JPS6070741A - Interelement isolation - Google Patents

Interelement isolation

Info

Publication number
JPS6070741A
JPS6070741A JP17964683A JP17964683A JPS6070741A JP S6070741 A JPS6070741 A JP S6070741A JP 17964683 A JP17964683 A JP 17964683A JP 17964683 A JP17964683 A JP 17964683A JP S6070741 A JPS6070741 A JP S6070741A
Authority
JP
Japan
Prior art keywords
insulating layer
groove
elements
buried
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17964683A
Other languages
Japanese (ja)
Inventor
Koji Eguchi
江口 剛治
Shinichi Sato
真一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP17964683A priority Critical patent/JPS6070741A/en
Publication of JPS6070741A publication Critical patent/JPS6070741A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To improve an electrically insulating property between elements, to enable to form the pattern of a buried insulating layer in a minute shape, and to contrive to enhance the degree of integration of the elements by a method wherein a groove is formed at the part to separate between the elements on the main surface part of a semiconductor substrate, and an insulator is buried in the groove thereof to form an insulating layer. CONSTITUTION:A groove 15 is formed selectively according to the anisotropic etching method to the part to separate between the first element forming region 2 and the second element forming region 3 of the main surface part of a p type silicon substrate 1. An insulator is deposited according to the bias sputtering method on the main surface containing the groove 15 of the p type silicon substrate 1 to form an insulating layer 16. The surface of the insulating layer 16 is flattened according to the bias sputtering method thereof, and no cavity is generated to the part inside of the groove 15 of the insulating layer 16. The insulating layer 16 is etched finally to remove the part excluding the part inside of the groove 15 of the insulating layer 16, and the part left in the groove 15 of the insulating layer 16 is made to a buried insulating layer 16a for isolation between the elements.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明の大規模半導体集積回路装置(LSI)などの
製造プロセスにおける素子間分離方法に関するもので゛
ある。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for isolating elements in the manufacturing process of large-scale semiconductor integrated circuit devices (LSI) and the like.

〔従来技術〕[Prior art]

第1図はpn接合による従来の素子間分離方法の一例を
説明するための断面図である。
FIG. 1 is a cross-sectional view for explaining an example of a conventional isolation method between elements using a pn junction.

この従来例の方法は、p形シリコン基板(1)の主面部
の第1の素子形成領域(2)と第2の素子形成領域(3
)とを分離すべき部分にn形不純物を選択的に拡散して
n形分離拡散層(4)を形成し、このn形分離拡散層(
4)とp形シリコン基板(1)との間に形成されるpn
接合(、r)によって、素子形成領域+21 、 +3
j間を電気的に分離するものである。
This conventional method involves forming a first element formation region (2) and a second element formation region (3) on the main surface of a p-type silicon substrate (1).
) to form an n-type separation diffusion layer (4) by selectively diffusing n-type impurities into the portion to be separated from the n-type separation diffusion layer (4).
4) and the p-type silicon substrate (1).
Due to the junction (, r), the element formation area +21, +3
This is to electrically isolate between.

ところが、この従来例の方法では、pn接合(J)の容
量や素子形成領域(21、(31とn形分離拡散層(4
)とからなる寄生トランジスタによる電気的影響があり
、しかもn形分離拡散層(4)のパターンの幅りが数μ
m程度になるので、素子の集積度の面での問題がある。
However, in this conventional method, the capacitance of the pn junction (J), the element formation region (21, (31) and the n-type isolation diffusion layer (4)
), and the width of the pattern of the n-type isolation diffusion layer (4) is several microns.
Since the number of pixels is about m, there is a problem in terms of the degree of integration of the elements.

第2図は絶縁物の埋め込みによる従来の素子間分離方法
の一例を説明するための断面図である。
FIG. 2 is a cross-sectional view for explaining an example of a conventional isolation method between elements by embedding an insulator.

この従来例の方法は、p形シリコン基板(1)の主面部
の第1の素子形成領域(2)と第2の素子形成領域(3
)とを分離すべき部分に溝(5)を選択的にウェットエ
ツチング法で形成し、この溝(5)内にCVD法で形成
された絶縁物を埋め込んで素子間分離用の埋め込み絶縁
層(6)を形成するものである。
This conventional method involves forming a first element formation region (2) and a second element formation region (3) on the main surface of a p-type silicon substrate (1).
A trench (5) is selectively formed in the part to be separated from the device by wet etching, and an insulator formed by the CVD method is buried in the trench (5) to form a buried insulating layer ( 6).

