JPS607143A - Method of evaluation of silicon wafer - Google Patents

Method of evaluation of silicon wafer

Info

Publication number
JPS607143A
JPS607143A JP11423883A JP11423883A JPS607143A JP S607143 A JPS607143 A JP S607143A JP 11423883 A JP11423883 A JP 11423883A JP 11423883 A JP11423883 A JP 11423883A JP S607143 A JPS607143 A JP S607143A
Authority
JP
Japan
Prior art keywords
wafer
oxide film
defects
withstand voltage
thermal oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11423883A
Other languages
Japanese (ja)
Inventor
Kikuo Yamabe
紀久夫 山部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11423883A priority Critical patent/JPS607143A/en
Publication of JPS607143A publication Critical patent/JPS607143A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To evaluate a thermal oxide film and evaluate the density of micro- defects easily and rapidly with a large area by a method wherein the condition for the formation of an MOS capacitor and that for the measurement of insulation breakdown withstand voltage are made constant. CONSTITUTION:An Si oxide film 2 is formed on an Si wafer 1 doped with an impurity such as phosphorus or boron by a thermal oxidation method. At the time of this thermal oxidation, the micro defects in the Si are taken in the oxidation, resulting in the formation of metallic electrodes 3 on the film 2. The insulation breakdown withstand voltage of a plurality of the MOS capacitors formed thereby is measured, and the capacitors of no breakdown are removed, further the initial short-circuit is removed because of being caused by surface contamination before the thermal oxidation. Then, the Si wafer is evaluated on the basis of the ratio of the number of remaining samples to the number of all the measured samples. The Si wafer can be evaluated by a method wherein the condition for the formation of the MOS capacitor and that for the measurement of insulation breakdown withstand voltage are made constant with respect to various kind of Si wafers.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、Siウェハの表面近傍に存在する微小欠陥を
評価する方法に係わり、特に無欠陥の熱酸化膜を提供す
る必要のあるSiウェハの評価法に関する。
Detailed Description of the Invention [Technical field to which the invention pertains] The present invention relates to a method for evaluating minute defects existing near the surface of a Si wafer, and in particular to a method for evaluating micro defects existing in the vicinity of the surface of a Si wafer. Regarding evaluation methods.

〔従来技術とその問題点〕[Prior art and its problems]

最近、半導体集積回路の高密度化は著しく、クリーンの
熱酸化膜の欠陥の低減に関する要求は極めて厳しいもの
がある。
Recently, the density of semiconductor integrated circuits has increased significantly, and there are extremely strict requirements for reducing defects in a clean thermal oxide film.

従来、シリコンの熱酸化膜の欠陥の原因には、熱酸化膜
形成前のシリコンウェハの表面の汚染が問題とされてい
た。しかし、ウェハ洗浄に使用する水、酸・アルカリ・
有機の薬品中のバクテリアおよび微粒子等は、フィルタ
技術の進歩により、その数量を著しく低減させうるに至
った。また、空気中のダスト等も、クリーンルームの整
備およびクリーンベンチの改良により低減させることが
でき、シリコンウェハの表面汚染の問題は、はぼ解決す
ることができるようになった。しかし、表面汚染の問題
が解決をれると同時に、シリコン熱酸化膜の欠陥の原因
がSiウェハ中に存在することが明らかとなった。
Conventionally, defects in silicon thermal oxide films have been caused by contamination on the surface of the silicon wafer before the thermal oxide film is formed. However, the water used for wafer cleaning, acid, alkali,
Advances in filter technology have made it possible to significantly reduce the amount of bacteria and particulates in organic chemicals. In addition, dust in the air can be reduced by maintaining clean rooms and improving clean benches, and the problem of surface contamination of silicon wafers can now be largely solved. However, at the same time as the problem of surface contamination was solved, it became clear that the cause of defects in the silicon thermal oxide film was present in the Si wafer.

