JPS606360A - Carbon fiber buff and electrolytic-polishing therewith - Google Patents
Carbon fiber buff and electrolytic-polishing therewithInfo
- Publication number
- JPS606360A JPS606360A JP11185783A JP11185783A JPS606360A JP S606360 A JPS606360 A JP S606360A JP 11185783 A JP11185783 A JP 11185783A JP 11185783 A JP11185783 A JP 11185783A JP S606360 A JPS606360 A JP S606360A
- Authority
- JP
- Japan
- Prior art keywords
- puff
- polishing
- carbon fiber
- electrolytic
- buff
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D13/00—Wheels having flexibly-acting working parts, e.g. buffing wheels; Mountings therefor
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
- Polishing Bodies And Polishing Tools (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、炭素繊維織布からなるパフ部材とそれを支持
、固足する導電性支持部材で構成する電解研磨用炭素繊
維パフ及びそのパフを用いて金IAなどの導電性材料(
複合材料を含む)を電解研磨する方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention provides a carbon fiber puff for electrolytic polishing comprising a puff member made of a carbon fiber woven fabric and a conductive support member that supports and fixes the puff member, and a carbon fiber puff for electrolytic polishing that uses the puff to polish gold IA or the like. Conductive material (
(including composite materials).
金属などの導電性材料を電気化学的に溶解させて加工を
行う方法には、電解研磨法、電解加工法、電解研削法な
どがあり、これらは、すでに一般に実用化されている。BACKGROUND ART Methods for processing conductive materials such as metals by electrochemically dissolving them include electrolytic polishing, electrolytic machining, and electrolytic grinding, and these have already been put into practical use.
これりの加工法は、いずれ6被加工物を陽極とし、対極
(陰極)との間に電解液を介在ぜしめて加工を行うもの
であるが、加工中に被加工物と対極が接触するとショー
トして大きな短絡電流が流れ、被加工物や対極を著しく
損傷せしめる結果となる。このため、電解研磨法や電解
加工法では、両極の間隙を過当fこ保ちながら電解を行
う。また、電解研削法の加工機構は、研削砥石中の非導
電性の砥粒突出部によって、両極が短絡することを結果
的に防止していることによる。In this processing method, the workpiece is used as an anode and an electrolyte is interposed between it and the counter electrode (cathode). However, if the workpiece and the counter electrode come into contact during processing, a short circuit occurs. As a result, a large short-circuit current flows, resulting in significant damage to the workpiece and the counter electrode. For this reason, in the electrolytic polishing method and the electrolytic processing method, electrolysis is performed while maintaining an excessive gap between the two electrodes. Further, the processing mechanism of the electrolytic grinding method is based on the fact that the non-conductive abrasive grain protrusions in the grinding wheel prevent the two poles from shorting.
これに対し、本発明の炭素繊維パフを用いる電解研磨法
は、陰極となる炭素繊維パフと陽極となる被加工物を接
触させ、適当な圧力で加圧接触ぎせながら、接触部に電
解液を介在させて、被加工物を電気化学的に研磨する方
法である。On the other hand, in the electrolytic polishing method using the carbon fiber puff of the present invention, the carbon fiber puff serving as a cathode and the workpiece serving as an anode are brought into contact with each other, and an electrolytic solution is applied to the contact portion while applying pressure to create contact. This is a method of electrochemically polishing a workpiece by intervening.
この方法では、パフと被加工物が接触するので、当然、
両者間に短絡@流が流れてしまい、電気化学的加工はで
きないものと考えるのが常識的であるが、電解研磨時に
被加工物と接触1−る炭素繊維パフの最外層表面に大き
な電位勾配が存在することが判明し、その結果、電流効
率が50〜100%の範囲で、被加工物が陽Vm溶解し
、回転するパフが陽心溶解した金属などを除去して、更
に電解を促進することにより、金属などを高能率で研磨
できることが見い出された。In this method, the puff and the workpiece come into contact, so naturally,
It is common sense to think that electrochemical processing is impossible due to a short circuit flowing between the two, but during electrolytic polishing, there is a large potential gradient on the surface of the outermost layer of the carbon fiber puff that comes into contact with the workpiece. As a result, when the current efficiency is in the range of 50 to 100%, the workpiece undergoes positive Vm melting, and the rotating puff removes the positive melted metal, further promoting electrolysis. It has been discovered that metals can be polished with high efficiency by doing so.
本発明のパフは、炭素繊維織布かもなるパフ部材とそれ
を支持、固定する導電性支持部材で構成されたものであ
れば、パフとしての構成様式(形態的特′a)を特に限
定する必要はなく、例えば、ひだ付きバイヤス綿パフな
どのように、現在多用されているパフの形態をそのまま
本発明の構成様式とすればよく、目的に応じて、軸付き
の小形パフ、あるいは、ラップ盤のう・ノピングクロス
として回転円板上に支持、固定して使用する様式も本発
明の電解研磨法に有効である。As long as the puff of the present invention is composed of a puff member made of a carbon fiber woven fabric and a conductive support member that supports and fixes the puff member, the structure of the puff (morphological characteristics 'a) is particularly limited. There is no need for this invention; for example, the configuration of the present invention may be applied to a currently widely used puff, such as a pleated bias cotton puff. Depending on the purpose, a small puff with a shaft or a wrap It is also effective for the electrolytic polishing method of the present invention to support and fix it on a rotating disk as a disk pouch/knopping cloth.
本発明のパフに用いる炭素繊維は、パフの回転強さ、耐
久性等の点で、引張強さ200kgf / mm2以上
、引張弾性率20000kgf / mm2以上の高強
度、高弾性炭素繊維が望ましいが、引張強’E I O
Okgf / mm2以上、引張弾性率4000kgf
/闘の炭素繊維であれば、本発明の目的に使用すること
ができる。The carbon fiber used in the puff of the present invention is preferably a high-strength, high-elasticity carbon fiber with a tensile strength of 200 kgf/mm2 or more and a tensile modulus of 20,000 kgf/mm2 or more in terms of the rotational strength and durability of the puff. Tensile strength'E I O
Okgf/mm2 or more, tensile modulus 4000kgf
Any type of carbon fiber can be used for the purpose of the present invention.
以下に実施例を示し、本発明について詳しく説明する。EXAMPLES The present invention will be explained in detail with reference to Examples below.
実施例 1
引張強2300kgf/ mm 、引張弾性率23oo
okgf/mm2の炭素繊維の糸を用いて、厚20.4
mmの平織の織布を得、従来のひだ付きバイヤス綿パフ
と同様の形態で、綿布の代わりに前記炭素繊維織布を用
いて第1図に示すパフとした。すなわち、バイヤスカー
lトした炭素繊維織布1からなるパフ部材を金属製爪付
@締結リング2で咬持、固定し、該リングに研磨機の回
転軸に適合した穴径を持つ金属製七ンタープレート3を
爪付き締結リングに装着してパフとした。パフに適度の
剛性を持たせ、また、耐久性の向上を図るため、炭素繊
維織布と同質ノ糸で同心円の縫合線4を入れた。パフの
寸法は、外径20111m 、リング内径75mm、幅
は約20mmとした。第2図は、電解研磨装置の概要を
示す説明図である。パフ5を第2図に示す研磨装置に取
り付け、パフを陰極とし、被加工物6を陽極とし、パフ
回転数2000rpm、パフ押圧1kgf/am” 、
電解電流20 A/ cm”とし、パフと被加工物の接
触部に電解液7を50m1!/Bの流量で流しながら研
磨を行った。電解液は、水に塩化ナトリウムを+aag
/ノ加えた食塩水とし、防食用として亜硝酸ナトリウム
をlog/l!加えた ものとしたが、従来の電解加工
法などに用いる電解液であればよく、これ2ろ過し、ポ
ンプで循環させて使用した。研磨はパフの接触部のみで
行われ、研磨速度(研磨深さ/研磨時間)は4.5μm
/sでめった。これは従来のパフ研磨にお1プる研磨速
度の数十倍から数百倍に相当し、研磨能率は飛躍的に増
大した。研磨面の表面粗ざは、約1μ可R+naX″C
′めった。電解液に炭化けい素、アルミナ、酸化り0ム
等の微粉研磨材を混入することにより表面粗さを更に小
≧くすることができた。混入する研磨材の種類、粒度に
よってその効果は異なるが、酸化クロムを10〜20g
/J混入することにより、0.1μm RmaXの平滑
な面が得られた。Example 1 Tensile strength: 2300 kgf/mm, tensile modulus: 23oo
Using carbon fiber thread of okgf/mm2, thickness 20.4