この従来例の方法では、埋め込み絶縁層(6)によって
素子間を分離するので、第1図に示した従来例のような
接合容量や寄生トランジスタによる電気的影響がなく、
素子間の電気的絶縁性がよい。
In this conventional method, the elements are separated by the buried insulating layer (6), so there is no electrical influence due to junction capacitance or parasitic transistors as in the conventional example shown in FIG.
Good electrical insulation between elements.

しかし、溝(5)の側壁面が溝(6)の形成時のサイド
エツチングによって上方Gこ拡開するので、溝(5)内
に絶縁物を表面が平坦になるように埋め込むことができ
ず、埋め込み絶縁N(6)の表面に凹凸ができるという
問題がある。筐だ、溝(5)の側壁面が上方に拡開する
ことによって埋め込み絶縁層(6)のパターン幅が大き
くなるので、素子の集積度の面での問題を解決すること
ができない。
However, since the side wall surface of the groove (5) expands upward by G due to side etching when forming the groove (6), it is not possible to embed the insulator in the groove (5) so that the surface is flat. , there is a problem that unevenness is formed on the surface of the buried insulator N(6). As the sidewall surface of the trench (5) expands upward in the case, the pattern width of the buried insulating layer (6) increases, making it impossible to solve the problem of device integration.

第3図は絶縁物の埋め込みによる従来の素子間分離方法
の他の例を説明するだめの断面図である。
FIG. 3 is a cross-sectional view illustrating another example of the conventional isolation method between elements by embedding an insulator.

この従来例の方法は、p形シリコン基板(1)の工面部
の第1の素子形成領域(2)と第2の素子形成領域(3
)とを分離すべき部分に溝(5a)を選択的に異 。
This conventional method involves forming a first element formation region (2) and a second element formation region (3) on the cut surface of a p-type silicon substrate (1).
) and selectively insert grooves (5a) in the areas where they should be separated.

方性エツチング法で形成し、この溝(5a)内にスパッ
タ法で形成された絶縁物を埋め込んで素子間分離用の埋
め込み絶縁層(6a)を形成するものである。
It is formed by a directional etching method, and an insulating material formed by a sputtering method is buried in the groove (5a) to form a buried insulating layer (6a) for isolation between elements.

この従来例の方法では、第2図に示した従来例と同様に
素子間の電気的絶縁性がよい」二に、異方性エツチング
法にはサイドエツチングがほとんどないので、溝(5a
)の側壁面か上方に拡開することがほとんどなく、埋め
込み絶縁層(6a)のパターン幅が小さくなり、素子の
集積度の面での問題点を解決することができる。しかし
、溝(5a)内にスパッタ法で形成された絶縁物を完全
に埋め込むことができないので、埋め込み絶縁層(6a
)の表面に凹凸ができ、しかも埋め込み絶縁N (6a
)の内部に図に符号イで例示するような空洞ができると
いう問題がある。
In this conventional method, the electrical insulation between elements is as good as in the conventional example shown in FIG.
) is hardly expanded upward, the pattern width of the buried insulating layer (6a) is reduced, and problems in terms of device integration can be solved. However, since the insulator formed by sputtering cannot be completely buried in the groove (5a), the buried insulating layer (6a)
) is uneven on the surface, and the buried insulation N (6a
) There is a problem in that a cavity as illustrated by the symbol A in the figure is formed inside.

〔発明の概要〕[Summary of the invention]

この発明は、上述の問題点を解決する目的でなされたも
ので、半導体基板の主面部の素子間を分離すべき部分に
溝を異方性エツチング法で形成し、この溝内にバイアス
スパッタ法で形成された絶縁物を埋め込んで素子間分離
用の埋め込み絶縁層を形成することによって、素子間の
電気的絶縁性がよく、埋め込み絶縁層のパターンの微細
化が可能で、しかも埋め込み絶縁層の表面が平坦である
素子間分離方法を提供するものである。
This invention has been made to solve the above-mentioned problems.A groove is formed in the main surface of a semiconductor substrate at a portion where the elements are to be separated by an anisotropic etching method. By embedding an insulator formed of oxide to form a buried insulating layer for isolation between elements, electrical insulation between elements is good, the pattern of the buried insulating layer can be made finer, and the pattern of the buried insulating layer can be made finer. The present invention provides a device isolation method with a flat surface.

