JPS6066432A - Forming method of fine pattern - Google Patents

Forming method of fine pattern

Info

Publication number
JPS6066432A
JPS6066432A JP17419783A JP17419783A JPS6066432A JP S6066432 A JPS6066432 A JP S6066432A JP 17419783 A JP17419783 A JP 17419783A JP 17419783 A JP17419783 A JP 17419783A JP S6066432 A JPS6066432 A JP S6066432A
Authority
JP
Japan
Prior art keywords
pattern
resist
film
negative resist
material film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17419783A
Other languages
Japanese (ja)
Inventor
Akio Sugita
彰夫 杉田
Makoto Hikita
疋田 真
Toshiaki Tamamura
敏昭 玉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP17419783A priority Critical patent/JPS6066432A/en
Publication of JPS6066432A publication Critical patent/JPS6066432A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0272Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers for lift-off processes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To obtain a flattened fine pattern by providing a process, etc. in which a thin-film on a resist pattern is removed through a lift-off method in a solvent capable of dissolving an organic high molecular material film. CONSTITUTION:An organic high molecular material film 22 as a lower layer is applied on a substrate 1 and an organic metallic negative type resist 23 as an upper layer, beams, electron rays or X-rays are projected in a pattern shape, and a resist pattern is formed through development. The organic high molecular material film 22 is patterned by using oxygen gas plasma etching while employing the resist pattern as a mask. The upper section of the pattern of the film 22 is coated with a thin-film 3 consisting of a metal, a semiconductor or a dielectric through evaporation, etc., and a pattern of the thin-film is obtained through a lift-off method by using a solvent for the organic high molecular material film. When the pattern of the thin-film is flattened, the organic high molecular material film 22 is patterned, the substrate is patterned through plasma etching, an etched depth section is coated with the thin-film, and the thin-film pattern is formed through the lift-off method.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はネガ型レジストを用いてリフトオフ法によシ微
細パターンを形成する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of forming a fine pattern using a negative resist by a lift-off method.

〔従来技術〕[Prior art]

まず、従来のリフトオフ法による微細パターン形成法を
第1図に示す。すなわち、第1図は、従来のりフトオフ
法の工程図である。第1図において符号1は基板、21
はレジスト、3は金属、半導体又は誘電体の薄膜、(a
)は基板上にレジストを塗布した試料、(b)は露光、
現像後のオーバーハング構造をもつレジストパターン、
(C)ハ薄膜コーティング後のパターンそして(田はリ
フトオフ後のパターンを示す。
First, FIG. 1 shows a conventional method for forming fine patterns using a lift-off method. That is, FIG. 1 is a process diagram of the conventional lift-off method. In FIG. 1, reference numeral 1 indicates a substrate, 21
3 is a resist, 3 is a metal, semiconductor or dielectric thin film, (a
) is a sample with resist coated on the substrate, (b) is exposed,
Resist pattern with overhang structure after development,
(C) Pattern after thin film coating and (C) Pattern after lift-off.

リフトオフ法では、金属、半導体又は誘電体薄膜をレジ
ストパターン上に堆積させて、溶剤でレジスト上の薄膜
をレジストと共に除去する ゛ため、使用するレジスト
は溶剤に可溶である必要がある。このためほとんどポジ
型のレジストが使用されている。しかし、パターンの形
状ではネガ形式の露光が望まれる場合があるが、通常の
ネガ型レジストは高エネルギー線によってレジストポリ
マーが架橋し、溶剤に不溶になるためリフトオフ加工に
L使えなかった。またポジ型のレジストを用いる場合も
、す7トオ7加工の収率を向上させるために第1図(1
)Jに示すようにレジスト断面を垂直あるいは逆テーパ
ー状(オーバーハング構造)にする必要があり、レジス
ト断面形状を露光、現像条件によって正確に制御しなけ
ればならず、また、必要露光量も多くせざるを得ない。
In the lift-off method, a metal, semiconductor, or dielectric thin film is deposited on a resist pattern, and the thin film on the resist is removed together with the resist using a solvent, so the resist used must be soluble in the solvent. For this reason, positive type resists are mostly used. However, although negative exposure is sometimes desired depending on the shape of the pattern, ordinary negative resists cannot be used for lift-off processing because the resist polymer is crosslinked by high-energy rays and becomes insoluble in solvents. Also, when using a positive resist, in order to improve the yield of 7-to-7 processing, see Figure 1 (1).
) As shown in J, it is necessary to make the resist cross-section vertical or inversely tapered (overhang structure), and the resist cross-sectional shape must be accurately controlled by exposure and development conditions, and the required exposure amount is also large. I have no choice but to do it.