A plain weave woven fabric having a thickness of 1.0 mm was obtained, and the puff shown in FIG. 1 was made in the same form as a conventional pleated bias cotton puff by using the carbon fiber woven fabric instead of the cotton fabric. That is, a puff member made of a bias-skirted carbon fiber woven fabric 1 is clamped and fixed with a metal claw @ fastening ring 2, and a metal 7 with a hole diameter matching the rotation axis of the polishing machine is attached to the ring. The interface plate 3 was attached to a fastening ring with claws to form a puff. In order to give the puff appropriate rigidity and improve its durability, concentric suture lines 4 were inserted using threads made of the same material as the carbon fiber woven fabric. The dimensions of the puff were an outer diameter of 20111 m, a ring inner diameter of 75 mm, and a width of about 20 mm. FIG. 2 is an explanatory diagram showing an outline of the electrolytic polishing apparatus. The puff 5 was attached to the polishing device shown in FIG. 2, the puff was used as a cathode, the workpiece 6 was used as an anode, the number of rotations of the puff was 2000 rpm, and the pressure of the puff was 1 kgf/am.
Polishing was carried out with an electrolytic current of 20 A/cm" and electrolytic solution 7 flowing at a flow rate of 50 ml/B between the puff and the workpiece. The electrolytic solution was made by adding sodium chloride to water + aag
Salt solution with /l added and sodium nitrite added for corrosion protection at log/l! However, any electrolytic solution used in conventional electrolytic processing may be used, and it was filtered and circulated with a pump before use. Polishing is performed only at the contact area of the puff, and the polishing speed (polishing depth/polishing time) is 4.5 μm.
I missed it at /s. This corresponds to several tens to hundreds of times the polishing speed of conventional puff polishing, and the polishing efficiency has increased dramatically. The surface roughness of the polished surface is approximately 1μ R+naX″C
'Rarely. By mixing fine powder abrasives such as silicon carbide, alumina, and oxidized aluminum into the electrolytic solution, the surface roughness could be further reduced. The effect varies depending on the type and particle size of the abrasive mixed, but 10 to 20 g of chromium oxide
/J, a smooth surface of 0.1 μm RmaX was obtained.
なお、パフ回転数2000rpm 、ハフ押圧1kgf
Am2で一定とし、電解電流を変化させた時の研磨速度
の変化は、第5図のようになり、電流の増力口とともに
研磨速度は(Jぼ直線的に増加tた。In addition, puff rotation speed 2000 rpm, huff pressure 1 kgf
The polishing rate changes as shown in FIG. 5 when the electrolytic current is changed with Am2 constant, and the polishing rate increased linearly with the increase in current (J).
実施例 2
第3図にその概要を示す。この方法は、従来のラップ盤
によるラッピングを更に能率よく遂行しようとするもの
で、金属製回転円板8の上に絶神のための同径のプラス
チ・ンク製日板9を接着し、その上に回転円板のタト径
より太き(〕し取りした炭素繊維織布10を載せ、外周
端部を金属製リング11で回転円板の側面で支持、固定
したものである。炭素繊維織布10は実施例1と同じ強
度の炭系繊維からなり、厚さ0.5mmの朱子織の織布
とした。この炭素繊維パフ円板を陰4金とし、被加工物
12を陽極に接続し、パフ回転数450rpm、パフ押
圧+kgf/am” 、電解電流5A/am” トL、
ハフ ト被加工物の接触部に実施例1と同じ電解液13
を50m1Aの流量で流しながら研磨した。研磨速度は
1μm/Bでめった。研磨面の表面粗さは、o、8μm
Rmaxであった。実施例1と同様に、電解液に微粉研
磨イオを混入することにより表面粗とを小ざ(すること
ができ、研磨材の種類、粒度によってその効果は異なる
が、0.1μm Rmaxの平滑な面は容易に得られる
ことが確かめしれた〇
実施例 3
引張強e 12(1kgf/ mX 、引’4弾性串4
800kgf/mI2+2の炭素繊維からなる糸を用し
ゴ、厚さ0.4mmの綾織の織布を得、その織布片19
を6 mmφの金属製上軸21に%き、エポキシ仇脂等
の接着剤2゜で金属製上軸に強固に固着し、一体化して
、第4図に示す釉付きパフとした。この軸付きパフを手
持ち可搬型の研磨機に取り付け、パフ軸を陰橿に、被加
工物を陽極に接続し、電解液を注ぎながら両極間に通電
して研磨を行ったところ能率よく研磨できた。この方法
1よ、金型など複雑な曲面を持ったものなどの研磨に適
しでいる。Example 2 The outline is shown in Fig. 3. This method is an attempt to more efficiently perform wrapping using a conventional lapping machine, and a plastic date plate 9 of the same diameter for Zetsushin is glued onto a metal rotating disk 8. A carbon fiber woven fabric 10 that is thicker than the diameter of the rotating disk is placed on top, and the outer peripheral end is supported and fixed on the side surface of the rotating disk with a metal ring 11. The cloth 10 was made of carbon-based fibers with the same strength as in Example 1, and was a satin weave cloth with a thickness of 0.5 mm.This carbon fiber puff disk was used as a negative electrode, and the workpiece 12 was connected to the anode. Puff rotation speed: 450 rpm, puff pressure + kgf/am", electrolytic current: 5 A/am",
The same electrolytic solution 13 as in Example 1 was applied to the contact area of the workpiece.
Polishing was performed while flowing at a flow rate of 50 m1A. The polishing rate was 1 μm/B. The surface roughness of the polished surface is o, 8 μm
It was Rmax. As in Example 1, surface roughness can be reduced by mixing fine powder polishing ions into the electrolyte, and although the effect varies depending on the type and particle size of the abrasive, 〇Example 3 Tensile strength e 12 (1 kgf/mX, tensile strength 4 elastic skewers 4
Using yarn made of carbon fiber of 800 kgf/mI2+2, a twill weave fabric with a thickness of 0.4 mm was obtained, and a piece 19 of the woven fabric was obtained.
was placed on a metal upper shaft 21 having a diameter of 6 mm, and firmly fixed to the metal upper shaft 21 with an adhesive such as epoxy resin at 2°, and then integrated to form the glazed puff shown in FIG. This puff with a shaft was attached to a hand-held portable polishing machine, the puff shaft was connected to the shade rod, the workpiece was connected to the anode, and the polishing was performed by applying electricity between the two electrodes while pouring electrolyte, and the polishing was performed efficiently. Ta. This method 1 is suitable for polishing objects with complex curved surfaces, such as molds.
ナオ、本発明の電解研磨法においで、パフの回転は、陽
極溶解した金属を速やかに除去し、電解を促進すること
が主目的であるので、回転数の変化によって研磨速度は
ほと九ど左右されない。Nao, in the electrolytic polishing method of the present invention, the main purpose of rotating the puff is to quickly remove the metal dissolved in the anode and promote electrolysis, so the polishing speed can be changed by changing the rotation speed. unaffected.
本発明による電解研磨法には、次のような特徴がある。The electrolytic polishing method according to the present invention has the following features.
(1)研磨速度は、電流密度(A/Cm2)に比例して
増加し、最大10μm/eもの研磨速度が得しれ、研磨
能率は従来のパフ研磨の場合に比べ飛躍的に増大する。(1) The polishing rate increases in proportion to the current density (A/Cm2), and a maximum polishing rate of 10 μm/e can be obtained, and the polishing efficiency is dramatically increased compared to conventional puff polishing.
(2)研磨はパフが接触する部分のみで行われ、しかも
パフ抑圧が大きいIiど電解電流も増大し早く研磨でき
る。(3)パフ表面の適度の柔軟性によQ、H加工物の
自由曲面になじみ易く、曲面研磨が容易である。(4)
w;、加工物としては、金属材料をはじめ、導電性非金
属材料並びにそれらの複合材料にも適用できるため、応
用範囲が広い。(5)従来のパフ研磨と異なり、粉塵の
発生がなく、清浄な作業環境を保つことができる。(2) Polishing is performed only on the area where the puff comes into contact, and as the puff suppression is large, the electrolytic current increases and polishing can be performed quickly. (3) Due to the appropriate flexibility of the puff surface, it easily conforms to the free-curved surfaces of Q and H workpieces, making it easy to polish curved surfaces. (4)
w; As a workpiece, it can be applied to metal materials, conductive non-metal materials, and composite materials thereof, so it has a wide range of applications. (5) Unlike conventional puff polishing, no dust is generated and a clean working environment can be maintained.
第1図は、実施例1における電解研磨用炭素繊維パフの
斜視図。第2図は、実施例1における電解研磨法のため
の装置の概要説明図。第3図は、実施例2における電解
研磨法のための装置の概要説明図。第4図は、実施例3
における電解研磨用繊維パフ、6.12・・・・被加工
物、7.13・・・・電解液、 14.22・・・・カ
バー、 15.17・・・・フィルター、16,1B・
・・・ポンプ。
35
第 2 図
’IIEA vHN (A、/am−)第 3 図
=328−FIG. 1 is a perspective view of a carbon fiber puff for electrolytic polishing in Example 1. FIG. 2 is a schematic explanatory diagram of an apparatus for electrolytic polishing in Example 1. FIG. 3 is a schematic explanatory diagram of an apparatus for electrolytic polishing in Example 2. Figure 4 shows Example 3.
Fiber puff for electrolytic polishing, 6.12... Workpiece, 7.13... Electrolyte, 14.22... Cover, 15.17... Filter, 16, 1B...
···pump. 35 Figure 2 'IIEA vHN (A, /am-) Figure 3 = 328-
Claims (1)
張弾性率4000kgf/ωm2以上の炭tm維の糸か
らなる織布を用いてパフ部材を形成し、該パフ部材を導
電性支持部材で支持、固定したことを特徴とする電解研
磨用炭素繊維パフ。 2、引張強2100kgf/ mIn2以上、引張弾性
率4000kgf/關2以上の炭素繊維の糸からなる織
布を用いてパフ部材を形成し、該パフ部材を導電性支持
部材で支持、固足した炭素繊維パフを陰極とし、被加工
物を陽極として、回転するパフと被加工物を接Mさせ、
接触部に電解液を介在させ、両極間に通電して金属など
の導電性材料を電解研磨することを特徴とする電解研磨
法。[Claims] 1. A puff member is formed using a woven fabric made of charcoal tm fiber yarn having a tensile strength f' of 100 kgf/nun2 or more and a tensile modulus of 4000 kgf/ωm2 or more, and the puff member is electrically supported. A carbon fiber puff for electrolytic polishing characterized by being supported and fixed by a member. 2. A puff member is formed using a woven fabric made of carbon fiber yarn with a tensile strength of 2100 kgf/mIn2 or more and a tensile modulus of 4000 kgf/mIn2 or more, and the puff member is supported by a conductive support member and fixed with carbon fibers. Using the fiber puff as a cathode and the workpiece as an anode, the rotating puff and the workpiece are brought into contact with each other,
An electrolytic polishing method characterized by electrolytically polishing a conductive material such as metal by interposing an electrolyte in the contact area and passing current between the two electrodes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11185783A JPS606360A (en) | 1983-06-23 | 1983-06-23 | Carbon fiber buff and electrolytic-polishing therewith |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11185783A JPS606360A (en) | 1983-06-23 | 1983-06-23 | Carbon fiber buff and electrolytic-polishing therewith |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS606360A true JPS606360A (en) | 1985-01-14 |
Family
ID=14571896
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11185783A Pending JPS606360A (en) | 1983-06-23 | 1983-06-23 | Carbon fiber buff and electrolytic-polishing therewith |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS606360A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0691541A (en) * | 1992-09-08 | 1994-04-05 | Osaka Diamond Ind Co Ltd | Super abrasive grain grinding wheel |
JPH0691542A (en) * | 1992-09-08 | 1994-04-05 | Osaka Diamond Ind Co Ltd | Super abrasive grain grinding wheel |
JP2003025229A (en) * | 2001-07-10 | 2003-01-29 | Mitsui Kensaku Toishi Kk | Grinding wheel and its manufacturing method |
JP2014037611A (en) * | 2012-08-16 | 2014-02-27 | Chemical Yamamoto:Kk | Electrode structure for electrolytic polishing device |
JP2020082305A (en) * | 2018-11-29 | 2020-06-04 | ケヰテック株式会社 | Buff and buff polishing method |
-
1983
- 1983-06-23 JP JP11185783A patent/JPS606360A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0691541A (en) * | 1992-09-08 | 1994-04-05 | Osaka Diamond Ind Co Ltd | Super abrasive grain grinding wheel |
JPH0691542A (en) * | 1992-09-08 | 1994-04-05 | Osaka Diamond Ind Co Ltd | Super abrasive grain grinding wheel |
JP2003025229A (en) * | 2001-07-10 | 2003-01-29 | Mitsui Kensaku Toishi Kk | Grinding wheel and its manufacturing method |
JP2014037611A (en) * | 2012-08-16 | 2014-02-27 | Chemical Yamamoto:Kk | Electrode structure for electrolytic polishing device |
JP2020082305A (en) * | 2018-11-29 | 2020-06-04 | ケヰテック株式会社 | Buff and buff polishing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0460766B2 (en) | ||
CN109877657B (en) | Electrochemical thickening and polishing method | |
EP0421350A1 (en) | Method of and apparatus for electropolishing and grinding | |
CN108555701A (en) | It is electrolysed the device of magnetic force Compound Machining plane | |
JPS606360A (en) | Carbon fiber buff and electrolytic-polishing therewith | |
CN208391673U (en) | It is electrolysed the device of magnetic force Compound Machining plane | |
CN109986414A (en) | A kind of device being electrolysed rotary ultrasonic magnetic force composite polishing plane | |
CN103042279A (en) | Electrolytic grinding tool for processing complex curved and mirror surfaces | |
US20100126877A1 (en) | Electrochemical grinding electrode, and apparatus and method using the same | |
JPS61100318A (en) | Method of forming and grinding hole with use of ultrasonic wave, electrolysis and electric discharge | |
CN210099595U (en) | Device for polishing plane by electrolyzing, rotating, ultrasonic and magnetic force compounding | |
JPH03251353A (en) | Grinding for cylindrical workpiece | |
CN209698618U (en) | A kind of device of the compound device to hole burr removal of electrolysis rotary ultrasonic magnetic force | |
JPH0133287B2 (en) | ||
JPH07285071A (en) | Electrolytic dressing grinding method and device | |
JPH0138612B2 (en) | ||
CN219359125U (en) | Double-sided grinding clamp | |
JPH0675823B2 (en) | Grinding machine | |
JPS58137525A (en) | Superprecision electrolytic compound grinding grain processing method | |
CN209754801U (en) | Electrochemical thickening and polishing processing device | |
CN218697616U (en) | Tool for removing silver layer on surface of ceramic ball | |
JP2950064B2 (en) | Electrolytic dressing type grinding machine | |
JPH08257912A (en) | Grinding wheel with conductivity and elasticity, and electrophoretic grinding method therewith | |
JPS6071122A (en) | Electrolytic compound mirror-surface processing method | |
JPS5819412B2 (en) | Electrolytic buffing processing equipment |