〔発明の実施例〕[Embodiments of the invention]

第4図(A)〜(C)は絶縁物の埋め込みによるこの発
明の一実施例の素子間分離方法の主要段階の状態を示す
断面図である。
FIGS. 4A to 4C are cross-sectional views showing the main stages of a device isolation method according to an embodiment of the present invention by embedding an insulator.

まず、第4図(A)に示すように、この実施例での半導
体基板であるp形シリコン基板fl)の工面部の第1の
素子形成領域(2)と第2の素子形成領域(3)とを分
離すべき部分に満06)を選択的に異方性エツチング法
で形成する。次Qこ、第2図(B)に示すように、p形
シリコン基板(1)の溝θ5)内を含む主面上にバイア
ススパッタ法で絶縁物を堆積して絶縁層(16)を形成
する。このバイアススパッタ法は、例えば低圧のアルゴ
ン(Ar )ガスを活性化して生成された大半のArイ
オンのスパッタによシ絶縁物をp形シリコン基板+l+
の溝(−〇内を含む主面上に堆積しこの堆積された絶縁
物を残りのArイオンでエツチングしながら絶縁層(1
6)を形成するので、絶縁層(16)の表面が平坦にな
り、絶縁層06)の溝(15)内の部分に、第3図に例
示したような空洞(イ)ができない。
First, as shown in FIG. 4(A), a first element formation region (2) and a second element formation region (3) are formed on the cut surface of a p-type silicon substrate (fl), which is a semiconductor substrate in this example. ) and 06) are selectively formed in the portions to be separated using an anisotropic etching method. Next, as shown in Figure 2 (B), an insulating layer (16) is formed by depositing an insulator on the main surface of the p-type silicon substrate (1), including the inside of the groove θ5), by bias sputtering. do. In this bias sputtering method, for example, the insulator is sputtered onto a p-type silicon substrate by sputtering most of the Ar ions generated by activating low-pressure argon (Ar) gas.
The insulating layer (1
6), the surface of the insulating layer (16) becomes flat, and a cavity (a) as illustrated in FIG. 3 is not formed in the portion of the insulating layer 06) inside the groove (15).

最後に、絶縁層06)にエツチングを施して絶縁層06
)の溝05)内の部分以外の部分を除去し、絶縁層(l
(ilの溝(15)内に残された部分を素子間分離用の
埋め込み絶縁/1l(16a)にすると、この実施例の
方法の作業が終了する。
Finally, the insulating layer 06) is etched to form the insulating layer 06).
) of the groove 05) is removed, and the insulating layer (l
The work of the method of this embodiment is completed when the portion left in the groove (15) of (il) is made into a buried insulator/1l (16a) for isolation between elements.

この実施例の方法では、バイアススパッタ法で形成され
た絶縁層(16)の表面が平坦であり、かつ絶縁層(1
6)の溝06)内の部分に空洞ができないので、この絶
縁層θ6)をエツチングして得られた埋め込み絶縁層(
16a)の表面も平坦になり、内部には空洞がない。ま
た、埋め込み絶縁層(16a)によって素子間を分離す
るので、第2図に示した従来例と同様に、素子間の電気
的絶縁性がよい。更に、異方性エツチング法にはほとん
どサイドエツチングがないので、第3図に示した従来例
と同様に、埋め込み絶縁層(16a)のパターン幅が小
さくなり、素子の集積度の向上を図ることができる。
In the method of this example, the surface of the insulating layer (16) formed by bias sputtering is flat, and the surface of the insulating layer (16) is flat.
Since a cavity is not formed in the groove 06) of 6), the buried insulating layer obtained by etching this insulating layer θ6) is
The surface of 16a) is also flat and there are no cavities inside. Furthermore, since the elements are separated by the buried insulating layer (16a), the electrical insulation between the elements is good, similar to the conventional example shown in FIG. Furthermore, since there is almost no side etching in the anisotropic etching method, the pattern width of the buried insulating layer (16a) can be reduced and the degree of integration of the device can be improved, similar to the conventional example shown in FIG. I can do it.

この実施例では、p形シリコン基板(1)を用いたが、
必ずしもこれはp形シリコン基板である必要はなく、n
形シリコン基板であってもよく、またシリコン基板以外
のその他の半導体基板であってもよい。
In this example, a p-type silicon substrate (1) was used, but
This does not necessarily have to be a p-type silicon substrate, but an n
It may be a shaped silicon substrate, or it may be a semiconductor substrate other than a silicon substrate.

〔発明の効果〕〔Effect of the invention〕

以上、説明したようQこ、この発明の素子間分離方法で
は、半導体基板の主面部の素子間を分離すべき部分に溝
を異方性エツチング法で形成し、半導体基板の溝内を含
む主面上にバイアススパッタ法で絶縁物を堆積して絶縁
層を形成したのちに、この絶縁層にエツチングを施して
絶縁層の溝内の部分以外の部分を除去し絶床層の溝内に
残された部分を素子間分離用の埋め込み絶縁層にするの
で、バイアススパッタ法で形成された絶縁層の表面が平
坦であり、かつ絶縁、層の溝内の部分に空洞ができない
。従って、この絶縁層をエツチングして得られた埋め込
み絶縁層の表面も平坦になり、内部には空洞がない。壕
だ、埋め込み絶縁層によって素子間を分離するので、素
子間の電気的絶縁性がよい。東に、異方性エツチングに
はほとんどサイドエツチングないので、埋め込み絶縁層
のバクーン幅が小さくなり、菓子の集積度の向上を図る
ことができる。
As explained above, in the device isolation method of the present invention, grooves are formed by anisotropic etching in the portions of the main surface of the semiconductor substrate where the devices are to be separated. After forming an insulating layer by depositing an insulating material on the surface using a bias sputtering method, this insulating layer is etched to remove the portions of the insulating layer other than the portions within the grooves, leaving only the portions of the insulating layer in the grooves. Since the buried portion is used as a buried insulating layer for element isolation, the surface of the insulating layer formed by bias sputtering is flat, and no cavities are formed in the grooves of the insulating layer. Therefore, the surface of the buried insulating layer obtained by etching this insulating layer is also flat, and there is no cavity inside. Since the elements are separated by a buried insulating layer, the electrical insulation between the elements is good. On the other hand, since there is almost no side etching in anisotropic etching, the backing width of the buried insulating layer is reduced, and the degree of integration of the confectionery can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はpn接合による従来の素子間分離方法の一例を
説明するための断面図、第2図および第3図に2いて、
filはp形シリコン基板(半導体基ti ) 、(1
5)は溝、tie)は絶縁層、(16a)は埋め込み絶
縁層である。 なお、図中同一符号はそれぞれ同一または相当部分を示
す。 代理人 大 岩 増 雄 第1図 第2図 第3図 第4図 手続補正書(自発) 1.事件の表示 特願昭 58−lマ9646号2、発
明の名称 素子間分離方法 3、補正をする者 事件との関係 特許出願人 住 所 東京都千代田区丸の内二丁目2番3号名 称 
(601)三菱電機株式会社 代表者片山仁八部 4、代理人 明細書の特許請求の範囲の欄 6、 補正の内容 (1) 明細書の特許請求の範囲を添付別紙のとおりに
訂正する。 7、 添付書類の目録 訂正後の特許請求の範囲を示す書面 1通以上 特許請求の範囲 (1)半導体基板の主面部の素子間を分離すべき部分に
溝を異方性エツチング法で形成する工程、上記半導体基
板の上記溝内を含む主面上にバイアススパッタ法で絶縁
物を堆積して絶縁層を形成する工程、および上記絶縁層
にエツチングを施して上記絶縁層の上記溝内の部分以外
の部分を除去し上記絶縁層の上記溝内に残された部分を
素子間分離用の埋め込み絶縁層にする工程を備えた素子
間分離方法。
FIG. 1 is a cross-sectional view for explaining an example of a conventional isolation method between elements using a pn junction, and FIGS.
fil is a p-type silicon substrate (semiconductor base ti), (1
5) is a groove, tie) is an insulating layer, and (16a) is a buried insulating layer. Note that the same reference numerals in the figures indicate the same or corresponding parts. Agent Masuo Oiwa Figure 1 Figure 2 Figure 3 Figure 4 Procedural amendment (voluntary) 1. Indication of case: Japanese Patent Application No. 58-l MA9646 No. 2, title of invention: Element separation method 3, person making amendment Relationship with case Patent applicant address: 2-2-3 Marunouchi, Chiyoda-ku, Tokyo Name:
(601) Mitsubishi Electric Corporation Representative Hitoshi Katayama 4, Claims column 6 of the agent's specification, Contents of amendment (1) The claims of the specification are corrected as shown in the attached appendix. 7. Documents showing the scope of claims after the list of attached documents has been corrected One or more copies Claims (1) Grooves are formed by anisotropic etching in the portion of the main surface of the semiconductor substrate where the elements are to be separated. a step of depositing an insulating material by bias sputtering on the main surface of the semiconductor substrate including the inside of the groove to form an insulating layer; and etching the insulating layer to form a portion of the insulating layer inside the groove. An inter-element isolation method comprising the step of removing the remaining portion of the insulating layer and using the portion left in the groove of the insulating layer as a buried insulating layer for inter-element isolation.