他方、リフトオフ加工はドライエツチングと組合せて近
年被加工基板の完全平坦化に利用されている。それを第
2図で説明する。すなわち、第2図は従来の平坦化の工
程図である。第2図における符号1〜5は第1図と同義
であシ、(aJは基板上にレジストを塗布した試料、(
1)Jは露光現像後のレジストパターン、(C)は基板
をエツチング後のパターン、(d)は薄膜コーテイング
後のパターンそして(θ)はり7トオ7後のパターンを
示す。第2図に示したように従来の平坦化工程では基板
を一定の深さだけドライエツチングした後、その深さ分
だけ別種の材料をリフトオンし、基板を平坦化しようと
するもので、LSIの素子寸法の微細化に伴い、段差基
板上でのりソグラフィの困難性を一挙に解決することが
できる。
On the other hand, lift-off processing has recently been used in combination with dry etching to completely planarize a processed substrate. This will be explained with reference to FIG. That is, FIG. 2 is a process diagram of conventional planarization. Reference numerals 1 to 5 in FIG. 2 have the same meanings as in FIG.
1) J shows the resist pattern after exposure and development, (C) shows the pattern after etching the substrate, (d) shows the pattern after thin film coating, and (θ) shows the pattern after beam 7 to 7. As shown in Figure 2, in the conventional planarization process, the substrate is dry-etched to a certain depth, and then a different type of material is lifted on to that depth to planarize the substrate. With the miniaturization of element dimensions, the difficulties of lamination lithography on stepped substrates can be solved all at once.

しかしながら、ドライエツチングにも十分耐性を持ち、
しかも、その後リフトオフ加工のマスクとなる適当なレ
ジストは開発されていない。
However, it has sufficient resistance to dry etching,
Moreover, a suitable resist that can be used as a mask for subsequent lift-off processing has not been developed.

この場合、レジスト断面形状の制御が単純なリフトオフ
加工に比較して一段と困難になっている。
In this case, controlling the cross-sectional shape of the resist is much more difficult than in simple lift-off processing.

〔発明の目的〕[Purpose of the invention]

本発明は、従来技術の問題点を解決するためになされた
ものであり、その目的は、ネガ型レジストによるり7ト
オ7加工、更にはり7トオ7加工を利用して、基板の平
坦化を行う微細パターン形成法を提供することにある。
The present invention was made in order to solve the problems of the prior art, and its purpose is to flatten the substrate by using the negative resist type 7-to-7 process and the beam 7-to-7 process. The object of the present invention is to provide a method for forming fine patterns.

〔発明の構成〕[Structure of the invention]

本発明を概説すれば、本発明の第1の発明は微細パター
ン形成法の発明であって、被加工基板上に有機高分子材
料フィルム層を設ける工程、その上部に有機金属含有ネ
ガ型レジストを設ける工程、該ネガ型レジストを光、電
子線又はX線を用いてパターン状に露光した後、現像す
る工程、現像された該ネガ型レジストパターンをマスク
として酸素ガスプラズマエツチングにより前記有機高分
子材料フィルム層をパターン化する工程、゛この表面に
金属、半導体又は誘電体の薄膜を蒸着あるいはスパッタ
リングにより全面にコーティングする工程及び前記有機
高分子材料フィルムを溶解できる溶剤中でレジストパタ
ーン上の薄膜をリフトオフ法により除去する工程の各工
程を包含することを特徴とする。
To summarize the present invention, the first invention of the present invention is an invention of a fine pattern forming method, which includes the step of providing an organic polymer material film layer on a substrate to be processed, and applying a negative resist containing an organic metal on top of the film layer. a step of exposing the negative resist in a pattern using light, electron beams or X-rays, and then developing the organic polymer material by oxygen gas plasma etching using the developed negative resist pattern as a mask; The process of patterning the film layer, ``The process of coating the entire surface with a thin film of metal, semiconductor, or dielectric material by vapor deposition or sputtering, and lifting off the thin film on the resist pattern in a solvent that can dissolve the organic polymer material film. It is characterized in that it includes each step of removing by a method.