酸化膜欠陥となるSt中の欠陥がSi中に均一に分布し
ていたとすると熱酸化によって酸化膜中に取り込まれる
Si中の欠陥は酸化膜厚に比例して増加する。その結果
、有限の耐圧をもつ酸化膜欠陥は、膜厚ととも増加し、
酸化膜上に電極を設けて形成したMOSキャパシタの絶
縁不良率も第1図に示すように膜厚とともに増加する。
If defects in St that become oxide film defects are uniformly distributed in Si, the number of defects in Si that are incorporated into the oxide film by thermal oxidation increases in proportion to the thickness of the oxide film. As a result, oxide film defects with a finite breakdown voltage increase with film thickness;
The insulation defect rate of a MOS capacitor formed by providing an electrode on an oxide film also increases with the film thickness, as shown in FIG.

従来、このようすS1中の欠陥の評価方法としては、透
過電子顕微鏡(丹N)などによる直接観察や、少数キャ
リアのライフタイムの測定等が用いられているが、TE
Mの場合、Siの熱酸化膜ではその膜質に影響する50
A以下の微小欠陥を観察することは極めて困難である。
Conventionally, direct observation using a transmission electron microscope (TanN), measurement of minority carrier lifetime, etc. have been used to evaluate defects in S1, but TE
In the case of M, the thermal oxide film of Si has a 50%
It is extremely difficult to observe micro defects smaller than A.

ましてや、熱処理を加えていないStウェハでは、その
欠陥密度が]、Q9c7rL””以下であり、それをT
EMで観察し、その数でStウェハを評価することは不
可能に近い。また、光や音波を用いた少数キャリアのラ
イフタイムの測定では% Stウェハ全体の平均値を評
価することになり、集積回路で問題となる表面近傍の評
価には適さない。また、Siの熱酸化膜をゲート絶縁膜
を用いたMOSキャパシタでの深い空乏状態から反転状
態へのライフタイム測定による評価では、Stの界面の
影響等の除去が困難あるいは測定条件依存性等の問題が
あり前記の50X以下の微小欠陥の評価には適しない。
Furthermore, in the case of a St wafer that has not been heat-treated, its defect density is below Q9c7rL"", which is
It is nearly impossible to observe with EM and evaluate the St wafer based on the number. Furthermore, when measuring the lifetime of minority carriers using light or sound waves, the average value of %St for the entire wafer is evaluated, which is not suitable for evaluating the vicinity of the surface, which is a problem in integrated circuits. In addition, in the evaluation by lifetime measurement from a deep depletion state to an inverted state in a MOS capacitor using a gate insulating film for a Si thermal oxide film, it is difficult to remove the influence of the St interface, etc., or there are problems such as dependence on measurement conditions. Due to this problem, it is not suitable for evaluating micro defects of 50X or less.

〔発明の目的〕 本発明は、これらの点を鑑みてなされたもので、Stウ
ェハ中の微小欠陥を低減する目的となる熱酸化膜そのも
ので評価でき、かつ、大面積で微小欠陥の密度を評価で
き、かつ、容易に迅速に評価できる方法を提供すること
を目的とする。
[Objective of the Invention] The present invention has been made in view of these points, and is capable of evaluating the thermal oxide film itself, which is intended to reduce micro defects in St wafers, and is capable of reducing the density of micro defects over a large area. The purpose is to provide a method that can be evaluated easily and quickly.

〔発明の概要〕[Summary of the invention]

本発明は、リンやボロンの不純物がドープされたS1ウ
エハ上に熱酸化法により、シリコン酸化膜を形成する。
In the present invention, a silicon oxide film is formed by a thermal oxidation method on an S1 wafer doped with impurities such as phosphorus or boron.

熱酸化の際にSi中の微小欠陥が酸化に取り込まれる。During thermal oxidation, minute defects in Si are incorporated into the oxidation.

前記シリコン酸化膜上に金属電極を形成する。前記工程
により形成された複数個のMOSキャパシタの絶縁破壊
耐圧を測定し、破壊していない苑のは除去し、さらに熱
酸化前の表面汚染によるため初期短絡は除去する。残っ
た試料数の全測定試料数の比率によりStウェハを評価
する。棟々のS1ウエハに対して、MOSキャパシタの
形成条件(例えば、酸化方法、酸化膜厚、電極形状、材
料等)と絶縁破壊耐圧測定条件(例えば、電圧上昇速度
、絶縁破壊判定電流等)を一定にすることによってSt
ウェハを評価することができる。
A metal electrode is formed on the silicon oxide film. The dielectric breakdown voltage of a plurality of MOS capacitors formed by the above process is measured, and unbroken ones are removed, and initial short circuits due to surface contamination before thermal oxidation are removed. The St wafer is evaluated based on the ratio of the number of remaining samples to the total number of measurement samples. MOS capacitor formation conditions (e.g., oxidation method, oxide film thickness, electrode shape, material, etc.) and dielectric breakdown voltage measurement conditions (e.g., voltage rise rate, dielectric breakdown judgment current, etc.) are determined for each S1 wafer. By keeping St
Wafers can be evaluated.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、透過電子顕微鏡で見い出すことが困難
な欠陥も、酸化膜耐圧という実際的な項目で、シリコン
中の欠陥を大面積でかつ容易に、迅速に評価できる。ま
た、シリコンウェハの使用対象の仕様に応じた酸化膜厚
を用いることにより、過剰仕様のないシリコンウェハの
改善を可能にする。
According to the present invention, defects in silicon that are difficult to find using a transmission electron microscope can be easily and quickly evaluated over a large area using the practical item of oxide film breakdown voltage. Further, by using an oxide film thickness that corresponds to the specifications of the silicon wafer to be used, it is possible to improve the silicon wafer without excessive specifications.

〔発明の実施例〕[Embodiments of the invention]

以下5本発明をチョクラルスキー(CZ)法によって製
造されたStウェハの評価に適用した1実施例につき、
図面を用いながら説明する。第2図は試料の断面図を示
す。まず、評価すべき、P形Stウェハ1を1000°
C乾燥酸素中で400Xの酸化膜2を形成する。続いて
、該熱酸化膜上に厚さ約600OAの多結晶シリコン膜
3を形成する。さらに、該多結晶シリコン3中に、リン
を拡散し、抵抗を下げ、写真食刻法により、該多結晶シ
リコンを選択エツチングする。第3図は、第2図に示し
た試料の絶縁破壊耐圧を測定する方法を示す概念図であ
る。4は抵抗、5は電圧計、6は電源である。ゲート電
極に印加する電圧は81基板表面に多数キャリアの蓄積
層が形成される符号に、毎秒2MV/cIrL以上の昇
圧速度で増大させる。試料11と電源に直列に例えばI
MΩの抵抗を接続し、その両端の電圧降下を逐次監視し
、例えば電流にして0.1μAとなる電圧を耐圧として
測定する。
Below are five examples of applying the present invention to the evaluation of St wafers manufactured by the Czochralski (CZ) method.
This will be explained using drawings. FIG. 2 shows a cross-sectional view of the sample. First, the P-type St wafer 1 to be evaluated is heated at 100°
A 400X oxide film 2 is formed in C dry oxygen. Subsequently, a polycrystalline silicon film 3 having a thickness of about 600 OA is formed on the thermal oxide film. Further, phosphorus is diffused into the polycrystalline silicon 3 to lower the resistance, and the polycrystalline silicon is selectively etched by photolithography. FIG. 3 is a conceptual diagram showing a method for measuring the dielectric breakdown voltage of the sample shown in FIG. 2. 4 is a resistor, 5 is a voltmeter, and 6 is a power source. The voltage applied to the gate electrode is increased at a rate of 2 MV/cIrL per second or higher to a value that forms a majority carrier accumulation layer on the surface of the 81 substrate. For example, I in series with the sample 11 and the power supply.
A resistor of MΩ is connected, and the voltage drop across the resistor is successively monitored, and the voltage at which the current becomes 0.1 μA is measured as the withstand voltage.

第4図は、耐圧に対する頻度を示した耐圧ヒストグラム
である。8M■/crrL以下の耐圧を示すMOSキャ
パシタには欠陥が含捷れているから、1枚のウェハ上の
測定全数に対する耐圧8MV/ffi以下の不良率をF
とし、欠陥の分布は、ボアノン分布しているとすれば、
欠陥密度ρは で計算される。ただし、ゲート面積Aは不良率Fが50
チ以下となるように選ぶ必要がある、さもなければρは
誤差の大きいものとなってしまう。以上によってめたρ
から81での欠陥密度ρ81 はρ sl αtox α 2,2(Stから5tO2に変化したときの体積増
加率) で計算される。このρ81の値によって、81表面の結
晶品質を評価することができる。
FIG. 4 is a withstand voltage histogram showing frequency with respect to withstand voltage. Since MOS capacitors with a breakdown voltage of 8M/crrL or less contain defects, the defective rate with a breakdown voltage of 8MV/ffi or less for all measurements on one wafer is calculated as F.
If the defect distribution is Boannon distribution, then
The defect density ρ is calculated by ρ. However, the gate area A has a defective rate F of 50
It is necessary to select ρ so that it is less than or equal to ρ, otherwise ρ will have a large error. ρ obtained by the above
The defect density ρ81 at 81 is calculated as ρ sl αtox α 2,2 (volume increase rate when changing from St to 5tO2). The crystal quality of the 81 surface can be evaluated based on the value of ρ81.

い捷、評価すべきSiウェハとして、ウェハメーカから
納入されだitのSlウェハと、ゲート酸化前に110
0’01時間熱処理したStウエノ・を用いると、前者
はρ5i=4×10(crfL )、後者は/j8i=
5×105(C11L−3)となり、ゲート酸化前の高
温熱処理によって、酸化膜欠陥となるSi中の欠陥が減
少していることがわかる。
As for the Si wafer to be evaluated, we used the original Sl wafer delivered by the wafer manufacturer and the 110% Si wafer before gate oxidation.
When using St Ueno® heat-treated for 0'01 hours, the former is ρ5i = 4 × 10 (crfL ), and the latter is /j8i =
5×10 5 (C11L-3), which indicates that the high temperature heat treatment before gate oxidation reduces the number of defects in Si that become oxide film defects.

以上の実施例においては、p形Siを用いたが、基板S
tは導電形は問わない。また抵抗も、数100Ω儂とい
ったSt基板での電圧降下が問題となるほど高くない限
り、制限ない。まだ、電極についても、汚染がなく、熱
酸化膜の耐圧に変化を与えるものでない限り問わない。
In the above embodiments, p-type Si was used, but the substrate S
The conductivity type of t does not matter. Further, the resistance is also not limited as long as it is not so high as to cause a problem in voltage drop across the St substrate, such as several hundreds of ohms. There is no problem with the electrode as long as it is free from contamination and does not change the withstand voltage of the thermal oxide film.

その他、本発明の趣旨に沿った変更は可能であることは
もちろんである。
It goes without saying that other changes can be made in accordance with the spirit of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はMOSキャパシタの絶縁不良率の酸化膜厚依存
性を示す特性図、第2図はMOSキャパシタの一例を示
す断面図、第3図はシリコン評価に使用される回路例を
示す図、第4図はMOSキャパシタの絶縁破壊耐圧と絶
縁不良頻度の関係を示す特性図である。 第 1 図 第 2 図 第 3 図 第 4 図 社縁変壊血伍(H−風)
Fig. 1 is a characteristic diagram showing the dependence of the insulation defect rate of a MOS capacitor on oxide film thickness, Fig. 2 is a cross-sectional view showing an example of a MOS capacitor, and Fig. 3 is a diagram showing an example of a circuit used for silicon evaluation. FIG. 4 is a characteristic diagram showing the relationship between dielectric breakdown voltage and insulation failure frequency of a MOS capacitor. Fig. 1 Fig. 2 Fig. 3 Fig. 4 Social-relationship, broken blood (H-style)

Claims (1)

【特許請求の範囲】[Claims] 不純物をドーピングしたシリコンウェハ上に熱酸化法に
よシリコンウェハを形成した後、前記シリコン酸化膜上
に電極膜を形成し、前記工程により形成されたMOSキ
ャパシタの絶縁破壊耐圧を測定し、有限の耐圧をもつ不
良率をもって判定することを特徴とするシリコンウェハ
d計測法。
After forming a silicon wafer by thermal oxidation on a silicon wafer doped with impurities, an electrode film is formed on the silicon oxide film, and the dielectric breakdown voltage of the MOS capacitor formed by the above process is measured. A silicon wafer d measurement method characterized by making a determination based on a failure rate with withstand voltage.
JP11423883A 1983-06-27 1983-06-27 Method of evaluation of silicon wafer Pending JPS607143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11423883A JPS607143A (en) 1983-06-27 1983-06-27 Method of evaluation of silicon wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11423883A JPS607143A (en) 1983-06-27 1983-06-27 Method of evaluation of silicon wafer

Publications (1)

Publication Number Publication Date
JPS607143A true JPS607143A (en) 1985-01-14

Family

ID=14632720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11423883A Pending JPS607143A (en) 1983-06-27 1983-06-27 Method of evaluation of silicon wafer

Country Status (1)

Country Link
JP (1) JPS607143A (en)

Similar Documents

Publication Publication Date Title
EP0487302B1 (en) Method for testing electrical properties of silicon single crystal
US8111081B2 (en) Method for evaluating silicon wafer
JP3120825B2 (en) Epitaxial wafer and method for manufacturing the same
US20190131191A1 (en) Method for predicting thickness of oxide layer of silicon wafer
KR100293288B1 (en) Evaluation Method of Semiconductor Wafers
JP4600707B2 (en) Method for measuring resistivity of semiconductor silicon substrate, method for determining conductivity type of semiconductor silicon substrate, and method for manufacturing semiconductor silicon substrate
Miyazaki et al. Influence of crystal-originated “particle” microstructure on silicon wafers on gate oxide integrity
US4668330A (en) Furnace contamination
JPS607143A (en) Method of evaluation of silicon wafer
JP5561245B2 (en) Semiconductor substrate evaluation method
JP5487579B2 (en) Silicon wafer evaluation method and manufacturing method
JPH10189677A (en) Evaluation method for silicon wafer
JP2007150007A (en) Method of evaluating semiconductor device and method of manufacturing same
US5990022A (en) Method of evaluating a silicon wafer
JP2010050353A (en) Semiconductor wafer, method of manufacturing the same, and method of evaluating the same
CN100447559C (en) Method for detecting surface COP of silicon sheet using Cu inducing
JPH11297779A (en) Detection of fault in semiconductor device and its manufacture
TWI844233B (en) Method for monitoring bulk metal in semiconductor process
KR100862312B1 (en) Method for measuring wafer defect in semiconductor device
KR100531954B1 (en) Crystal defect monitoring method after epitaxial deposition in semiconductor manufacturing
JP4735337B2 (en) Semiconductor element evaluation method, semiconductor wafer quality evaluation method and manufacturing method
CN117747464A (en) Oxide layer thickness measuring method and device
JP2001213694A (en) Semiconductor wafer with low copper content
JPH04287374A (en) Manufacture of semiconductor device
KR20230120755A (en) Method for predicting thickness of oxide layer of silicon wafer