Claims (1)

【特許請求の範囲】[Claims] (1)半導体基板の主面部の素子間を分離すべき部分に
溝を異方性エツチング法で形成する工程、上記半導体基
板の上記溝内を含む主面上にノ(イアススバッタ法で絶
縁物を堆積して絶縁層を形成する工程、および上記絶縁
層にエツチング施して上記絶縁層の上記溝内の部分以外
の部分を除去し上記絶縁層の上記溝内に残された部分を
素子間分離用の埋め込み絶縁層にする工程を備えた素子
間分離方法。
(1) A step of forming a groove by an anisotropic etching method in a part of the main surface of the semiconductor substrate where the elements are to be separated; a step of depositing and forming an insulating layer; etching the insulating layer to remove a portion of the insulating layer other than the portion within the groove; and a portion of the insulating layer remaining within the groove for isolation between elements; An inter-element isolation method comprising a step of forming a buried insulating layer.
JP17964683A 1983-09-26 1983-09-26 Interelement isolation Pending JPS6070741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17964683A JPS6070741A (en) 1983-09-26 1983-09-26 Interelement isolation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17964683A JPS6070741A (en) 1983-09-26 1983-09-26 Interelement isolation

Publications (1)

Publication Number Publication Date
JPS6070741A true JPS6070741A (en) 1985-04-22

Family

ID=16069404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17964683A Pending JPS6070741A (en) 1983-09-26 1983-09-26 Interelement isolation

Country Status (1)

Country Link
JP (1) JPS6070741A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5513904A (en) * 1978-07-17 1980-01-31 Hitachi Ltd Semiconductor device and its manufacturing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5513904A (en) * 1978-07-17 1980-01-31 Hitachi Ltd Semiconductor device and its manufacturing method

Similar Documents

Publication Publication Date Title
JPH0644603B2 (en) Semiconductor device and its manufacturing method
JPS6321351B2 (en)
US5604371A (en) Semiconductor device with an insulation film having an end covered by a conductive film
JP3634534B2 (en) Method for separating electronic device contained in body
JPS6070741A (en) Interelement isolation
JPS60187055A (en) Semiconductor integrated circuit device
JP2919668B2 (en) Manufacturing method of semiconductor integrated circuit
JPS59155944A (en) Manufacture of semiconductor device
JPH02267963A (en) Manufacture of semiconductor storage device
JP2826405B2 (en) Semiconductor device
JPS62120040A (en) Manufacture of semiconductor device
JPH02134848A (en) Semiconductor device
JPS60244036A (en) Semiconductor device and manufacture thereof
JPH08213407A (en) Semiconductor device
JPH02119229A (en) Semiconductor device and manufacture thereof
JPH05343398A (en) Formation of metal wiring
JPH08139188A (en) Semiconductor device and manufacture thereof
JPS6016440A (en) Manufacture of semiconductor device
JPH03175676A (en) Semiconductor device
JPS61107738A (en) Manufacture of semiconductor device
JPS6234147B2 (en)
JPS6237967A (en) Manufacture of semiconductor device
JPS62273769A (en) Manufacture of semiconductor device
JPH06163558A (en) Semiconductor device and fabrication thereof
JPH0316239A (en) Manufacture of semiconductor device