そして、本発明の第2の発明は、第1の発明の有機高分
子材料フィルム層をパターン化する工程と、この表面に
金属、半導体又は誘導体の薄膜を蒸着あるいはスパッタ
リングによシ全面にコーティングする工程との間にパタ
ーン化工程で得られたパターンをマスクとして被加工基
板をプラズマエツチングする工程を挿入することを特徴
とする。
The second invention of the present invention includes the step of patterning the organic polymer material film layer of the first invention, and coating the entire surface with a thin film of metal, semiconductor, or derivative by vapor deposition or sputtering. The method is characterized in that a step of plasma etching the substrate to be processed is inserted using the pattern obtained in the patterning step as a mask.

本発明の基本的な加工プロセスを第5図に示す。すなわ
ち、第3図は本発明による微細ノ(ターン形成の工程図
である。第5図において、符号1は基板、22は有機高
分子材料フィルム、23は有機金属ネガ型レジスト、5
は金属、半導体又は誘電体の薄膜を示す。まず基板上に
下層として有機高分子材料フィルムを、上層に有機金属
ネガ型レジストを塗布する(第3図a)。
The basic processing process of the present invention is shown in FIG. That is, FIG. 3 is a process diagram of forming fine turns according to the present invention. In FIG.
indicates a thin film of metal, semiconductor or dielectric. First, an organic polymer material film is applied as a lower layer on a substrate, and an organic metal negative resist is applied as an upper layer (FIG. 3a).

次に、光、電子線あるいはX線をパターン状に照射した
後現像し、レジストパターンを形成する(第6図b)。
Next, a resist pattern is formed by irradiating light, electron beams, or X-rays in a pattern and developing it (FIG. 6b).

このレジストパターンをマスクとして、酸素ガスプラズ
マエツチングを用いて有様高分子材料フィルムをパター
ン化する(第5図C)。このパターン上に、蒸着あるい
はスパッタリングによって、金属、半導体あるいは誘電
体の薄膜をコーテイング後(第5図d)、有機高分子材
料フィルムの溶剤を用いてり7トオ7法によって薄膜の
パターンを得る(第3図θ)。平坦化を行う場合は、有
機高分子材料フィルムをパターン化した(第3図c’)
後、更に基板をプラズマエツチングすることによシバタ
ーン化しく第3図f)、エツチングした深さ分を前記薄
膜でコーティングを行い(第3図gへリフトオフ法で薄
膜パターンを形成する(第6図h)。
Using this resist pattern as a mask, a patterned polymer material film is patterned using oxygen gas plasma etching (FIG. 5C). After coating this pattern with a thin film of metal, semiconductor, or dielectric material by vapor deposition or sputtering (Fig. 5 d), a thin film pattern is obtained by using a solvent for an organic polymer material film by the 7-to-7 method ( Figure 3 θ). When planarizing, the organic polymer material film was patterned (Fig. 3 c').
After that, the substrate is further plasma etched to form a pattern (Fig. 3 f), and the etched depth is coated with the thin film (Fig. 3 g). A thin film pattern is formed by lift-off method (Fig. 6 g). h).

前記のような有機金属含有のネガ型レジストとしては、
有機シリコン系、有機アルミニウム系、有機ゲルマニウ
ム系若しくは有機スズ系の高分子材料が使用できる。特
に有機シリコン系高分子材料の中でも汎用めシリコーン
樹脂はネガ型レジストとして作用することが知られてお
り、容易に本発明のプロセスに適用できる。また、下層
に溶剤に可溶な高分子材料を用いるため、上記有機金属
レジストを下層高分子材料上に塗布し、更に現像する際
塗布溶剤や現像溶媒を下層高分子材料が溶解しないよう
に選択して使用する必要があり、このような2層系の材
料を選択しなければならない。この点でもシリコーン樹
脂系ネガ型レジストは溶解性に非常に優れているので特
に本発明のプロセスに有効である。
As the above-mentioned organic metal-containing negative resist,
An organic silicon-based, organic aluminum-based, organic germanium-based, or organic tin-based polymer material can be used. In particular, general-purpose silicone resins among organic silicon-based polymer materials are known to act as negative resists, and can be easily applied to the process of the present invention. In addition, since the lower layer uses a polymeric material that is soluble in a solvent, when the organometallic resist is coated on the lower polymeric material and further developed, the coating solvent and developing solvent are selected so that the lower polymeric material does not dissolve. Therefore, such a two-layer material must be selected. In this respect, silicone resin-based negative resists are particularly effective in the process of the present invention since they have excellent solubility.

本発明におけるオーバーハング構造について、第4図及
び第5図により説明する。第4図はジャストエツチング
直後のパターンの断面概略図、第5図はオーバーエツチ
ングによって、オーバーハング構造が顕著になったパタ
ーンの断面概瞥図である。各図中の符号1.22.25
は第5図と同義である。リフトオフ法に有効なオーバー
ハング構造は、上層レジストの露光、現像条件によらず
、酸素ガスプラズマエツチングのエツチング条件を変え
ることで第4図及び第5図に示すように制御できる。
The overhang structure in the present invention will be explained with reference to FIGS. 4 and 5. FIG. 4 is a schematic cross-sectional view of a pattern immediately after just etching, and FIG. 5 is a schematic cross-sectional view of a pattern in which an overhang structure has become noticeable due to overetching. Code 1.22.25 in each figure
is synonymous with Fig. 5. The overhang structure effective in the lift-off method can be controlled as shown in FIGS. 4 and 5 by changing the etching conditions of oxygen gas plasma etching, regardless of the exposure and development conditions of the upper resist layer.

以上説明したように、本発明は次のような利点を持って
いる。
As explained above, the present invention has the following advantages.

(1) 有機金属ネガ型レジストは、酸素ガスプラズマ
エツチングに対して高耐性であ゛るので、レジスト膜厚
は薄くて良く解像性が高い。
(1) Organic metal negative resists have high resistance to oxygen gas plasma etching, so the resist film can be thin and have high resolution.

(2) リフトオフ法に有効なオーバーハング構造を酸
素ガスプラズマエツチングのエツチング条件を変えるこ
とで制御できる。
(2) The overhang structure that is effective in the lift-off method can be controlled by changing the etching conditions of oxygen gas plasma etching.

(3)上層のネガ型レジストは、光、電子線あるいはX
線の照射によってレジストポリマーが架橋して溶剤に不
溶になるが、下層有機高分子材料フィルムは可溶なので
、ネガ型パターンのす7トオフ加工が可能である。
(3) The upper layer negative resist is exposed to light, electron beam or
Although the resist polymer is cross-linked by the radiation and becomes insoluble in the solvent, the lower organic polymeric material film is soluble, so it is possible to process a negative pattern.

〔実施例〕〔Example〕

以下実施例によシ本発明を更に具体的に説明するが、本
発明はこれらに限定されない。
The present invention will be explained in more detail below using Examples, but the present invention is not limited thereto.

実施例1 シリコン基板(表面を熱酸化)土にフェニルメタクリレ
ートとメタクリル酸共重合体を0.6μm厚に塗布しプ
リベークした。更にこの上にシリコーン系ネガ型レジス
ト(感度約80μC/at?)を0.15μm厚に塗布
した。このレジストに20 KV の電子線を0.4μ
m ピッチで長さ0.5調にわたって照射した。照射稜
ジインブチルケトンーシクロヘキサン(*:1)の混合
溶媒に20秒浸して現像後シクロヘキサン中で20秒リ
ンスすると線幅約a2μm1長い0.5.0レジストハ
ターンが得られた。レジストパターンをマスクに酸素の
反応性イオンエツチング(酸素流量50 acay 、
圧力10ミリトル、パワーα1W/cm” )を8分3
0秒行うと線幅的0.2 μm のレジストパターンと
その下に線幅的01μmの下ffiフィルムのパターン
がでキ、オーパーツ1ング構造が得られた。このときレ
ジスト膜厚は約0.14μm であった。このパターン
に金を約0.3μm蒸着後、メチルエチルケトン中で超
音波を5分照射し、リフトオンすると線幅的0.2μF
++%高さ約03μm1長さ0.5■の金の微細パター
ンが得られた。
Example 1 A phenyl methacrylate and methacrylic acid copolymer was applied to a thickness of 0.6 μm on a silicon substrate (surface thermally oxidized) and prebaked. Furthermore, a silicone-based negative resist (sensitivity of about 80 μC/at?) was coated on this to a thickness of 0.15 μm. A 20 KV electron beam was applied to this resist for 0.4μ.
Irradiation was performed over a length of 0.5 steps at a pitch of m. The irradiated edges were immersed in a mixed solvent of diimbutylketone-cyclohexane (*:1) for 20 seconds, developed, and then rinsed in cyclohexane for 20 seconds to obtain a 0.5.0 resist pattern with a line width of about 2 μm and 1 long. Oxygen reactive ion etching using the resist pattern as a mask (oxygen flow rate 50 acay,
Pressure 10 millitorr, power α1W/cm”) is 3/8
When this was carried out for 0 seconds, a resist pattern with a line width of 0.2 μm and a lower ffi film pattern with a line width of 01 μm were formed therebeneath, resulting in an Oparts 1 ring structure. At this time, the resist film thickness was approximately 0.14 μm. After depositing about 0.3 μm of gold on this pattern, irradiating it with ultrasonic waves in methyl ethyl ketone for 5 minutes and lifting it on, the line width was 0.2 μF.
++% A fine gold pattern with a height of about 03 μm and a length of 0.5 cm was obtained.

実施例2 実施例1と同様に有機高分子材料膜、レジストを塗布後
20 KV の電子線を0.5μm角に照射し、実施例
1と同様に現像、リンスすると約15μm角の孤立した
レジスト膜(ター゛ンが得られた。実施例1と同じ条件
で酸素でエツチングを8分30秒行うとO,Sμm角の
レジスト膜くターンの下にα4μm角の下層フィルムの
)(ターンが得られた。次に酸化シリコン(810)を
04μm蒸着後メチルエチルケトン中で超音波を5分照
射しリフトオフすると約0.5μm角、深さ0.4μm
のウィンドができた。
Example 2 After applying an organic polymer material film and a resist in the same manner as in Example 1, a 0.5 μm square area was irradiated with a 20 KV electron beam, developed and rinsed in the same manner as in Example 1, resulting in an isolated resist of approximately 15 μm square. A film (turns were obtained). When etching was performed with oxygen for 8 minutes and 30 seconds under the same conditions as in Example 1, a 4 μm square lower layer film (turns) were obtained under the O, S μm square resist film turns. Next, after depositing silicon oxide (810) to a thickness of 0.4 μm, irradiation with ultrasonic waves in methyl ethyl ketone for 5 minutes and lift-off resulted in a surface of approximately 0.5 μm square and 0.4 μm deep.
A window was created.

実施例3 熱酸化膜(厚さ0.2μm)がコートされたシリコン基
板にフェニルメタクリレートとメタクリル酸共重合体を
[L5μm厚に塗布し、プリベークした。この上にシリ
コーン系ネガ型レジスト(感度40μO/l:w’)を
0.2μm厚に塗布した。
Example 3 A phenyl methacrylate and methacrylic acid copolymer was applied to a thickness of 5 μm on a silicon substrate coated with a thermal oxide film (0.2 μm thick), and prebaked. A silicone-based negative resist (sensitivity: 40 μO/l:w') was applied onto this to a thickness of 0.2 μm.

このレジストに20 KV の電子線を0.5μm ピ
ッチで長さ0.5 mにわたって照射した。実施例1と
同様に現像、リンス、更に酸素プラズマエツチングを6
分30秒行うと線幅的0.25μmのレジストパターン
と線幅的0.2μmの下層のパターンが得られた。これ
をマスクにOF4 + H2(20%)のガスで反応性
イオンエツチング(流量20 aaay、圧力60ミリ
トル、パワーa 2 W / cm” )を8分行い、
深さ0.2 tlm−、線幅[125μmのシリコン酸
化膜のパターンが得られた。この上に金を0.2μm蒸
着し、実施例1と同様にリフトオフすると線幅的[1L
25μm、厚さ0.2μmの平坦化された金のパターン
が得られた。
This resist was irradiated with a 20 KV electron beam over a length of 0.5 m at a pitch of 0.5 μm. Development, rinsing, and oxygen plasma etching were carried out in the same manner as in Example 1.
When the process was carried out for minutes and 30 seconds, a resist pattern with a line width of 0.25 μm and a lower layer pattern with a line width of 0.2 μm were obtained. Using this as a mask, reactive ion etching was performed with OF4 + H2 (20%) gas (flow rate 20 AAA, pressure 60 mTorr, power a 2 W/cm") for 8 minutes.
A silicon oxide film pattern with a depth of 0.2 tlm and a line width of 125 μm was obtained. Gold was evaporated to a thickness of 0.2 μm on top of this, and when lift-off was performed in the same manner as in Example 1, the line width [1L]
A flattened gold pattern of 25 μm and 0.2 μm thickness was obtained.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、本発明方法によれば、有機
金属ネガ型レジストと有機高分子材料フィルムで構成さ
れる系は、サブミクロンオーダの微細パターン形成、パ
ターンの平坦化、更に従来困難であった孤立パターンの
ようなネガ型パターンのリフトオフが可能であるから、
微細化が要求されているVLSIの素子加工に供するこ
とができるという利点がある。
As explained in detail above, according to the method of the present invention, a system composed of an organic metal negative resist and an organic polymer material film can be used to form fine patterns on the submicron order, flatten the patterns, and moreover, it is difficult to achieve conventional methods. Because it is possible to lift off negative patterns such as isolated patterns,
It has the advantage that it can be used for VLSI element processing, which requires miniaturization.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のりフトオフ法の工程図、第2図は従来の
平坦化の工程図、第5図は本発明による微細パターン形
成の工程図、第4゛図はジャストエツチング直後のパタ
ーンの断面概略図、そして第5図はオーバーエツチング
によって、オーバーハング構造が顕著なパターンの断面
概略図である。 1:基板、21ニレジスト、22:有機高分子材料フィ
ルム、23:有機金属ネガ型レジスト、5:金属、半導
体又は誘導体の薄膜特許出願人 日本電信′m話公社 代理人 中 本 宏 同 井 上 昭 〜2/ D8 第1図 第2図 〜23 22 へ22
Figure 1 is a process diagram of the conventional lift-off method, Figure 2 is a process diagram of conventional planarization, Figure 5 is a process diagram of fine pattern formation according to the present invention, and Figure 4 is a cross section of the pattern immediately after just etching. FIG. 5 is a schematic cross-sectional view of a pattern in which an overhang structure is noticeable due to overetching. 1: Substrate, 21 Resist, 22: Organic polymer material film, 23: Organometallic negative resist, 5: Thin film of metal, semiconductor or derivative Patent applicant: Nippon Telegraph Corporation Agent Hirotoshi Nakamoto Akira Inoue ~2/ D8 Figure 1 Figure 2 ~23 22 Go to 22

Claims (1)

【特許請求の範囲】 1、 被加工基板上に有機高分子材料フィルム層を設け
る工程、その上部に有機金属含有ネガ型レジストを設け
る工程、該ネガ型レジストを光、電子線又はX線を用い
てパターン状に露光した後、現像する工程、現像された
該ネガ型レジストバター/をマスクとして酸素ガスプラ
ズマエツチングにより前記有機高分子材料フーイルム層
をパターン化する工程、この表面に金属、半導体又は誘
電体の薄膜を蒸着あるいはスパッタリングによシ全面に
コーティングする工程、及び前記有機高分子材料フィル
ムを溶解できる溶剤中でレジストパターン上の薄膜をす
7トオフ法により除去する工程の各工程を包含すること
を韓徴とする微細パターン形成法。 2、 該有機金属含有ネガ型レジストが、シリコーン系
ネガ型レジストである特許請求の範囲第1項記載の微細
パターン形成法。 五 被加工基板上に有機高分子材料フィルム層を設ける
工程、その上部に有機金属含有ネガ型レジストを設ける
工程、該ネガ型レジストを光、電子線又はX線を用いて
パターン状に露光した後、現像する工程、現像された該
ネガ型レジストパターンをマスクとして酸素ガスプラズ
マエツチングによシ前記有機高分子材料フィルム層をパ
ターン化する工程、こうして得られたパターンをマスク
として被加工基板をプラズマエツチングする工程、この
表面に金属、半導体又は誘電体の薄膜を蒸着あるいはス
パッタリングにより全面にコーティングする工程、及び
前記有機高分子材料フィルムを溶解できる溶剤中でレジ
ストパターン上の薄膜をす7トオ7法により除去する工
程の各工程を包含することを特徴とする微細パターン形
成法。 4、 該有機金属含有ネガ型レジストが、シリコ−ン系
ネガ型レジストである特許請求の範囲第3項記載の微細
パターン形成法。
[Claims] 1. A step of providing an organic polymer material film layer on a substrate to be processed, a step of providing an organic metal-containing negative resist on top of the layer, and a step of applying the negative resist using light, electron beams or X-rays. a step of patterning the organic polymer material film layer by oxygen gas plasma etching using the developed negative resist butter as a mask; The method includes the steps of coating the entire surface of the body with a thin film by vapor deposition or sputtering, and removing the thin film on the resist pattern by a 7-off method in a solvent that can dissolve the organic polymer material film. A fine pattern formation method using Hanzheng. 2. The fine pattern forming method according to claim 1, wherein the organic metal-containing negative resist is a silicone-based negative resist. (v) The step of providing an organic polymer material film layer on the substrate to be processed, the step of providing an organic metal-containing negative resist on top of the layer, and after exposing the negative resist in a pattern using light, electron beams, or X-rays. , a step of developing, a step of patterning the organic polymer material film layer by oxygen gas plasma etching using the developed negative resist pattern as a mask, and a step of plasma etching the substrate to be processed using the pattern thus obtained as a mask. A step of coating the entire surface with a thin film of metal, semiconductor or dielectric material by vapor deposition or sputtering, and a step of coating the thin film on the resist pattern in a solvent capable of dissolving the organic polymer material film by a 7-to-7 method. A fine pattern forming method characterized by including each step of a removing step. 4. The fine pattern forming method according to claim 3, wherein the organic metal-containing negative resist is a silicone-based negative resist.
JP17419783A 1983-09-22 1983-09-22 Forming method of fine pattern Pending JPS6066432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17419783A JPS6066432A (en) 1983-09-22 1983-09-22 Forming method of fine pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17419783A JPS6066432A (en) 1983-09-22 1983-09-22 Forming method of fine pattern

Publications (1)

Publication Number Publication Date
JPS6066432A true JPS6066432A (en) 1985-04-16

Family

ID=15974418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17419783A Pending JPS6066432A (en) 1983-09-22 1983-09-22 Forming method of fine pattern

Country Status (1)

Country Link
JP (1) JPS6066432A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02137224A (en) * 1988-11-17 1990-05-25 Dainippon Printing Co Ltd Formation of fine pattern
US6605414B2 (en) * 1995-06-30 2003-08-12 Fujitsu Limtied Method for manufacturing magnetoresistance head
EP1696472A1 (en) * 2005-02-25 2006-08-30 Seiko Epson Corporation A patterning method for fabricating high resolution structures

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02137224A (en) * 1988-11-17 1990-05-25 Dainippon Printing Co Ltd Formation of fine pattern
US6605414B2 (en) * 1995-06-30 2003-08-12 Fujitsu Limtied Method for manufacturing magnetoresistance head
EP1696472A1 (en) * 2005-02-25 2006-08-30 Seiko Epson Corporation A patterning method for fabricating high resolution structures
US7439193B2 (en) 2005-02-25 2008-10-21 Seiko Epson Corporation Patterning method for fabricating high resolution structures

Similar Documents

Publication Publication Date Title
US4202914A (en) Method of depositing thin films of small dimensions utilizing silicon nitride lift-off mask
JPS60124940A (en) Method of forming ultrafine pattern of dry positive tone
CA1219835A (en) Metal/semiconductor deposition
JP3041625B2 (en) Multi-level resist manufacturing process
JPS62142323A (en) Manufacture of mask for x-ray photo-lithography and mask obtained by the manufacture
US5139922A (en) Method of making resist pattern
JPS6066432A (en) Forming method of fine pattern
US4508813A (en) Method for producing negative resist images
JPH1154460A (en) Manufacture of electrically conductive structure
US5178975A (en) High resolution X-ray mask having high aspect ratio absorber patterns
JPH02156244A (en) Pattern forming method
JPS5857908B2 (en) Method of forming thin film structure
JPS604221A (en) Manufacture of semiconductor device
JPS58202526A (en) Manufacture of x-ray exposure mask
JPH0748468B2 (en) Pattern formation method
KR930006133B1 (en) M.o.s. contact hole forming method
JPS61128524A (en) Forming method of fine pattern
JPH0727217B2 (en) Method of forming resist pattern on substrate
JPS6054775B2 (en) Dry development method
JP2001185481A (en) Transfer mask
JPH04301852A (en) Pattern forming method
JPH01304457A (en) Pattern forming method
JPS5892224A (en) Pattern formation
JPS6354726A (en) Method of etching resist film
JPH0821574B2 (en) Pattern forming method