, it is not practically preferable to make the width significantly wider than the width of the opening 11.

【0022】熱遮蔽部材12を使用しない場合には、シ
リコン単結晶引き上げ中に原料溶解部Cでの粒状シリコ
ンの溶け残り・凝固が発生し、しばしば粒状シリコンの
供給ができなくなってシリコン単結晶の育成に対しても
大きな阻害要因となったが、熱遮蔽部材12の使用によ
り、このような現象は起こらなくなった。
If the heat shielding member 12 is not used, granular silicon remains undissolved or solidified in the raw material melting section C during silicon single crystal pulling, and granular silicon often cannot be supplied and the silicon single crystal is Although this was a major impediment to growth, by using the heat shielding member 12, this phenomenon no longer occurs.

【0023】本実施例では開口部は4か所であるが、開
口部の数には特に制限はない。しかし、シリコン単結晶
の育成の安定化には、炉内の熱環境の対称性を良くする
ことが望ましく、そうした点から、1か所より2か所以
上の方が望ましい。
Although there are four openings in this embodiment, there is no particular restriction on the number of openings. However, in order to stabilize the growth of silicon single crystals, it is desirable to improve the symmetry of the thermal environment within the furnace, and from this point of view, it is more desirable to have two or more locations than one location.

【0024】図2は他の実施例を模式的に示したシリコ
ン単結晶の製造装置の縦断面図である。図面の説明は上
記図1と同じである。ただし、図1と異なるところは、
熱遮蔽部材12が保温カバー12のの開口部11の下方
に、開口部11から懸垂支持されて設置されている点で
、その他は図1と同じである。この場合の保温カバー1
0は図4に示されている通りで、熱遮蔽部材12の斜視
図は図6に示す通りである。雰囲気ガスの流路は図9の
通り、流路Aをたどることになる。
FIG. 2 is a vertical cross-sectional view of a silicon single crystal manufacturing apparatus schematically showing another embodiment. The explanation of the drawings is the same as that of FIG. 1 above. However, the differences from Figure 1 are as follows.
The rest is the same as in FIG. 1 except that the heat shielding member 12 is installed below the opening 11 of the heat insulating cover 12 and is suspended from the opening 11. Thermal cover 1 in this case
0 is as shown in FIG. 4, and a perspective view of the heat shielding member 12 is as shown in FIG. The flow path of the atmospheric gas follows the flow path A as shown in FIG.

【0025】図3は上記と別の実施例を模式的に示した
シリコン単結晶の製造装置の縦断面図である。図面の説
明は上記図1の場合と同様である。ただし、図1と異な
るところは、熱遮蔽部材12が互いに平行な金属板で構
成されている点で、その他は図1と同じである。この場
合のほ保温カバー10は図4に示されている通りで、熱
遮蔽部材12の斜視図は図7に示す通りである。雰囲気
ガスの流路は図10に示す通り、流路Aをたどることに
なる。この場合はガス通流口21において複数の流路に
分かれ、ガス流れの乱れが少なくなる。なお、本実施例
の図7は熱遮蔽部材12が保温カバー10の上に載って
いる場合であるが、これに対して保温カバーの下に熱遮
蔽部材12を設けることも可能である。
FIG. 3 is a longitudinal sectional view of a silicon single crystal manufacturing apparatus schematically showing another embodiment of the present invention. The explanation of the drawings is the same as in the case of FIG. 1 above. However, the difference from FIG. 1 is that the heat shielding member 12 is composed of metal plates parallel to each other, and the other points are the same as FIG. 1. The heat retaining cover 10 in this case is as shown in FIG. 4, and a perspective view of the heat shielding member 12 is as shown in FIG. The flow path of the atmospheric gas follows the flow path A as shown in FIG. In this case, the gas flow path is divided into a plurality of flow paths at the gas flow port 21, and turbulence in the gas flow is reduced. Although FIG. 7 of this embodiment shows a case where the heat shielding member 12 is placed on the heat retaining cover 10, it is also possible to provide the heat shielding member 12 under the heat retaining cover.

【0026】次に、保温カバー10と熱遮蔽部材12に
よって構成される開口部の幅を2cm以上で8cm以下
と規定する理由を以下に述べる。
Next, the reason why the width of the opening formed by the heat insulating cover 10 and the heat shielding member 12 is specified to be 2 cm or more and 8 cm or less will be described below.

【0027】保温カバー10の下端とシリコン溶融液液
面との間に形成される隙間(流路B)を通る雰囲気ガス
はわずかなものとし、大部分の雰囲気ガスが図8、図9
または図10に示す流路Aを通るようにするためには、
前記流路Aでガスが通過する間隙の面積を、流路Bにガ
スが通過する間隙の面積よりも大きくしなければならな
い。保温カバー10の下端はシリコン溶融液液面よりも
通常1.5ないし2cm上方にあるので、開口部11が
保温カバー10の全周にわたって形成されている場合で
も、雰囲気ガスの流路としてこれを上回る2cm以上の
間隙を確保しなければならないのである。上限を8cm
としたのは実用性を考慮したものである。
It is assumed that only a small amount of atmospheric gas passes through the gap (flow path B) formed between the lower end of the heat-insulating cover 10 and the surface of the silicon melt, and most of the atmospheric gas is as shown in FIGS.
Or in order to pass through the flow path A shown in FIG.
The area of the gap through which the gas passes in the flow path A must be larger than the area of the gap through which the gas passes through the flow path B. Since the lower end of the heat insulating cover 10 is normally located 1.5 to 2 cm above the silicon melt level, even if the opening 11 is formed around the entire circumference of the heat insulating cover 10, this can be used as a flow path for atmospheric gas. A gap of at least 2 cm must be secured. Upper limit 8cm
This was done with practicality in mind.

【0028】以上のような本実施例のシリコン単結晶製
造装置により、シリコン溶融液面直上の低温のガス流れ
はほとんどなくなり、SiO微粒子の発生及び単結晶育
成部へのシリコン溶融液液面へのSiO微粒子の落下が
抑えられ、シリコン単結晶の崩れを大幅に低減できた。 さらに、熱遮蔽効果の向上により、シリコン溶融液液面
上の仕切り部材からの凝固は発生せず、かつ、供給する
原料シリコンを安定して溶解することができるようにな
った。これにより、シリコン単結晶引き上げ量に見合う
量の原料シリコンを供給しながら、直径5インチ以上の
大直径のシリコン単結晶を引き上げ速度毎分約1.6m
mの高速引き上げで安定して製造できるようになった。
With the silicon single crystal production apparatus of this embodiment as described above, the flow of low-temperature gas directly above the silicon melt surface is almost eliminated, and the generation of SiO fine particles and the flow to the silicon melt surface in the single crystal growth area are prevented. The falling of SiO fine particles was suppressed, and the collapse of the silicon single crystal was significantly reduced. Furthermore, due to the improved heat shielding effect, solidification from the partition member on the surface of the silicon melt does not occur, and the raw material silicon to be supplied can now be stably melted. As a result, silicon single crystals with a large diameter of 5 inches or more can be pulled at a speed of approximately 1.6 m/min while supplying raw silicon in an amount commensurate with the amount of silicon single crystal pulled.
Stable production is now possible with high-speed pulling of m.

【0029】[0029]

【発明の効果】本発明のシリコン単結晶製造装置によれ
ば、雰囲気ガスをが通流する通流口を金属板である保温
カバーと熱遮蔽部材で構成し、前記通流口の断面積が、
シリコン融液面上方を通る流路の断面積より大きくして
あるので、シリコン単結晶の育成を長時間にわたり安定
して実現することができる。
Effects of the Invention According to the silicon single crystal manufacturing apparatus of the present invention, the communication port through which atmospheric gas flows is constituted by a heat insulating cover made of a metal plate and a heat shielding member, and the cross-sectional area of the communication port is ,
Since the cross-sectional area is larger than the cross-sectional area of the flow path passing above the surface of the silicon melt, it is possible to stably grow a silicon single crystal over a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本実施例のシリコン単結晶製造装置を示す縦断
面図である。
FIG. 1 is a longitudinal cross-sectional view showing a silicon single crystal manufacturing apparatus of this embodiment.

【図2】異なる実施例のシリコン単結晶製造装置を示す
縦断面図である。
FIG. 2 is a longitudinal sectional view showing a silicon single crystal manufacturing apparatus of a different embodiment.

【図3】さらに別の実施例のシリコン単結晶製造装置を
示す縦断面図である。
FIG. 3 is a longitudinal sectional view showing a silicon single crystal manufacturing apparatus according to yet another embodiment.

【図4】本実施例の保温カバーの斜視図である。FIG. 4 is a perspective view of the heat retaining cover of this embodiment.

【図5】図1に示す保温カバー開口部および熱遮蔽部材
の斜視図である。
5 is a perspective view of the heat insulation cover opening and the heat shielding member shown in FIG. 1. FIG.

【図6】図2に示す保温カバー開口部および熱遮蔽部材
の斜視図である。
6 is a perspective view of the heat insulation cover opening and the heat shielding member shown in FIG. 2. FIG.

【図7】図3に示す保温カバー開口部および熱遮蔽部材
の斜視図である。
7 is a perspective view of the heat insulation cover opening and the heat shielding member shown in FIG. 3. FIG.

【図8】図1の実施例でのガス流れの模式図である。FIG. 8 is a schematic diagram of gas flow in the embodiment of FIG. 1;

【図9】図2の実施例でのガス流れの模式図である。FIG. 9 is a schematic diagram of gas flow in the embodiment of FIG. 2;

【図10】図3の実施例でのガス流れの模式図である。FIG. 10 is a schematic diagram of gas flow in the embodiment of FIG. 3;

【図11】従来技術のガス流れの模式図であるである。FIG. 11 is a schematic diagram of gas flow in the prior art.

【符号の説明】[Explanation of symbols]

1  石英るつぼ 2  黒鉛るつぼ 3  電気抵抗加熱体 4  ペデスタル 5  シリコン単結晶 6  断熱材 7  シリコン溶融液 8  仕切り部材 9  小孔 10  保温カバー 11  保温カバー開口部 12  熱遮蔽部材 13  炉壁 14  雰囲気ガス排出口 15  引き上げチャンバー 16  原料供給チャンバー 17  原料供給管 18  保温カバー下端とシリコン溶融液液面との間隙
20  減圧装置 21  通流口 A  保温カバーの開口部を通る雰囲気ガスのガス流れ
B  保温カバーの下端とシリコン溶融液液面との間隙
を通る雰囲気ガスのガス 流れ C  原料溶解部 D  単結晶育成部
1 Quartz crucible 2 Graphite crucible 3 Electric resistance heating element 4 Pedestal 5 Silicon single crystal 6 Heat insulating material 7 Silicon melt 8 Partition member 9 Small hole 10 Heat insulation cover 11 Heat insulation cover opening 12 Heat shielding member 13 Furnace wall 14 Atmospheric gas outlet 15 Pulling chamber 16 Raw material supply chamber 17 Raw material supply pipe 18 Gap between the lower end of the insulation cover and the surface of the silicon melt 20 Pressure reducing device 21 Flow port A Gas flow of atmospheric gas through the opening of the insulation cover B Lower end of the insulation cover Gas flow of atmospheric gas C through the gap between silicon melt surface and raw material melting section D Single crystal growth section

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  シリコン溶融液(7)を収容する石英
るつぼ(1)と、前記石英るつぼを側面から加熱する電
気抵抗加熱体(3)と、前記石英るつぼ内でシリコン溶
融液を単結晶育成部(D)と原料溶解部(C)とに分割
しかつ該シリコン溶融液が流通できる小孔(9)を有す
る石英製仕切り部材(8)と、前記仕切り部材と前記原
料溶解部を覆いその上部に開口部(11)を有する保温
カバー(10)と、前記原料溶解部に原料シリコンを連
続供給する原料供給装置と、炉内の圧力を0.1気圧以
下に減圧する減圧装置(20)とを有するシリコン単結
晶の製造装置において、前記保温カバーの開口部と金属
板からなる熱遮蔽部材(12)を前記加熱体の上端部よ
り高い位置に設け、前記熱遮蔽部材と保温カバーで形成
されるガス通流口(21)の面積が、保温カバー下端と
シリコン溶融液液面との間に形成される間隙(18)よ
りも大きくなるように、上記熱遮蔽部材を上記開口部の
上方もしくは下方に設けることを特徴とするシリコン単
結晶の製造装置。
1. A quartz crucible (1) containing a silicon melt (7), an electric resistance heating element (3) for heating the quartz crucible from the side, and a device for growing a single crystal of the silicon melt in the quartz crucible. A partition member (8) made of quartz that is divided into a part (D) and a raw material melting part (C) and has a small hole (9) through which the silicon melt can flow; A heat insulating cover (10) having an opening (11) at the top, a raw material supply device that continuously supplies raw silicon to the raw material melting section, and a pressure reducing device (20) that reduces the pressure in the furnace to 0.1 atmosphere or less. In the silicon single crystal manufacturing apparatus, a heat shielding member (12) consisting of an opening of the heat insulating cover and a metal plate is provided at a position higher than the upper end of the heating body, and the heat shielding member and the heat insulating cover are formed. The heat shielding member is placed above the opening so that the area of the gas flow opening (21) is larger than the gap (18) formed between the lower end of the heat insulating cover and the surface of the silicon melt. Or a silicon single crystal manufacturing device characterized by being provided below.
【請求項2】  前記熱遮蔽部材が、前記保温カバーの
開口部の上方に、前記保温カバーに載せて設置されてい
ることを特徴とする請求項1に記載のシリコン単結晶の
製造装置。
2. The silicon single crystal manufacturing apparatus according to claim 1, wherein the heat shielding member is installed above an opening of the heat insulating cover and placed on the heat insulating cover.
【請求項3】  前記熱遮蔽部材が、前記保温カバーの
開口部の下方に、該開口部から懸垂支持して設置されて
いることを特徴とする請求項1に記載のシリコン単結晶
の製造装置。
3. The silicon single crystal manufacturing apparatus according to claim 1, wherein the heat shielding member is installed below an opening of the heat insulating cover so as to be suspended from the opening. .
【請求項4】  前記熱遮蔽部材と前記保温カバーで形
成される開口部は、炉の中央に向かって開口された円弧
状に設けられ、開口部の幅は、2乃至8cmであること
を特徴とする請求項1、2、3のいずれか1に記載のシ
リコン単結晶の製造装置。
4. An opening formed by the heat shielding member and the heat retaining cover is provided in an arc shape opening toward the center of the furnace, and the width of the opening is 2 to 8 cm. The silicon single crystal manufacturing apparatus according to any one of claims 1, 2, and 3.
【請求項5】  請求項4において、前記熱遮蔽部材は
、開口部において互いに平行な複数の金属板で構成され
たものであることを特徴とするシリコン単結晶の製造装
置。
5. The silicon single crystal manufacturing apparatus according to claim 4, wherein the heat shielding member is composed of a plurality of metal plates parallel to each other at the opening.
JP3075315A 1990-04-18 1991-04-08 Silicon single crystal manufacturing equipment Expired - Fee Related JP2557003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3075315A JP2557003B2 (en) 1990-04-18 1991-04-08 Silicon single crystal manufacturing equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10241790 1990-04-18
JP2-102417 1990-04-18
JP3075315A JP2557003B2 (en) 1990-04-18 1991-04-08 Silicon single crystal manufacturing equipment

Publications (2)

Publication Number Publication Date
JPH04219386A true JPH04219386A (en) 1992-08-10
JP2557003B2 JP2557003B2 (en) 1996-11-27

Family

ID=26416457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3075315A Expired - Fee Related JP2557003B2 (en) 1990-04-18 1991-04-08 Silicon single crystal manufacturing equipment

Country Status (1)

Country Link
JP (1) JP2557003B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994028206A1 (en) * 1993-05-31 1994-12-08 Sumitomo Sitix Corporation Apparatus and method for manufacturing single-crystal material
JP2019156708A (en) * 2018-03-16 2019-09-19 信越半導体株式会社 Production method and production device of silicon carbide single crystal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01100086A (en) * 1987-10-12 1989-04-18 Mitsubishi Metal Corp Single crystal pulling-up apparatus
JPH01153589A (en) * 1987-12-08 1989-06-15 Nkk Corp Pulling of single crystal and apparatus therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01100086A (en) * 1987-10-12 1989-04-18 Mitsubishi Metal Corp Single crystal pulling-up apparatus
JPH01153589A (en) * 1987-12-08 1989-06-15 Nkk Corp Pulling of single crystal and apparatus therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994028206A1 (en) * 1993-05-31 1994-12-08 Sumitomo Sitix Corporation Apparatus and method for manufacturing single-crystal material
US5730799A (en) * 1993-05-31 1998-03-24 Sumitomo Sitix Corporation Device for producing single crystals
US5925147A (en) * 1993-05-31 1999-07-20 Sumitomo Sitix Corporation Process for producing single crystals
JP2019156708A (en) * 2018-03-16 2019-09-19 信越半導体株式会社 Production method and production device of silicon carbide single crystal
WO2019176447A1 (en) * 2018-03-16 2019-09-19 信越半導体株式会社 Production method and production device of silicon carbide single crystal

Also Published As

Publication number Publication date
JP2557003B2 (en) 1996-11-27

Similar Documents

Publication Publication Date Title
WO2020156213A1 (en) Semiconductor crystal growth device
KR930003044B1 (en) Method and apparatus for manufacturing silicon single crystal
JPH02133389A (en) Production device of silicon single crystal
JPH03295891A (en) Device for producing silicon single crystal
KR930005408B1 (en) Apparatus for manufacturing silicon single crystals
JP2580197B2 (en) Single crystal pulling device
US5824152A (en) Semiconductor single-crystal pulling apparatus
JPS63315589A (en) Single crystal production apparatus
JPH0412088A (en) Production of silicon single crystal
JP2709310B2 (en) Single crystal pulling device
KR960006262B1 (en) Apparatus for making silicon single crystal
JPH04219386A (en) Apparatus for production of silicon single crystal
US5312600A (en) Silicon single crystal manufacturing apparatus
JPS6168389A (en) Apparatus for growing single crystal
JP2670548B2 (en) Silicon single crystal manufacturing equipment
JPH09202686A (en) Apparatus for producing single crystal and production of single crystal
JP2547352B2 (en) Silicon single crystal manufacturing equipment
JPH01317189A (en) Production of single crystal of silicon and device therefor
JPH046195A (en) Production apparatus for silicon single crystal
JPH07223894A (en) Apparatus for production of semiconductor single crystal
JP2567312B2 (en) Silicon single crystal manufacturing apparatus and manufacturing method
JP2633057B2 (en) Silicon single crystal manufacturing equipment
JP2710433B2 (en) Single crystal pulling device
JPH11246294A (en) Single crystal pulling-up equipment
JPH09309787A (en) Eater-cooling tower for single crystal-pulling up apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 12

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees