JP4600707B2 - Method for measuring resistivity of semiconductor silicon substrate, method for determining conductivity type of semiconductor silicon substrate, and method for manufacturing semiconductor silicon substrate - Google Patents

Method for measuring resistivity of semiconductor silicon substrate, method for determining conductivity type of semiconductor silicon substrate, and method for manufacturing semiconductor silicon substrate Download PDF

Info

Publication number
JP4600707B2
JP4600707B2 JP2000263224A JP2000263224A JP4600707B2 JP 4600707 B2 JP4600707 B2 JP 4600707B2 JP 2000263224 A JP2000263224 A JP 2000263224A JP 2000263224 A JP2000263224 A JP 2000263224A JP 4600707 B2 JP4600707 B2 JP 4600707B2
Authority
JP
Japan
Prior art keywords
resistivity
measured
silicon substrate
semiconductor silicon
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000263224A
Other languages
Japanese (ja)
Other versions
JP2002076080A (en
Inventor
偉峰 曲
善範 速水
雅規 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2000263224A priority Critical patent/JP4600707B2/en
Publication of JP2002076080A publication Critical patent/JP2002076080A/en
Application granted granted Critical
Publication of JP4600707B2 publication Critical patent/JP4600707B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明が属する技術分野】
本発明は、シリコン単結晶基板等の半導体シリコン基板の抵抗率の測定方法及び導電型の判定方法、特に、抵抗率が5000Ω・cmを超える高抵抗率シリコン基板に対して好適な抵抗率の測定方法及び導電型の判定方法と、それを用いた半導体シリコン基板の製造方法に関する。
【0002】
【従来の技術】
従来、高耐圧パワーデバイスやサイリスタ用として、フローティングゾーン法(FZ法)により製造されたFZ単結晶シリコン基板が使用されてきた。また、近年では、移動体通信用の半導体デバイスや、最先端のC−MOSデバイスにおいて、寄生容量の低下と大口径化を同時に満たすことが可能な高抵抗率単結晶シリコン基板として、チョクラルスキー法(CZ法)により作製され、高抵抗率を有するCZ単結晶シリコン基板が注目されるようになってきた。
【0003】
ところで、上記単結晶シリコン基板等の半導体シリコン基板の抵抗率測定方法として最も一般的に使用されている方法は、四探針法と呼ばれる方法である。これは、図3に示すように、基板の被測定面上に一直線に探針となる4本の電極を立て、測定電流通電電極を介して定電流電源により一定電流を流し、その状態で測定用電極間の電位差を測定することにより、その電位差と測定用電極間距離とにより抵抗率を算出するものである。測定電流通電電極と測定電極とを分離することにより、電極接触抵抗の影響を排除することができる。
【0004】
四探針法を用いたシリコン基板の測定方法は、ASTM(American Society for Testing and Materials)により標準化されており(ASTM F84−73)、それによると、所定の表面処理(エッチング、ラッピング、アセトン洗浄、メタノール乾燥)を行なうことにより、p型の場合は2000Ω・cmまで、n型の場合は6000Ω・cmまでの測定が可能とされている。
【0005】
一方、導電型の判定方法としては、点接触による整流を利用したものやホール係数を測定する方法もあるが、測定の簡便性から熱起電力法が採用されることが多い。熱起電力法に用いられる装置は主に、図4に示すような加熱プローブ式が用いられている。この方法では、2本のプローブのうち一方を室温に保っておき、もう一方は取り付けられたヒータコイル(可変電源により通電発熱する)により40〜60℃に昇温した状態で試料に接触させる。すると、接点間の温度差によって熱起電力が発生するので、その熱起電力の向きを零指示計(ガルバノメータ)等にて検出することにより、導電型を判定することができる。この導電型判定法についてもASTMにより標準化されており(ASTM F42−77)、p型、n型共に1000Ω・cmまでは信頼すべき値が得られることになっている。
【0006】
【発明が解決しようとする課題】
しかしながら、上記従来法で測定精度が保証されているのは上記の抵抗率までであるため、これらを超えるような極めて高抵抗率を測定する場合には信頼性に問題があった。また、導電型判定を行なう場合においても、抵抗率の高い半導体シリコン基板の場合、従来の方法では電子とホールとの移動度の差の影響を受けやすくなり、その判定が不正確となりやすい問題がある(例えば多数キャリアの種類によらず、導電型がn型と判定されてしまうなど)。
【0007】
また、上記従来の抵抗率測定方法あるいは導電型判定方法では、基板をラップ研磨して、そのラップ研磨面を被測定面として用いていたが、近年の直径300mm以上の大口径基板(CZ基板)の多数枚を一度に均一にラップするためには、高価な大型ラップ機を使用しない限り不可能であった。
【0008】
本発明の課題は、抵抗率が5000Ω・cmを超えるような極めて高抵抗率であっても、簡便な方法で再現性よくその抵抗率および導電型を測定することができ、また、大口径基板の面内分布も簡易に測定することのできる半導体シリコン基板の抵抗率測定方法及び導電型判定方法、及びその抵抗率測定方法を用いた半導体シリコン基板の製造方法を提供することにある。
【0009】
【課題を解決するための手段及び作用・効果】
上記課題を解決するため、本発明に係る半導体シリコン基板の抵抗率測定方法の第一は、四探針法により半導体シリコン基板の抵抗率を測定する方法において、測定対象となる半導体シリコン基板(被測定基板)の被測定面の酸化膜を除去するか又は0.5nm以下の膜厚とする処理を行なった後、4時間以内に被測定面において抵抗率を測定することを特徴とする。
【0010】
上記本発明に係る半導体シリコン基板の抵抗率測定方法の第一によると、基板表面に自然酸化膜や熱酸化膜が形成されていたとしても、基板の被測定面の酸化膜を除去するか又は0.5nm以下の膜厚とする処理(以下、酸化膜除去処理という)を行なうことで、抵抗率測定の精度を高めること、特に、5000Ω・cmを超える高抵抗率の基板であっても、その抵抗率を高精度で再現性よく測定することができる。また、酸化膜除去処理を行なったあと、抵抗率測定を行なうまでの時間を4時間以内に留めることで、抵抗率測定値の変動やバラツキを著しく低減することができ、測定精度と再現性の向上に大きく寄与することができる。なお、酸化膜除去処理は、例えば弗酸を含有する水溶液を用いて行なうことができる。
【0011】
半導体シリコン基板の抵抗率の被測定面は、平面研削面もしくは化学エッチング面とすることが望ましい。これらの方法は、大型の基板、特に直径が300mm(12インチ)以上の基板の処理を行なう場合でも、ラップ研磨のような専用の大型装置を必要としないので、簡易にかつ安価に実施できる利点がある。
【0012】
また、本発明者らが鋭意検討したところによると、半導体シリコン基板の測定すべき抵抗率レベルによって、最適の表面状態が異なり、抵抗率レベルに応じて半導体シリコン基板の表面処理の種別を使い分けることにより、広い抵抗率範囲において高精度に再現性よく抵抗率を測定できることが判明した。具体的には、本発明に係る抵抗率測定方法の第二は、四探針法により半導体シリコン基板の抵抗率を測定する方法において、シリコン単結晶棒の一部から切り出された半導体シリコン基板の抵抗率の被測定面を化学エッチ面として測定し、その測定値が5000Ω・cmを超える場合には化学エッチ面を、5000Ω・cm以下の場合には化学エッチ面又は平面研削面を被測定面として、半導体シリコン基板又はシリコン単結晶棒の他の部分から切り出された半導体シリコン基板の抵抗率を測定することを特徴とする。
【0013】
なお、本明細書において化学エッチ面とは、化学エッチング液中にて半導体シリコン基板の表面(シリコン自体の表面)をエッチング処理した面をいい、エッチング処理する直前の半導体シリコン基板の表面がラップ面、平面研削面あるいは鏡面研磨面等のいずれであるかは問わない。また、平面研削面とは、砥石により平面研削した面のことである。
【0014】
すなわち、5000Ω・cmを超える高抵抗率の基板については、化学エッチングにより被測定面を処理することが、バラツキや変動の小さい高精度の抵抗率測定を行なう上で極めて有効である。一方、5000Ω・cm以下の低抵抗率の基板では、平面研削仕上げされた被測定面を用いても、バラツキや変動の小さい精度の高い抵抗率測定が可能となる。また、平面研削は通常は枚葉処理であるため、抜き取り検査等で少量枚数を測定する場合、多数枚のバッチ処理が必要とされる化学エッチングと比較してコスト的に有利である。なお、低抵抗率の基板においても化学エッチングを採用することができ、同様に良好な測定が可能である。
【0015】
上記本発明の抵抗率測定方法の第二は、当然に本発明の抵抗率測定方法の第一と組み合わせることができる。この場合、被測定基板の被測定面の酸化膜を、化学エッチング又は平面研削により、除去するか又は0.5nm以下の膜厚とする処理を行なった後、4時間以内に被測定面において抵抗率を測定することとなる。これにより、抵抗率測定の精度が一層向上し、測定値の変動やバラツキもさらに抑制することができる。
【0016】
また、上記抵抗率測定方法にて採用される基板被測定面の処理態様は、該被測定面を用いて熱起電力法により基板の導電型の判別を行なう場合にも有効である。すなわち、被測定基板の被測定面の酸化膜を除去するか又は0.5nm以下の膜厚とする処理を行なった後、4時間以内に被測定面において導電型判別測定を行なうことにより、判定の精度及び再現性が向上する。
【0017】
また、本発明に係る半導体シリコン基板の導電型の判定方法は、熱起電力法により半導体シリコン基板の導電型を判定する方法において、シリコン単結晶棒の一部から切り出された半導体シリコン基板の抵抗率の被測定面を化学エッチ面として測定し、その測定値が5000Ω・cmを超える場合には化学エッチ面を、5000Ω・cm以下の場合には化学エッチ面又は平面研削面を被測定面として、半導体シリコン基板又はシリコン単結晶棒の他の部分から切り出された半導体シリコン基板の導電型を判定することを特徴とする。抵抗率が5000Ω・cmを超える基板については、化学エッチ面を被測定面とすることで、高抵抗率であるにもかかわらず熱起電力法により導電型を簡便かつ正確に判定することが可能となる。なお、抵抗率が5000Ω・cm以下の基板の場合は、化学エッチ面及び平面研削面のいずれを用いても正確な判定が可能である。
【0018】
なお、本発明の抵抗率測定方法及び導電型判定方法では、基板の被測定面の光沢度が10〜90%となるように、化学エッチングないし平面研削による前記被測定面の処理を行なうことが望ましい。なお、本発明における光沢度は、JIS:Z8741(1962)の3.1において規定される鏡面光沢度を意味する。光沢度が10%未満では、特に高抵抗の基板の抵抗率測定ないし導電型判定に際して、その精度や再現性が不十分となる場合がある。他方、90%以上の光沢度は、測定精度や再現性確保の観点においては過剰であり、平面研削では原理的に達成が困難である一方、化学エッチングを使用する場合でもエッチング時間を極端に長くしなければならず、非効率である。
【0019】
次に、半導体シリコン基板の製造方法の第一は、上記本発明の半導体シリコン基板の抵抗率を測定する抵抗率測定工程と、その抵抗率測定結果に基づいて、半導体シリコン基板を選別する選別工程とを含むことができる。
【0020】
本発明の方法による抵抗率測定結果に応じて、半導体シリコン基板を選別することにより、半導体シリコン基板製品の不良率低減、あるいは抵抗率保証値の信頼性改善による基板品質向上等に寄与することができる。なお、測定対象となる半導体シリコン基板は、鏡面研磨後洗浄された鏡面ウェーハのような最終製品であってもよいし、あるいは最終製品となる途上で生ずる中間製品であってもよい。また、選別は、製品ロットに含まれる基板の全数について抵抗率測定を行い、抵抗率が規格外のものについて、これを不良品として除去する形で行なってもよいし、製品ロットから所定数の基板サンプルを抜き取って抵抗率測定を行い、その抜き取った基板サンプルにおいて抵抗率が規格外のものが一定数以上含まれていた場合に、その製品ロット全体を不良としてロットアウト選別する形で行なってもよい。
【0021】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。図1は、半導体シリコン基板である鏡面ウェーハの製造工程の一例を、概略的に示す流れ図である。まず、FZ法あるいはCZ法等の公知の方法にてシリコン単結晶インゴットを製造する(工程a)。シリコン単結晶インゴットには、所定種類及び所定量のドーパントが添加され、n型あるいはp型のいずれかに導電型が調整される。なお、高抵抗率を得るためにドーパントを意図的に添加しない場合もある。こうして得られる単結晶インゴットは外径研削が施され(工程b)、オリエンテーションフラットあるいはオリエンテーションノッチが形成され(工程c)、さらに一定の抵抗率範囲のブロックに切断される(工程d)。このように仕上げられたブロックは、内周刃切断等によりスライシングされる(工程e)。スライシング後のシリコン単結晶ウェーハの両面外周縁にはベベル加工により面取りが施される(工程f)。
【0022】
面取り終了後のシリコン単結晶ウェーハは、遊離砥粒を用いて両面がラッピングされる(工程g)。次に、これをエッチング液に浸漬することにより、両面が化学エッチング処理される(工程h)。化学エッチング工程(工程h)は、工程b〜工程gの機械加工工程においてシリコン単結晶基板の表面に生じたダメージ層を除去するために行われる。このダメージ層の化学エッチングによる除去は、弗酸と硝酸と酢酸からなる混酸水溶液による酸エッチング、あるいは、水酸化ナトリウム水溶液によるアルカリエッチングと前記酸エッチングとの両方により行われる。
【0023】
化学エッチング工程(工程h)の後に、鏡面研磨工程(工程i)が行われる。鏡面研磨では、例えば、回転研磨ブロックにワックス等で化学エッチング終了後のシリコン単結晶基板を貼り付け、研磨クロスを接着した回転研磨定盤上に、所定の圧力にて押し付ける。そして、研磨クロスに、例えばSiOを主成分としたアルカリ性コロイダルシリカ等の研磨液を供給しながら定盤を回転させ、研磨を行なう。この研磨は、コロイダルシリカ等を砥粒とした機械的研磨と、アルカリ液による化学エッチングとの複合作用による、いわゆる機械的化学的研磨である。主表面が鏡面研磨されたシリコン単結晶基板は、洗浄・乾燥後、製品として包装される。なお、CZウェーハの場合、通常は工程(e)〜工程(i)のいずれかの工程終了後に酸素ドナーを消去するためのドナーキラー熱処理が行なわれる。
【0024】
抵抗率測定及び導電型の判定(以下、両者を総称する場合は検査測定という)は、工程bで切断されたブロック両端から切り出され、ドナーキラー熱処理が行なわれたスラブ(平板)又はウェーハを用いて行なわれることが多いが、工程(e)〜(i)のいずれかの工程が終了した製品(ドナーキラー熱処理を実施してあるもの)の中から検査用サンプルとして所定枚数抜き取って行なうこともできる。また、場合によっては鏡面研磨工程(i)の後に所定の追加熱処理を行い、熱処理後の変化を検査する場合にも本発明の方法を用いることができる。測定されるシリコン単結晶基板の表面には、洗浄・乾燥や、その後の大気中での保管あるいは熱処理に伴い酸化被膜が形成されている。そこで、上記検査測定に先立って、被測定面の酸化膜除去処理がなされる。
【0025】
酸化膜除去処理が終了した基板は、酸化膜除去処理の完了後、4時間以内に、図3に例示した四探針法により抵抗率測定がなされ、また、図4に例示した熱起電力法により導電型の判定がなされる。これらの測定法自体は、前記したASTM等に記載の公知の手法を採用できる。化学エッチングにより処理された面は比較的活性であるため、大気中に長く放置すると水分等の吸着や酸化膜の再形成が特に生じやすく、高抵抗率域の測定には影響しやすいと考えられることから、上記のように4時間以内に、望ましくはなるべく速やかに測定を行なうことが、変動やバラツキの少ない安定した測定を行なう上で特に有効である
【0026】
上記酸化膜除去処理は、図2(a)に示すような多数枚を一度に処理するラッピング装置を用いて行なうこともできるが、直径が300mm以上の大型ウェーハの場合、ラッピング装置は非常に大掛かりで高価であり、検査測定のみの目的でこれを使用することはコスト的にも不利である。そこで、本発明においては、弗酸水溶液等に浸漬して酸化膜のみを除去する処理のほか、図2(b)に示すような平面研削あるいは図2(c)に示すような化学エッチングにより、酸化膜除去処理と同時にシリコン単結晶基板表面を少量除去するように処理してもよい。
【0027】
シリコン単結晶基板は、被測定面の表面状態により抵抗率の測定値および導電型の判定結果にバラツキが生ずる。特に、基板の抵抗率が大きい場合にはその影響が顕著になる。そこで、シリコン単結晶棒(又はブロック)の一部から切り出された被測定基板の被測定面を化学エッチ面として測定し、その測定値が5000Ω・cmを超える場合には化学エッチ面の測定値を真の抵抗率と判断し、5000Ω・cm以下の場合には化学エッチ面の測定値又は平面研削面を真の抵抗率と判断することができる。
【0028】
例えば、図1の工程(b)におけるブロックの両端からスラブを切り出した場合には、このスラブを混酸水溶液によりダメージ層をエッチングして化学エッチ面として抵抗率を測定する。そして、その測定値が5000Ω・cmを超える場合には、これを真の抵抗率とする。また、測定値が5000Ω・cm以下を示した場合には、この値を真の抵抗率と判断することもできるが、当該基板を平面研削した後の表面にて測定を行い、その値を真の抵抗率とすることもできる。すなわち、抵抗率の測定値が5000Ω・cm以下であれば、スラブを切り出した残りのブロックから作製したシリコン基板の抵抗率を抜き取り検査する場合に、その被測定面の加工方法として枚葉式平面研削を用いることが可能となり、コストメリットが得られる。
【0029】
また、導電型の測定に関しても抵抗率の測定と同様に、化学エッチ面における四探針法による測定を行い、その測定値が5000Ω・cmを超える場合と5000Ω・cm以下の場合とに分けて判断すればよい。この場合、上記エッチングまたは平面研削直後の被測定面は、これらの処理により基板表面のシリコンが露出した状態であるので、ここでも4時間以内に抵抗率を測定することが好ましい。
【0030】
次に、工程eから被測定基板を抜き取る場合も、基板表面がスライス面であるという点では工程bと共通であるので、上記の例と同一の方法で測定が可能である。また、工程gや工程iから被測定基板を抜き取る場合も、基板表面がラップ面または鏡面研磨面であるという点では工程bと異なるが、混酸水溶液によりエッチングして化学エッチ面として抵抗率を測定して判断するという一連の手順に関しては同一である。一方、工程hから被測定基板を抜き取った場合には、被測定面は既に化学エッチ面となっているのでそのまま測定し、測定された抵抗率により判断することができる。なお、上記の測定例は被測定基板の抵抗率が未知の場合の測定方法に関するものであったが、被測定基板を作製するためのシリコン単結晶棒の製造条件により、その抵抗率がある程度予測される場合には、被測定基板の抵抗率が5000Ω・cm以下と見込まれる場合には、被測定面を化学エッチ面または平面研削面とし、抵抗率が5000Ω・cmを超えると見込まれる場合には被測定面を化学エッチ面として、該被測定面において抵抗率を測定する方法も可能である。
【0031】
シリコン単結晶基板の被処理面は、化学エッチ面及び平面研削面のいずれを採用する場合でも、処理後の被測定面の光沢度が10〜90%となるように処理条件が調整される。ただし、化学エッチ面のほうが光沢度が高く、例えば40〜90%程度となる。また、平面研削面の光沢度は10〜30%程度である。
【0032】
上記抵抗率測定及び導電型判定が終了すれば、その結果に応じて製品ロットの良否が判定される。例えば、抵抗率が規定範囲外となっている基板サンプルが一定数以上検出された場合、さらには、抵抗率の統計値、例えば平均値、標準偏差、最大値、最小値、範囲が規定値を満たさない場合など、適宜判定基準を設定し、その判定基準から外れた製品ロットは不良ロットとして除外する。また、ロットアウト品は、全数測定を行なって良品のみ抽出して使用することも可能である。
【0033】
【実施例】
本発明の効果を確認するために、以下の実験を行なった。
CZ法により、ドーパントを添加せずに引き上げられた3種類のシリコン単結晶棒(図1の工程a)のそれぞれから、同図の工程b〜工程gを通して鏡面研磨された、直径300mm、結晶面方位略(100)の3種類の鏡面研磨シリコン単結晶基板(以下、基板A、B及びCと称する)を準備した(ドナーキラー熱処理済み)。これらに対し、以下の3段階の処理を行なった。
▲1▼弗酸と硝酸と酢酸とからなる混酸により、片面につき約10μmの化学エッチング後、直ちに純水により5分リンス処理する(化学エッチ処理)。
▲2▼▲1▼の処理を行なった基板の一方の面のみダイヤモンド砥石により平面研削した後、SC−1洗浄を行なう(平面研削処理)。
▲3▼▲2▼の処理を行なった基板をさらに、5%弗酸水溶液により両面の自然酸化膜を除去する(酸化膜除去処理)。
【0034】
そして、▲3▼の酸化膜除去処理後において1時間以内に、基板の各面(片面が化学エッチ面、他方の面が平面研削面となっている)の導電型(p/n)判定を行い、さらに四探針法により抵抗率測定を行なった。なお、抵抗率測定は、基板主表面中心からの測定位置距離を変えながら行なった。導電型判定に関しては、熱起電力法を用い、基板の中心1点について測定を行なった。
【0035】
図5(a)、(b)及び(c)は、それぞれ基板A、B及びCの測定結果を示すものである。これによれば、比較的低抵抗率(3000〜4000Ω・cm)の基板Aの場合は化学エッチ面、平面研削面ともにほぼ同一の抵抗率および同一の導電型(n型)を示した。これに対し、高抵抗率を示した基板B、基板Cの場合は、抵抗率に関しては両者の間で大きな差異が見られ、また、導電型に関しては化学エッチ面がn型、平面研削面がp型と、異なる値を示した。
【0036】
また、これらの基板の導電型を別途ホール係数の測定により確認したところ、いずれの基板もn型を示した。ホール係数測定による導電型測定は原理的に信頼性が高いので、高抵抗率基板に対する熱起電力法による上記測定結果としては、化学エッチ面の測定結果のほうがより信頼できるといえる。さらに、高抵抗率基板に対する四探針法による抵抗率測定に関しても、化学エッチ面の方が測定値のバラツキが少なく、ホール係数測定による抵抗率により近い値を示していることがわかった。これらの測定結果(中心1点)を表1にまとめて示す。
【0037】
【表1】

Figure 0004600707
【0038】
次に、基板A及びBを切り出したものと同一のシリコン単結晶棒から作製された別の基板に対し、▲1▼の処理を施した後、大気中に各種時間放置した表面を四探針法により抵抗率の測定を行った結果を図6に示す。これによれば、放置時間が4時間程度までは抵抗率測定値は略安定しているが、4時間を越えると測定値が増加し、不安定化していることがわかる。特に、抵抗率が10000Ω・cmを超える高抵抗率の基板についてはこの傾向が著しいことがわかる。
【図面の簡単な説明】
【図1】本発明に係るシリコン単結晶基板の製造方法の一例を示す流れ図。
【図2】酸化膜除去処理の種々の形態を示す模式図。
【図3】四探針法による抵抗率測定の概念を説明する図。
【図4】熱起電力法による導電型判定の概念を説明する図。
【図5】抵抗率測定に及ぼす酸化膜除去処理の種類の影響を確認する実験結果を示すグラフ。
【図6】抵抗率測定に及ぼす酸化膜除去処理後の放置時間の影響を確認する実験結果を示すグラフ。[0001]
[Technical field to which the invention belongs]
The present invention relates to a method for measuring the resistivity of a semiconductor silicon substrate such as a silicon single crystal substrate and a method for determining a conductivity type, and in particular, a resistivity measurement suitable for a high resistivity silicon substrate having a resistivity exceeding 5000 Ω · cm. The present invention relates to a method, a method for determining a conductivity type, and a method for manufacturing a semiconductor silicon substrate using the method.
[0002]
[Prior art]
Conventionally, FZ single crystal silicon substrates manufactured by a floating zone method (FZ method) have been used for high voltage power devices and thyristors. In recent years, Czochralski has been used as a high-resistivity single crystal silicon substrate capable of simultaneously satisfying a reduction in parasitic capacitance and an increase in diameter in semiconductor devices for mobile communication and the most advanced C-MOS devices. A CZ single crystal silicon substrate having a high resistivity produced by the method (CZ method) has been attracting attention.
[0003]
By the way, the most commonly used method for measuring the resistivity of a semiconductor silicon substrate such as the single crystal silicon substrate is a method called a four-probe method. As shown in FIG. 3, four electrodes serving as probes are arranged in a straight line on the surface to be measured of the substrate, and a constant current is supplied from a constant current power source through the measurement current conducting electrode, and measurement is performed in this state. By measuring the potential difference between the measuring electrodes, the resistivity is calculated from the potential difference and the distance between the measuring electrodes. By separating the measurement current conducting electrode and the measurement electrode, the influence of the electrode contact resistance can be eliminated.
[0004]
A silicon substrate measurement method using the four-probe method is standardized by ASTM (American Society for Testing and Materials) (ASTM F84-73), and according to it, predetermined surface treatment (etching, lapping, acetone cleaning) In the case of p-type, it is possible to measure up to 2000 Ω · cm, and in the case of n-type, it is possible to measure up to 6000 Ω · cm.
[0005]
On the other hand, as a conductivity type determination method, there are a method using rectification by point contact and a method of measuring the Hall coefficient, but the thermoelectromotive force method is often adopted because of the simplicity of measurement. As a device used for the thermoelectromotive force method, a heating probe type as shown in FIG. 4 is mainly used. In this method, one of the two probes is kept at room temperature, and the other is brought into contact with the sample while being heated to 40-60 ° C. by an attached heater coil (heated by a variable power source). Then, since a thermoelectromotive force is generated due to a temperature difference between the contacts, the conductivity type can be determined by detecting the direction of the thermoelectromotive force with a zero indicator (galvanometer) or the like. This conductivity type determination method is also standardized by ASTM (ASTM F42-77), and a reliable value is obtained up to 1000 Ω · cm for both p-type and n-type.
[0006]
[Problems to be solved by the invention]
However, since it is up to the above-mentioned resistivity that the measurement accuracy is guaranteed by the conventional method, there is a problem in reliability when measuring an extremely high resistivity exceeding these. Even in the case of conducting conductivity type determination, in the case of a semiconductor silicon substrate having a high resistivity, the conventional method tends to be affected by the difference in mobility between electrons and holes, and the determination tends to be inaccurate. (For example, the conductivity type is determined to be n-type regardless of the type of majority carrier).
[0007]
In the conventional resistivity measurement method or conductivity type determination method, the substrate is lapped and the lapped surface is used as the surface to be measured. However, a large-diameter substrate (CZ substrate) having a diameter of 300 mm or more in recent years. In order to uniformly wrap a large number of sheets at once, it was impossible unless an expensive large wrapping machine was used.
[0008]
The object of the present invention is to measure the resistivity and conductivity type with high reproducibility by a simple method even if the resistivity is very high such that the resistivity exceeds 5000 Ω · cm. It is an object of the present invention to provide a method for measuring the resistivity of a semiconductor silicon substrate and a conductivity type determining method, and a method for manufacturing a semiconductor silicon substrate using the method for measuring resistivity.
[0009]
[Means for solving the problems and actions / effects]
In order to solve the above-mentioned problems, a first method for measuring the resistivity of a semiconductor silicon substrate according to the present invention is a method for measuring the resistivity of a semiconductor silicon substrate by a four-probe method. After the oxide film on the surface to be measured of the measurement substrate) is removed or the film thickness is 0.5 nm or less, the resistivity is measured on the surface to be measured within 4 hours.
[0010]
According to the first method of measuring resistivity of a semiconductor silicon substrate according to the present invention, even if a natural oxide film or a thermal oxide film is formed on the substrate surface, the oxide film on the surface to be measured of the substrate is removed or By performing a treatment to form a film thickness of 0.5 nm or less (hereinafter referred to as an oxide film removal treatment), the accuracy of resistivity measurement is improved, especially even for a substrate having a high resistivity exceeding 5000 Ω · cm. The resistivity can be measured with high accuracy and good reproducibility. In addition, by keeping the time until the resistivity measurement is performed within 4 hours after the oxide film removal process, the variation and variation of the resistivity measurement value can be remarkably reduced, and the measurement accuracy and reproducibility can be reduced. This can greatly contribute to improvement. Note that the oxide film removal treatment can be performed using, for example, an aqueous solution containing hydrofluoric acid.
[0011]
The surface to be measured for resistivity of the semiconductor silicon substrate is preferably a surface ground surface or a chemically etched surface. These methods do not require a dedicated large-scale apparatus such as lapping even when processing a large substrate, particularly a substrate having a diameter of 300 mm (12 inches) or more, and thus can be easily and inexpensively implemented. There is.
[0012]
In addition, according to the present inventors' extensive investigation, the optimum surface state differs depending on the resistivity level to be measured of the semiconductor silicon substrate, and the surface treatment type of the semiconductor silicon substrate is properly used according to the resistivity level. Thus, it was found that the resistivity can be measured with high accuracy and reproducibility in a wide resistivity range. Specifically, the second method of measuring the resistivity according to the present invention is a method of measuring the resistivity of a semiconductor silicon substrate by a four-probe method, wherein a semiconductor silicon substrate cut out from a part of a silicon single crystal rod is used. The measured surface of the resistivity is measured as a chemically etched surface. If the measured value exceeds 5000 Ω · cm, the chemically etched surface is measured. If it is less than 5000 Ω · cm, the chemically etched surface or the ground surface is measured. The resistivity of the semiconductor silicon substrate or the semiconductor silicon substrate cut out from the other part of the silicon single crystal rod is measured.
[0013]
In this specification, the chemically etched surface refers to a surface obtained by etching the surface of the semiconductor silicon substrate (the surface of the silicon itself) in a chemical etching solution, and the surface of the semiconductor silicon substrate immediately before the etching process is a lapping surface. It does not matter whether it is a surface ground surface or a mirror polished surface. The surface ground surface is a surface ground by a grindstone.
[0014]
That is, for a substrate having a high resistivity exceeding 5000 Ω · cm, it is extremely effective to process the surface to be measured by chemical etching in order to perform highly accurate resistivity measurement with little variation and fluctuation. On the other hand, with a substrate having a low resistivity of 5000 Ω · cm or less, it is possible to measure the resistivity with high accuracy with little variation and fluctuation, even when the surface to be measured is subjected to surface grinding. Further, since surface grinding is usually a single wafer processing, when measuring a small number of sheets by sampling inspection or the like, it is advantageous in terms of cost compared with chemical etching which requires batch processing of a large number of sheets. It should be noted that chemical etching can be employed even on a low resistivity substrate, and similarly good measurement is possible.
[0015]
The second resistivity measuring method of the present invention can naturally be combined with the first resistivity measuring method of the present invention. In this case, the oxide film on the surface to be measured of the substrate to be measured is removed by chemical etching or surface grinding or processed to have a film thickness of 0.5 nm or less. The rate will be measured. Thereby, the accuracy of resistivity measurement is further improved, and fluctuations and variations in measured values can be further suppressed.
[0016]
Further, the processing mode of the substrate measurement surface employed in the resistivity measurement method is also effective when determining the conductivity type of the substrate by the thermoelectromotive force method using the measurement surface. That is, after the oxide film on the surface to be measured of the substrate to be measured is removed or the film thickness is 0.5 nm or less, the conductivity type discrimination measurement is performed on the surface to be measured within 4 hours. Accuracy and reproducibility are improved.
[0017]
The method for determining the conductivity type of a semiconductor silicon substrate according to the present invention is a method for determining the conductivity type of a semiconductor silicon substrate by a thermoelectromotive force method, wherein the resistance of a semiconductor silicon substrate cut out from a part of a silicon single crystal rod is used. The surface to be measured is measured as a chemically etched surface, and when the measured value exceeds 5000 Ω · cm, the chemically etched surface is used as the surface to be measured. The semiconductor silicon substrate or the conductivity type of the semiconductor silicon substrate cut out from the other part of the silicon single crystal rod is determined. For substrates with a resistivity exceeding 5000 Ω · cm, the conductivity type can be easily and accurately determined by the thermoelectromotive force method despite the high resistivity by using the chemically etched surface as the surface to be measured. It becomes. In the case of a substrate having a resistivity of 5000 Ω · cm or less, accurate determination can be made using either a chemically etched surface or a surface ground surface.
[0018]
In the resistivity measuring method and the conductivity type determining method of the present invention, the surface to be measured is processed by chemical etching or surface grinding so that the glossiness of the surface to be measured is 10 to 90%. desirable. The glossiness in the present invention means the specular glossiness defined in 3.1 of JIS: Z8741 (1962). If the glossiness is less than 10%, the accuracy and reproducibility may be insufficient particularly when measuring the resistivity or determining the conductivity type of a high-resistance substrate. On the other hand, a glossiness of 90% or more is excessive from the viewpoint of ensuring measurement accuracy and reproducibility, and is difficult to achieve in principle by surface grinding. On the other hand, even when chemical etching is used, the etching time is extremely long. Must be done and is inefficient.
[0019]
Next, the first manufacturing method of the semiconductor silicon substrate includes a resistivity measuring step of measuring the resistivity of the semiconductor silicon substrate of the present invention and a selecting step of selecting the semiconductor silicon substrate based on the resistivity measurement result. Can be included.
[0020]
By selecting the semiconductor silicon substrate according to the resistivity measurement result according to the method of the present invention, it is possible to contribute to improving the substrate quality by reducing the defect rate of the semiconductor silicon substrate product or improving the reliability of the guaranteed resistivity value. it can. The semiconductor silicon substrate to be measured may be a final product such as a mirror wafer cleaned after mirror polishing, or may be an intermediate product generated in the course of becoming a final product. In addition, the sorting may be performed by measuring the resistivity of all the substrates included in the product lot, and removing the non-standard resistivity as a defective product. Remove the substrate sample, measure the resistivity, and if the extracted substrate sample contains more than a certain number of non-standard resistivities, select the entire product lot as a defective lot-out. Also good.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below. FIG. 1 is a flowchart schematically showing an example of a manufacturing process of a mirror surface wafer which is a semiconductor silicon substrate. First, a silicon single crystal ingot is manufactured by a known method such as the FZ method or the CZ method (step a). A predetermined type and a predetermined amount of dopant are added to the silicon single crystal ingot, and the conductivity type is adjusted to either n-type or p-type. In some cases, a dopant is not intentionally added to obtain a high resistivity. The single crystal ingot thus obtained is subjected to outer diameter grinding (step b), an orientation flat or an orientation notch is formed (step c), and further cut into blocks having a certain resistivity range (step d). The block thus finished is sliced by cutting the inner peripheral edge or the like (step e). Chamfering is performed on the outer peripheral edges of the silicon single crystal wafer after slicing by beveling (step f).
[0022]
The silicon single crystal wafer after chamfering is lapped on both sides using loose abrasive grains (step g). Next, both surfaces are chemically etched by immersing them in an etching solution (step h). The chemical etching step (step h) is performed in order to remove the damaged layer generated on the surface of the silicon single crystal substrate in the machining steps of steps b to g. Removal of the damaged layer by chemical etching is performed by acid etching with a mixed acid aqueous solution of hydrofluoric acid, nitric acid and acetic acid, or both alkali etching with a sodium hydroxide aqueous solution and the acid etching.
[0023]
After the chemical etching step (step h), a mirror polishing step (step i) is performed. In mirror polishing, for example, a silicon single crystal substrate after chemical etching is attached to a rotating polishing block with wax or the like, and pressed onto a rotating polishing surface plate to which a polishing cloth is bonded with a predetermined pressure. Then, polishing is performed by rotating the surface plate while supplying a polishing liquid such as alkaline colloidal silica mainly composed of SiO 2 to the polishing cloth. This polishing is so-called mechanical chemical polishing by a combined action of mechanical polishing using colloidal silica or the like as abrasive grains and chemical etching with an alkaline solution. A silicon single crystal substrate whose main surface is mirror-polished is packaged as a product after washing and drying. In the case of a CZ wafer, donor killer heat treatment for erasing the oxygen donor is usually performed after completion of any one of steps (e) to (i).
[0024]
Resistivity measurement and conductivity type determination (hereinafter, collectively referred to as inspection measurement) use a slab (flat plate) or wafer cut from both ends of the block cut in step b and subjected to donor killer heat treatment. However, it is also possible to extract a predetermined number of samples as inspection samples from products (one that has been subjected to donor killer heat treatment) after completion of any of the steps (e) to (i). it can. In some cases, the method of the present invention can also be used when a predetermined additional heat treatment is performed after the mirror polishing step (i) to inspect changes after the heat treatment. On the surface of the silicon single crystal substrate to be measured, an oxide film is formed by cleaning / drying and subsequent storage in the air or heat treatment. Therefore, prior to the inspection measurement, an oxide film removal process is performed on the surface to be measured.
[0025]
The substrate having undergone the oxide film removal process is subjected to resistivity measurement by the four-probe method illustrated in FIG. 3 within 4 hours after the completion of the oxide film removal process, and the thermoelectromotive force method illustrated in FIG. Thus, the conductivity type is determined. As these measurement methods themselves, known methods described in the above-mentioned ASTM and the like can be adopted. Since the surface treated by chemical etching is relatively active, if it is left in the atmosphere for a long time, moisture adsorption and re-formation of the oxide film are particularly likely to occur, which may affect the measurement in the high resistivity region. Therefore, it is particularly effective to perform the measurement as quickly as possible within 4 hours as described above, in order to perform a stable measurement with few fluctuations and variations.
The oxide film removal process can be performed by using a lapping apparatus that processes a large number of wafers at a time as shown in FIG. 2A. However, in the case of a large wafer having a diameter of 300 mm or more, the lapping apparatus is very large. It is expensive and it is disadvantageous to use it only for inspection and measurement. Therefore, in the present invention, in addition to the treatment of removing only the oxide film by dipping in a hydrofluoric acid aqueous solution or the like, surface grinding as shown in FIG. 2B or chemical etching as shown in FIG. Simultaneously with the oxide film removal process, the silicon single crystal substrate surface may be removed in a small amount.
[0027]
In the silicon single crystal substrate, the resistivity measurement value and the conductivity type determination result vary depending on the surface state of the surface to be measured. In particular, when the resistivity of the substrate is large, the influence becomes significant. Therefore, the measured surface of the measured substrate cut out from a part of the silicon single crystal rod (or block) is measured as a chemically etched surface, and when the measured value exceeds 5000 Ω · cm, the measured value of the chemically etched surface is measured. Can be determined as the true resistivity, and when it is 5000 Ω · cm or less, the measured value of the chemically etched surface or the surface ground surface can be determined as the true resistivity.
[0028]
For example, when a slab is cut out from both ends of the block in the step (b) of FIG. 1, the damaged layer is etched with a mixed acid aqueous solution and the resistivity is measured as a chemically etched surface. And when the measured value exceeds 5000 Ω · cm, this is regarded as the true resistivity. In addition, when the measured value shows 5000 Ω · cm or less, this value can be judged as the true resistivity, but the measurement is performed on the surface after surface grinding of the substrate, and the value is true. It can also be set as the resistivity. That is, if the measured resistivity value is 5000 Ω · cm or less, a single wafer plane is used as a processing method for the surface to be measured when the resistivity of the silicon substrate produced from the remaining block from which the slab is cut out is inspected. Grinding can be used, and cost merit is obtained.
[0029]
Similarly to the measurement of resistivity, the conductivity type is measured by the four-probe method on the chemically etched surface, and the measurement value is divided into a case where the measured value exceeds 5000 Ω · cm and a case where the measured value is 5000 Ω · cm or less. Just judge. In this case, since the surface to be measured immediately after the etching or the surface grinding is in a state where the silicon on the substrate surface is exposed by these processes, it is preferable to measure the resistivity within 4 hours.
[0030]
Next, also when the substrate to be measured is extracted from the step e, since the substrate surface is the slice surface in common with the step b, the measurement can be performed by the same method as in the above example. Also, when the substrate to be measured is extracted from step g or step i, the substrate surface is different from step b in that it is a lapping surface or a mirror polished surface, but the resistivity is measured as a chemically etched surface by etching with a mixed acid aqueous solution. This is the same with respect to a series of procedures for making a judgment. On the other hand, when the substrate to be measured is extracted from step h, the surface to be measured is already a chemically etched surface, so that it can be measured as it is and can be judged from the measured resistivity. The above measurement example relates to a measurement method when the resistivity of the substrate to be measured is unknown, but the resistivity is predicted to some extent depending on the manufacturing conditions of the silicon single crystal rod for producing the substrate to be measured. In the case where the resistivity of the substrate to be measured is expected to be 5000 Ω · cm or less, the surface to be measured is a chemically etched surface or a surface ground surface, and the resistivity is expected to exceed 5000 Ω · cm. May be a method in which the surface to be measured is a chemically etched surface and the resistivity is measured on the surface to be measured.
[0031]
Regardless of whether a chemically etched surface or a surface ground surface is used as the surface to be processed of the silicon single crystal substrate, the processing conditions are adjusted so that the glossiness of the surface to be measured after processing is 10 to 90%. However, the chemically etched surface has a higher glossiness, for example, about 40 to 90%. Moreover, the glossiness of the surface ground surface is about 10 to 30%.
[0032]
When the resistivity measurement and the conductivity type determination are completed, the quality of the product lot is determined according to the result. For example, if a certain number of substrate samples with resistivity outside the specified range are detected, the resistivity statistical values such as average value, standard deviation, maximum value, minimum value, and range will not exceed the specified value. If not satisfied, a determination criterion is set as appropriate, and product lots that deviate from the determination criterion are excluded as defective lots. In addition, all the lot-out products can be measured and used to extract only good products.
[0033]
【Example】
In order to confirm the effect of the present invention, the following experiment was conducted.
300 mm in diameter and crystal plane polished from each of three types of silicon single crystal rods (step a in FIG. 1) pulled without adding a dopant by the CZ method through steps b to g in FIG. Three types of mirror-polished silicon single crystal substrates (hereinafter referred to as substrates A, B, and C) having a substantially orientation (100) were prepared (having been subjected to donor killer heat treatment). The following three stages of processing were performed on these.
(1) Using a mixed acid composed of hydrofluoric acid, nitric acid and acetic acid, a chemical etching of about 10 μm per side is carried out, and then immediately rinsed with pure water for 5 minutes (chemical etching treatment).
(2) After surface grinding of only one surface of the substrate subjected to the treatment of (1) with a diamond grindstone, SC-1 cleaning is performed (surface grinding treatment).
Further, the natural oxide films on both sides of the substrate subjected to the treatment (3) and (2) are removed with a 5% hydrofluoric acid aqueous solution (oxide film removal treatment).
[0034]
Then, within 1 hour after the oxide film removal process of (3), the conductivity type (p / n) determination of each surface of the substrate (one surface is a chemically etched surface and the other surface is a ground surface) is determined. Further, resistivity was measured by a four-point probe method. The resistivity measurement was performed while changing the measurement position distance from the center of the substrate main surface. Regarding the conductivity type determination, a thermoelectromotive force method was used, and measurement was performed for one central point of the substrate.
[0035]
5A, 5B, and 5C show the measurement results of the substrates A, B, and C, respectively. According to this, in the case of the substrate A having a relatively low resistivity (3000 to 4000 Ω · cm), the chemically etched surface and the surface ground surface showed almost the same resistivity and the same conductivity type (n-type). On the other hand, in the case of the substrates B and C showing high resistivity, there is a large difference between the two in terms of resistivity, and in terms of conductivity type, the chemically etched surface is n-type and the surface ground surface is The value was different from that of p-type.
[0036]
Moreover, when the conductivity type of these board | substrates was confirmed by the measurement of the Hall coefficient separately, all the board | substrates showed n type. Since the conductivity type measurement by Hall coefficient measurement has high reliability in principle, it can be said that the measurement result of the chemically etched surface is more reliable as the measurement result by the thermoelectromotive force method for the high resistivity substrate. Further, regarding the resistivity measurement by the four-probe method for the high resistivity substrate, it was found that the chemically etched surface had less variation in the measured value and showed a value closer to the resistivity by the Hall coefficient measurement. These measurement results (one center point) are summarized in Table 1.
[0037]
[Table 1]
Figure 0004600707
[0038]
Next, after subjecting another substrate made from the same silicon single crystal rod from which the substrates A and B were cut out to the surface of the four probe after being subjected to the treatment (1) and left in the atmosphere for various times. The result of measuring the resistivity by the method is shown in FIG. According to this, it is understood that the measured resistivity value is substantially stable until the standing time is about 4 hours, but the measured value increases and becomes unstable when it exceeds 4 hours. In particular, it can be seen that this tendency is remarkable for a substrate having a high resistivity exceeding 10,000 Ω · cm.
[Brief description of the drawings]
FIG. 1 is a flowchart showing an example of a method for producing a silicon single crystal substrate according to the present invention.
FIG. 2 is a schematic diagram showing various forms of oxide film removal processing.
FIG. 3 is a diagram for explaining the concept of resistivity measurement by a four-point probe method.
FIG. 4 is a diagram for explaining the concept of conductivity type determination by a thermoelectromotive force method.
FIG. 5 is a graph showing experimental results for confirming the influence of the type of oxide film removal treatment on resistivity measurement.
FIG. 6 is a graph showing experimental results for confirming the influence of the standing time after the oxide film removal treatment on the resistivity measurement.

Claims (5)

四探針法により半導体シリコン基板の抵抗率を測定する方法において、シリコン単結晶棒の一部から切り出された半導体シリコン基板の抵抗率の被測定面を化学エッチ面として抵抗率を事前に測定し、その測定値が5000Ω・cmを超える場合には化学エッチ面を被測定面とし、5000Ω・cm以下の場合には化学エッチ面又は平面研削面を被測定面として、前記シリコン単結晶棒の他の部分から切り出された半導体シリコン基板の抵抗率を、前記抵抗率に代わる真の抵抗率として測定することを特徴とする半導体シリコン基板の抵抗率測定方法。In the method of measuring the resistivity of a semiconductor silicon substrate by the four-point probe method, the resistivity is measured in advance with the measured surface of the resistivity of the semiconductor silicon substrate cut out from a part of a silicon single crystal rod as a chemically etched surface. , and the surface to be measured of the chemical etching surface when the measured value exceeds 5,000 ohms · cm, as measured surface chemical etch surface or surface grinding surface in the following cases 5,000 ohms · cm, before Symbol silicon single crystal rod the resistivity of the semiconductor silicon substrate cut out from other portions, the resistivity measurement method of the semiconductor silicon substrate and measuring the true resistivity in place of the resistivity. 四探針法により半導体シリコン基板の抵抗率を測定する方法において、測定対象となる半導体シリコン基板(以下、被測定基板という)の抵抗率が5000Ω・cm以下と見込まれる場合には、前記被測定基板の被測定面を化学エッチ面または平面研削面とし、前記抵抗率が5000Ω・cmを超えると見込まれる場合には前記被測定面を化学エッチ面とし、該被測定面抵抗率を真の抵抗率として測定することを特徴とする半導体シリコン基板の抵抗率測定方法。In the method of measuring the resistivity of a semiconductor silicon substrate by a four-point probe method, when the resistivity of a semiconductor silicon substrate to be measured (hereinafter referred to as a measured substrate) is expected to be 5000 Ω · cm or less, the measured the measurement surface of the substrate and chemically etched surface or surface grinding surface, the surface to be measured and the chemical etching surface when the resistivity is expected to exceed 5,000 ohms · cm, the true resistivity of the該被measuring surface A method for measuring resistivity of a semiconductor silicon substrate, wherein the resistivity is measured as a resistivity of the semiconductor silicon substrate. 測定対象となる半導体シリコン基板(以下、被測定基板という)の被測定面の酸化膜を、化学エッチング又は平面研削により除去するか又は0.5nm以下の膜厚とする処理を行なった後、4時間以内に前記被測定面において前記真の抵抗率を測定することを特徴とする請求項1又は2に記載の半導体シリコン基板の抵抗率測定方法。After the oxide film on the surface to be measured of the semiconductor silicon substrate to be measured (hereinafter referred to as the substrate to be measured) is removed by chemical etching or surface grinding, or is processed to have a film thickness of 0.5 nm or less, 4 3. The method of measuring a resistivity of a semiconductor silicon substrate according to claim 1 , wherein the true resistivity is measured on the surface to be measured within a time. 熱起電力法により半導体シリコン基板の導電型を判定する方法において、シリコン単結晶棒の一部から切り出された半導体シリコン基板の抵抗率の被測定面を化学エッチ面として抵抗率を測定し、その測定値が5000Ω・cmを超える場合には化学エッチ面を、5000Ω・cm以下の場合には化学エッチ面又は平面研削面を被測定面として、前記半導体シリコン基板又は前記シリコン単結晶棒の他の部分から切り出された半導体シリコン基板の導電型を判定することを特徴とする半導体シリコン基板の導電型の測定方法。The method of determining the conductivity type of the semiconductor silicon substrate by thermoelectromotive force method, the resistivity was measured measurement surface resistivity of the semiconductor silicon substrate cut out from a portion of the silicon single crystal rod as a chemical etch surface, that When the measured value exceeds 5000 Ω · cm, the chemically etched surface is equal to or less than 5000 Ω · cm. A method for measuring a conductivity type of a semiconductor silicon substrate, comprising: determining a conductivity type of a semiconductor silicon substrate cut out from a portion. 請求項1ないしのいずれかに記載の方法により半導体シリコン基板の前記真の抵抗率を測定する抵抗率測定工程と、
その抵抗率測定結果に基づいて、前記半導体シリコン基板を選別する選別工程と、
を含むことを特徴とする半導体シリコン基板の製造方法。
A resistivity measuring step for measuring the true resistivity of the semiconductor silicon substrate by the method according to any one of claims 1 to 3 ,
Based on the resistivity measurement result, a sorting step for sorting the semiconductor silicon substrate,
A method for producing a semiconductor silicon substrate, comprising:
JP2000263224A 2000-08-31 2000-08-31 Method for measuring resistivity of semiconductor silicon substrate, method for determining conductivity type of semiconductor silicon substrate, and method for manufacturing semiconductor silicon substrate Expired - Fee Related JP4600707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000263224A JP4600707B2 (en) 2000-08-31 2000-08-31 Method for measuring resistivity of semiconductor silicon substrate, method for determining conductivity type of semiconductor silicon substrate, and method for manufacturing semiconductor silicon substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000263224A JP4600707B2 (en) 2000-08-31 2000-08-31 Method for measuring resistivity of semiconductor silicon substrate, method for determining conductivity type of semiconductor silicon substrate, and method for manufacturing semiconductor silicon substrate

Publications (2)

Publication Number Publication Date
JP2002076080A JP2002076080A (en) 2002-03-15
JP4600707B2 true JP4600707B2 (en) 2010-12-15

Family

ID=18750802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000263224A Expired - Fee Related JP4600707B2 (en) 2000-08-31 2000-08-31 Method for measuring resistivity of semiconductor silicon substrate, method for determining conductivity type of semiconductor silicon substrate, and method for manufacturing semiconductor silicon substrate

Country Status (1)

Country Link
JP (1) JP4600707B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010028011A (en) * 2008-07-24 2010-02-04 Sumco Corp Method for measuring thickness of epitaxial layer, method for manufacturing epitaxial wafer and method for controlling manufacturing process of epitaxial wafer
JP5338326B2 (en) * 2009-01-15 2013-11-13 信越半導体株式会社 Method for measuring conductivity type and resistivity of silicon single crystal wafer, and method for manufacturing silicon single crystal wafer
JP5733030B2 (en) * 2011-06-03 2015-06-10 株式会社Sumco Method for evaluating electrical characteristics of boron-doped p-type silicon and method for manufacturing silicon wafer
DE102013216195B4 (en) * 2013-08-14 2015-10-29 Infineon Technologies Ag Process for postdoping a semiconductor wafer
FR3048103B1 (en) * 2016-02-22 2018-03-23 Stmicroelectronics (Rousset) Sas METHOD FOR DETECTING A SLIMMING OF THE SEMICONDUCTOR SUBSTRATE OF AN INTEGRATED CIRCUIT FROM THE BACK SIDE AND THE CORRESPONDING INTEGRATED CIRCUIT
JP7067267B2 (en) * 2018-05-23 2022-05-16 信越半導体株式会社 Method for measuring resistivity of raw material crystal and method for manufacturing FZ silicon single crystal
JP7172747B2 (en) * 2019-03-06 2022-11-16 信越半導体株式会社 Method for measuring resistivity of silicon single crystal
JP7092089B2 (en) * 2019-04-10 2022-06-28 株式会社Sumco Conductive type discrimination device and conductive type discrimination method for semiconductor products
JP7347318B2 (en) * 2020-04-28 2023-09-20 信越半導体株式会社 Method for measuring resistivity of base wafer of bonded SOI wafer
CN113125854A (en) * 2021-04-07 2021-07-16 上海新昇半导体科技有限公司 Method for judging conductive type of silicon wafer
CN113655094B (en) * 2021-08-06 2024-01-19 上海新昇半导体科技有限公司 Method for determining conductivity type of silicon wafer
CN113721076A (en) * 2021-08-09 2021-11-30 上海新昇半导体科技有限公司 Method for measuring resistivity of silicon wafer
CN117038428A (en) * 2023-06-19 2023-11-10 宁夏中欣晶圆半导体科技有限公司 Pretreatment method for improving resistivity performance of silicon wafer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2953263B2 (en) * 1993-07-16 1999-09-27 信越半導体株式会社 Method for measuring resistivity of n-type silicon epitaxial layer
JPH07106388A (en) * 1993-09-30 1995-04-21 Sony Corp Resistance measuring device
JP3778412B2 (en) * 1999-10-15 2006-05-24 信越半導体株式会社 Inspection wafer, method for producing the same, and inspection method using the same

Also Published As

Publication number Publication date
JP2002076080A (en) 2002-03-15

Similar Documents

Publication Publication Date Title
JP4600707B2 (en) Method for measuring resistivity of semiconductor silicon substrate, method for determining conductivity type of semiconductor silicon substrate, and method for manufacturing semiconductor silicon substrate
JP3120825B2 (en) Epitaxial wafer and method for manufacturing the same
WO2020179284A1 (en) Resistivity measuring method for silicon single crystal
KR20190048278A (en) Method for predicting thickness of oxide layer of silicon wafer
JP2015026755A (en) Method for measuring resistivity of silicon wafer
JP5467923B2 (en) Manufacturing method of silicon wafer for metal contamination evaluation
US6884634B2 (en) Specifying method for Cu contamination processes and detecting method for Cu contamination during reclamation of silicon wafers, and reclamation method of silicon wafers
JP5338326B2 (en) Method for measuring conductivity type and resistivity of silicon single crystal wafer, and method for manufacturing silicon single crystal wafer
TWI737339B (en) Determination method of resistivity of single crystal silicon
CN111624460A (en) Method for detecting defect distribution area of monocrystalline silicon
JP3778412B2 (en) Inspection wafer, method for producing the same, and inspection method using the same
JPH10189677A (en) Evaluation method for silicon wafer
JPH11238738A (en) Method for eliminating heavy metal impurities in semiconductor wafer and manufacture thereof
JP2000208578A (en) Evaluation method for silicon wafer and silicon wafer
JP6003447B2 (en) Method for evaluating metal contamination of semiconductor substrate and method for manufacturing semiconductor substrate
JP2005216993A (en) Evaluation method for silicon wafer
JP5733030B2 (en) Method for evaluating electrical characteristics of boron-doped p-type silicon and method for manufacturing silicon wafer
TWI814488B (en) Thickness measurement method and flatness measurement method of high resistance silicon wafer
JP2001217253A (en) Soi wafer, semiconductor single-crystal wafer and manufacturing method therefor
JP2985583B2 (en) Inspection method of damaged layer on mirror-finished surface of silicon wafer and thickness measurement method
JP2000091172A (en) Silicon wafer, quality evaluation method and control method for the same
CN117782731A (en) Method and system for detecting crystal performance of silicon rod
JPH05218166A (en) Method for estimating silicon wafer
JP2003100831A (en) Method for evaluating silicon wafer
CN112614912A (en) Preparation method of indium antimonide chip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4600707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees