JPH0675823B2 - Grinding machine - Google Patents

Grinding machine

Info

Publication number
JPH0675823B2
JPH0675823B2 JP63012305A JP1230588A JPH0675823B2 JP H0675823 B2 JPH0675823 B2 JP H0675823B2 JP 63012305 A JP63012305 A JP 63012305A JP 1230588 A JP1230588 A JP 1230588A JP H0675823 B2 JPH0675823 B2 JP H0675823B2
Authority
JP
Japan
Prior art keywords
grinding
grindstone
abrasive grains
dressing
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63012305A
Other languages
Japanese (ja)
Other versions
JPH01188266A (en
Inventor
整 大森
威雄 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP63012305A priority Critical patent/JPH0675823B2/en
Publication of JPH01188266A publication Critical patent/JPH01188266A/en
Publication of JPH0675823B2 publication Critical patent/JPH0675823B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、硬脆材料の鏡面研削を可能とする研削加工装
置、特に、鋳鉄をボンド材とするメタルボンド砥石を、
電界効果によりドレッシングしつつ研削加工を行う研削
加工装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to a grinding apparatus capable of mirror-grinding a hard and brittle material, particularly a metal bond grindstone using cast iron as a bond material.
The present invention relates to a grinding apparatus that performs grinding while dressing by an electric field effect.

(従来技術およびその問題点) 鋳鉄ファイバボンドダイヤモンド砥石(以下、CIFB−D
砥石と言う:Cast Iron Fiber Bonded-Diamond)は、鋳
鉄ファイバの基材にダイヤモンド砥粒とカーボニル鉄粉
を混合して成形焼結した繊維強化複合材料の一種で、砥
粒は強い結合力によって保持され、セラミックス等の硬
脆材料の高(除去)能率研削加工を実現するために研究
されてきた。
(Prior art and its problems) Cast iron fiber bonded diamond grindstone (hereinafter CIFB-D
A grindstone: Cast Iron Fiber Bonded-Diamond) is a type of fiber-reinforced composite material made by mixing diamond abrasive grains and carbonyl iron powder into a cast iron fiber base material and sintering it. The abrasive grains are held by a strong bonding force. And has been studied to realize high (removal) efficiency grinding of hard and brittle materials such as ceramics.

従来のいわゆる目こぶれ型と呼ぶ砥石車の基本的な研削
作用は、切削のような一定の切れ刃が最後まで削ってゆ
くのと異なり、砥石を構成する砥粒と結合材と空孔とが
作用し、加工時に砥粒と結合材が粉砕されつつ常に新た
な切れ刃と空孔が自生されて被削材の除去が行われるも
のである。しかし、上記CIFB−D砥石は、いわゆる目つ
ぶれ型の典型であり、ダイヤモンド砥粒とその強固なボ
ンド材のために、前述したような砥粒切れ刃と空孔の自
生作用が発生しないこと、また、酸化アルミニウム砥粒
から成るWAスティック砥石を用いたドレッシング方法を
用いても、研削の主要条件となる砥粒の充分な突き出し
量が得られないという問題があった。そこで、最近では
難削材を強引に研削する際に発生するスパークで被削材
と共に本砥石のボンド材をも除去するようなドレッシン
グと研削を兼ねたスパークドレッシング法が開発されて
いる。しかしながら、実際の生産ラインにおいては、こ
のような単に高除去量を必要とする研削加工工程がない
上、強力な研削力に耐える剛性・出力をもつ加工機械も
未だ少なく、むしろ、ラッピング等の研磨工程への応用
研究が望まれていた。
The basic grinding action of the conventional grinding wheel called so-called eclipse type is different from the fact that a constant cutting edge like cutting cuts to the end, unlike the abrasive grains, binding material and holes that make up the grinding wheel. Acts, the abrasive grains and the bonding material are crushed during processing, and new cutting edges and holes are always self-generated to remove the work material. However, the CIFB-D grindstone is a typical so-called blind type, and because of the diamond abrasive grains and its strong bond material, the spontaneous action of the abrasive grain cutting edges and holes as described above does not occur, Further, even if a dressing method using a WA stick grindstone made of aluminum oxide abrasive grains is used, there is a problem that a sufficient protrusion amount of the abrasive grains, which is a main condition for grinding, cannot be obtained. Therefore, recently, a spark dressing method has been developed which combines dressing and grinding so as to remove not only the work material but also the bond material of the main grindstone by the spark generated when the difficult-to-cut material is forcibly ground. However, in the actual production line, there is no such grinding process that simply requires a high removal amount, and there are still few processing machines that have rigidity and output that can withstand a strong grinding force, and rather polishing such as lapping. Applied research to the process was desired.

本発明者等は、電子材料であるシリコンの鏡面研削にCI
FB−D砥石を適用することを目的として研究を重ね、前
記砥石の砥粒突き出し量が不充分であると良好な光沢面
が得られないことに着目し、従来のドレッシング方法に
ついて種々検討を行った。特に、良好な鏡面を得るため
に砥粒を小さくすればするほど、CIFB−D砥石のドレッ
シングは困難となり、うかつに従来のWAスティック砥石
を用いた機械的なドレッシングを行えば、充分な砥粒突
き出しを得る間もなく微細な砥粒を落としてしまうとい
う問題があった。また、遊離砥粒を供給しながら研削を
行うことでスラリードレッシング法を本砥石に適用した
のをはじめ、放電研削法の適用によって従来には得られ
なかった光沢面が得られることを見い出し、ついに、研
削加工中に微細砥粒CIFB−D砥石と電解によるドレッシ
ング法とを組み合わせることにより、良好なシリコンウ
エハの鏡面研削を実現するに至った。
The inventors of the present invention have used CI for the mirror polishing of silicon, which is an electronic material.
With the aim of applying the FB-D grindstone, research has been repeated and various studies have been conducted on conventional dressing methods, focusing on the fact that a good glossy surface cannot be obtained if the amount of protrusion of the abrasive grains of the grindstone is insufficient. It was In particular, the smaller the abrasive grains in order to obtain a good mirror surface, the more difficult the dressing of the CIFB-D grindstone becomes, and if the mechanical dressing using the conventional WA stick grindstone is carried out, sufficient abrasive grains will be obtained. There was a problem that fine abrasive grains would be dropped soon after the protrusion was obtained. In addition, we found that a slurry surface dressing method was applied to the main grindstone by performing grinding while supplying loose abrasive grains, and that we could obtain a glossy surface that could not be obtained conventionally by applying the electric discharge grinding method. By combining a fine abrasive grain CIFB-D grindstone and a dressing method by electrolysis during the grinding process, it has been possible to realize good mirror surface grinding of a silicon wafer.

(問題を解決するための手段) 本発明は、供給された弱導電性の研削液を受ける液受け
部、鋳鉄をボンド材とするメタルボンド砥石であって、
この砥石の研削作業面全体が前記液受け部で受けた研削
液中に湿潤され、前記作業面が一時的に部分的に被加工
物と接触するメタルボンド砥石、前記メタルボンド砥石
の研削作業面を前記被加工物に対して相対的に移動し
て、前記研削作業面を前記被加工物の研削面上で擢動さ
せる手段、及び前記メタルボンド砥石を陽極とし、前記
研削液に湿潤された電極を陰極として、前記擢動が行わ
れている間に、パルス直流電圧を印加するパルス直流電
源を備えることを特徴とする。
(Means for Solving the Problem) The present invention provides a liquid receiving portion for receiving a supplied weakly conductive grinding fluid, a metal bond grindstone using cast iron as a bond material,
The entire grinding work surface of this grindstone is moistened in the grinding liquid received by the liquid receiving part, and the working surface is temporarily in partial contact with the workpiece. A metal bond grindstone, a grinding work surface of the metal bond grindstone. Means for moving the grinding work surface on the grinding surface of the work piece relative to the work piece, and the metal bond grindstone as an anode, and being wet with the grinding liquid. It is characterized in that a pulse direct current power source is provided for applying a pulse direct current voltage while the electrode is used as a cathode while the slidable motion is being performed.

(作用) 以下に、本発明の装置において生じる電解ドレッシング
法による砥粒突き出し形成過程および研削作用について
詳細に述べる。
(Operation) The abrasive grain protrusion forming process and the grinding operation by the electrolytic dressing method that occur in the apparatus of the present invention will be described in detail below.

第5A図は、CIFB−D砥石の使用前の断面形状を示す模式
図であり、ダイヤモンド砥粒が鋳鉄ファイバとボンド材
と空孔の中に適宜分布している。一般に、使用前の砥石
は荒い凹凸表面や軸心の振れ等を有しているため、加工
目的に応じたツルーイングを行う必要がある。第5B図
は、WAスティック砥石研削によりツルーイングおよびド
レッシングを行ったCIFB−D砥石の断面形状を示す模式
図である。冒頭に述べたように、本砥石は、従来の砥石
のような砥粒の粉砕がないため、第5B図のように表面は
平滑化するものの砥粒が形成する切り刃や空孔が発生し
ていない。従って、この表面状態で研削加工を始める
と、当初は、幾つかのダイヤモンド砥粒の突き出しによ
って研削は可能であるが、短時間のうちに、砥粒の磨耗
減退、目詰まり等によって砥粒以外のボンド材や鋳鉄フ
ァイバが被加工物に接触するようになり、清浄な研削加
工が行われなくなる。
FIG. 5A is a schematic diagram showing a cross-sectional shape of a CIFB-D grindstone before use, in which diamond abrasive grains are appropriately distributed in a cast iron fiber, a bond material, and pores. In general, a grindstone before use has a rough uneven surface and a runout of a shaft center, so it is necessary to perform truing according to the processing purpose. FIG. 5B is a schematic diagram showing a cross-sectional shape of a CIFB-D grindstone that has been trued and dressed by WA stick grindstone grinding. As mentioned at the beginning, this grindstone does not grind the abrasive grains like the conventional grindstone, so the surface is smoothed as shown in Fig. 5B, but the cutting edges and holes formed by the abrasive grains occur. Not not. Therefore, when grinding is started with this surface condition, at first, it is possible to grind by protruding some diamond abrasive grains, but within a short time, other than abrasive grains due to wear reduction of the abrasive grains, clogging, etc. The bond material and cast iron fiber of (1) come into contact with the workpiece, and clean grinding cannot be performed.

電気メッキとは逆に、電解液中に被加工物を陽極として
通電すると被加工物表面は溶解し、陰極に金属が析出す
るような電解研磨技術が公知である。CIFB−D砥石は鋳
鉄ファイバと鉄粉を含有しているため導電性を有し、ま
た、クーラント(研削液)は弱導電性であるので、電源
から砥石とクーラント間に通電すると電解効果により砥
石表面の金属部が溶解し、非導電性のダイヤモンド砥粒
が突出する。
Contrary to electroplating, there is known an electropolishing technique in which the surface of the work piece is melted and metal is deposited on the cathode when the work piece is energized in the electrolytic solution as an anode. The CIFB-D grindstone has conductivity because it contains cast iron fiber and iron powder, and the coolant (grinding fluid) is weakly conductive. Therefore, when electricity is applied between the grindstone and the coolant from the power source, the grindstone will be electrolyzed. The metal portion on the surface is melted and the non-conductive diamond abrasive grains are projected.

第4A図は、本発明において、CIFB−D砥石を第5B図の表
面状態から強い電解効果によってドレッシングを行った
断面形状を示す模式図である。導電性金属部は電解によ
って溶解し、一方、非導電性のダイヤモンド砥粒はその
まま残留して、研削可能な突き出し量が得られている。
所望の砥粒突き出し量は、電源装置の印加電圧、電流、
時間、研削液の導電性等によって設定することが可能で
ある。
FIG. 4A is a schematic diagram showing a cross-sectional shape of the CIFB-D grindstone dressed from the surface state of FIG. 5B by a strong electrolytic effect in the present invention. The conductive metal part is dissolved by electrolysis, while the non-conductive diamond abrasive grains remain as they are, and a protrusion amount capable of grinding is obtained.
The desired abrasive grain protrusion amount is the applied voltage of the power supply device, the current,
It can be set according to the time, the conductivity of the grinding fluid, and the like.

本発明のCIFB−D砥石の被加工物に対する研削作用は、
従来の砥粒粉砕による研削と若干異なり、本砥石中のダ
イヤモンド砥粒が切り刃として作用する程度が高く、切
削に近い作用で被加工物を除去するものである。従っ
て、砥粒は被加工物を除去しながら摩耗消滅することに
なる。
The grinding action of the CIFB-D grindstone of the present invention on a workpiece is
Unlike the conventional grinding by crushing abrasive grains, the diamond abrasive grains in the main grindstone have a high degree of acting as a cutting blade, and the work is removed by an action close to cutting. Therefore, the abrasive grains wear out while removing the workpiece.

第4B図は、本発明において、研削加工の過程で砥粒突き
出し量が減退しつつ研削屑が砥粒間に蓄積し目詰まりを
生じた模式図である。本発明では切削加工の進行と共
に、弱い電解効果により研削屑を除去し、研削加工が終
了するまで運転を停止させることなく、実加工中でしか
も自動的にドレッシングを行うことができる。
FIG. 4B is a schematic diagram showing that, in the present invention, the amount of protrusion of abrasive grains is reduced during the grinding process, and grinding debris is accumulated between the abrasive grains to cause clogging. In the present invention, as the cutting process progresses, grinding debris is removed by the weak electrolytic effect, and the dressing can be automatically performed during the actual process without stopping the operation until the grinding process is completed.

(発明の効果) 本発明によって、従来加工困難とされていたシリコン、
フェライト、セラミックス等の硬脆材料をはじめ、超硬
合金、各種鉄鋼材料、金属磁性材料等を、導電性を有す
るCIFB−DやCIFB−CBN(鉄系材を研削する場合)砥石
等を用いて、強い電解によるドレッシング効果と比較的
弱い電解による電解研削加工とを順次行うことにより、
今まで得られなかった極めて良好な鏡面ならびに平滑平
面を、高能率かつ高速に得ることが可能となった。しか
も、研削加工以外の超仕上、ホーニング、ラッピング等
の砥粒加工に応用でき、鏡面仕上加工のみならず重研削
加工もこなすことができ、無理なく高除去能率をも達成
することができる。
(Effect of the Invention) According to the present invention, silicon which has been conventionally considered difficult to process,
In addition to hard and brittle materials such as ferrite and ceramics, cemented carbide, various steel materials, metal magnetic materials, etc. using conductive CIFB-D and CIFB-CBN (when grinding iron-based materials) grindstone, etc. By sequentially performing the dressing effect by strong electrolysis and the electrolytic grinding process by relatively weak electrolysis,
It has become possible to obtain extremely good mirror surfaces and smooth flat surfaces that have not been obtained until now with high efficiency and high speed. In addition, it can be applied to abrasive grain processing such as super finishing other than grinding, honing, lapping, etc., and can perform not only mirror finishing but also heavy grinding, and it is possible to reasonably achieve high removal efficiency.

本導電性砥石の電解ドレッシング法は、電解条件を制御
して、無人かつ高速・高精度に行えるため、従来の機械
的ドレッシングを不要のものとし、また、従来極めて困
難であった超微細砥粒砥石のドレッシングも容易にな
り、更に、砥石の形状に左右されることなくドレッシン
グできるので、高い柔軟性を有する発明である。電解液
においても、市販の水溶性研削液を水道水で希釈したも
のでも弱導電性を有するため、特別な添加物を必要とせ
ず経済的であるばかりでなく電解液による機械の腐食の
心配もない。
The electrolytic dressing method of this conductive grindstone does not require the conventional mechanical dressing because it can perform unmanned operation at high speed with high accuracy by controlling the electrolytic conditions. Since the dressing of the grindstone is easy and the dressing can be performed without being influenced by the shape of the grindstone, the invention has high flexibility. As for the electrolyte, even a commercially available water-soluble grinding fluid diluted with tap water has weak conductivity, so it is economical not requiring any special additives, and it is also possible to worry about machine corrosion due to the electrolyte. Absent.

電解ドレッシング装置の構成は、既存の加工機を組み合
わせ、部品類をアタツッチメント的に取り付けられるた
め、大掛かりな改造を必要としない。電解用電源装置
は、放電ツルーイングにも適用でき、機上で放電ツルー
イング後、そのまま即座に電解ドレッシングから電解研
削加工に移行でき、各加工段階における繁雑な手間を省
き、加工面粗さ、研削抵抗、研削液の抵抗率・温度、加
工物の抵抗率等をインプロセスで計測する機器を装備し
て、常に最適な砥粒突き出し量を制御して研削加工の半
自動化を実現することができる。
The configuration of the electrolytic dressing device does not require major remodeling because the existing processing machines are combined and parts are attached in an attachment manner. The power supply device for electrolysis can also be applied to electric discharge truing, and after the electric discharge truing on the machine, it is possible to immediately shift from electrolytic dressing to electrolytic grinding processing, eliminating complicated labor at each processing stage, surface roughness and grinding resistance. It is possible to realize semi-automation of grinding by equipping with equipment that measures the resistivity and temperature of the grinding fluid, the resistivity of the workpiece, etc. in-process and always controlling the optimum amount of protrusion of abrasive grains.

以上述べたように、本発明は、研削・研磨加工等の分野
に対して、導電性であれば砥石の種類、形状に拘わりな
く、しかもインプロセスで半自動的に加工を行えるの
で、従来に例のない能率的、長寿命、経済的、広範な適
用分野を有する方法として多大な効果をもたらすもので
ある。
As described above, in the field of grinding and polishing, the present invention can be semi-automatically processed in-process regardless of the type and shape of the grindstone as long as it is electrically conductive. It is very efficient, long-lived, economical and has a wide range of application fields.

(実施例) 下表は、本発明を実施するために用いた研削加工システ
ムの仕様内容である。
(Example) The following table shows the specifications of the grinding system used to carry out the present invention.

本実施例は、硬脆材料であるシリコンの鏡面研削を目的
として、精密ロータリー平面研削盤に微粒度CIFB−D砥
石(#4000)を取り付け、これに電解を発生させる既存
のワイヤカット用パルス直流電源を用いた。前記研削盤
は、砥石軸、テーブル回転軸共に静圧軸受を採用してい
る上、実験機ゆえの高剛性を有し、クーラント(研削
液)は磁石軸中心から放出されるため、磁石の目詰まり
軽減効果が大きい。また、前記電源は印加電圧、最大電
流値、周波数を任意設定できる。更に、電解研削に用い
るクーラント水槽や給電ブラシ等に改良を加え、クーラ
ントは市販のものを使用し、なんら特別な電解液を混合
していない。
In this embodiment, a fine rotary CIFB-D grindstone (# 4000) is attached to a precision rotary surface grinder for the purpose of mirror-grinding silicon, which is a hard and brittle material, and an existing wire-cut pulse DC for generating electrolysis is attached to this. A power supply was used. The grinder uses static pressure bearings for both the grindstone shaft and the table rotary shaft, and has high rigidity because it is an experimental machine, and the coolant (grinding liquid) is discharged from the center of the magnet shaft. Greatly reduces clogging. Further, the applied voltage, maximum current value, and frequency of the power source can be arbitrarily set. Further, the coolant tank used for electrolytic grinding, the power supply brush, and the like have been improved. Commercially available coolant is used, and no special electrolytic solution is mixed.

第1図は、本発明の研削加工装置の構成図である。同図
は精密ロータリー平面研削盤の主要部分11と電解用電源
装置12から構成されている。同図において、被削材のシ
リコン13はロータリーテーブル14上の水槽15内に固定さ
れ、クーラント液16中に沈めた状態でCIFB−D砥石10で
研削加工される。砥石10の研削作業面全体がクーラント
液に湿潤し、研削作業面は一時的に部分的に被削材と接
触した状態と成っている。パルス直流電源装置12の陽
(+)電極(正電圧)は、砥石10外周に当てた給電ブラ
シ17、陰(−)電極(負電圧)は、クーラント液16中に
垂らした銅線18に接続されている。すなわち、ネクーラ
ント自体を陰(−)極とすることにより常時電解を発生
させる。加工前に、WAスティック砥石(#80,#400)を
CIFB−D砥石(#4000)で研削することでツルーイング
およびドレッシングを行っておき、その後、種々の電解
条件、研削条件の下でシリコンの研削加工を行った。ま
た、研削後の面粗さは基準長2.5mmで測定した。
FIG. 1 is a block diagram of a grinding apparatus of the present invention. The figure is composed of a main part 11 of a precision rotary surface grinder and a power supply device 12 for electrolysis. In the figure, the work material silicon 13 is fixed in a water tank 15 on a rotary table 14 and is submerged in a coolant 16 and ground by a CIFB-D grindstone 10. The entire grinding work surface of the grindstone 10 is wet with the coolant, and the grinding work surface is temporarily in partial contact with the work material. The positive (+) electrode (positive voltage) of the pulsed DC power supply 12 is connected to the power supply brush 17 applied to the outer circumference of the grindstone 10, and the negative (-) electrode (negative voltage) is connected to the copper wire 18 suspended in the coolant 16. Has been done. That is, electrolysis is always generated by making the necoolant itself a negative (-) pole. Before processing, use the WA stick grindstone (# 80, # 400)
Truing and dressing were performed by grinding with a CIFB-D grindstone (# 4000), and then silicon was ground under various electrolytic and grinding conditions. The surface roughness after grinding was measured with a reference length of 2.5 mm.

第2図は、本発明の効果を示すグラフである。あらかじ
め、CIFB−D砥石は、WAスティック砥石でツルーイング
等を行ったものを用いてシリコンの電解研削を行った。
送り速度は107mm/minで一定とし、2μSのオン時間、
2μSのオフ時間のパルス直流電圧を用い、最大電流値
を各々100,120,140,160Aの4つの場合について、研削距
離1000mmによる電解研削面粗さの変化を示すものであ
る。同図から明らかなように、いずれの場合も電解研削
距離と共に面粗さは向上し、最大電流値が140,160Aの場
合において、研削距離700mm以上でRmax0.1−0.2μmが
達成され、電解効果によるCIFB−D砥石のドレッシング
が有効であることがわかる。
FIG. 2 is a graph showing the effect of the present invention. In advance, the CIFB-D grindstone was subjected to truing or the like with a WA stick grindstone, and electrolytic grinding of silicon was performed.
The feed rate is constant at 107 mm / min, the on-time of 2 μS,
It shows the change of the electrolytic ground surface roughness with a grinding distance of 1000 mm for four cases of maximum current values of 100, 120, 140 and 160 A, respectively, using a pulsed DC voltage with an off time of 2 μS. As is clear from the figure, in both cases, the surface roughness improves with the electrolytic grinding distance, and when the maximum current value is 140,160 A, Rmax 0.1-0.2 μm is achieved at a grinding distance of 700 mm or more, and the electrolytic effect It can be seen that the dressing of the CIFB-D grindstone according to is effective.

次いで、上記ドレッシング効果の後に引き続いて、電解
を与えながら研削加工を行った。第3図は、電解研削特
性を示すグラフであり、1μSのオン時間、1μSのオ
フ時間のパルス電流電圧を用い、最大電流値を160Aで保
持し、研削距離1000mmにおいて、その送り速度を各々35
9,202,107,76,44mm/minと設定して加工したものであ
る。同図から、電解研削の面粗さは、高速送り359mm/mi
nでもRmax0.4μmの研削面が持続し、低速送り44mm/min
において、Rmax0.06−0.08μmの鏡面が実現できた。同
図では最大電流値を16OAとしたが、CIFB−D砥石を用い
た電解研削は電流値を10A程度まで下げて行っても面粗
さを同様に仕上げることができる。
Subsequently, after the dressing effect, grinding was performed while applying electrolysis. FIG. 3 is a graph showing the electrolytic grinding characteristics. Using a pulse current voltage with an ON time of 1 μS and an OFF time of 1 μS, the maximum current value was maintained at 160 A, and the feed speed was 35 mm at a grinding distance of 1000 mm.
It is processed by setting 9,202,107,76,44 mm / min. From the figure, the surface roughness of electrolytic grinding is 359 mm / mi for high-speed feed.
Grinding surface of Rmax 0.4μm continues even at n, low speed feed 44mm / min
In, the mirror surface of Rmax 0.06-0.08 μm was realized. Although the maximum current value is set to 16 OA in the figure, electrolytic grinding using a CIFB-D grindstone can similarly finish the surface roughness even if the current value is lowered to about 10A.

以上、本発明によると極めて良好な鏡面を達成すること
ができた。更に、本発明の装置によって得た研削面は、
被削材が脆性材料であってもほぼ完全な塑性流動による
面性状を呈し、鏡面となっている。この鏡面には脆性破
砕がほとんど生じていないことから表層に残留するクラ
ックも少ないことが確認された。
As described above, according to the present invention, a very good mirror surface can be achieved. Further, the ground surface obtained by the device of the present invention is
Even if the work material is a brittle material, it exhibits a surface texture due to almost complete plastic flow and is a mirror surface. Since almost no brittle fracture occurred on this mirror surface, it was confirmed that few cracks remained on the surface layer.

本発明者等は、上記実施例のシリコンの外にフエライ
ト、アルミナについても極めて良好な結果を得たので下
表にその実施結果を示す。
The present inventors have obtained very good results not only for the silicon of the above-mentioned examples but also for ferrite and alumina, and the results are shown in the table below.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の研削加工装置の構成図、 第2図は、本発明の電解ドレッシングの効果を示すグラ
フ、 第3図は、本発明の電解研削特性を示すグラフ、 第4A図は、本発明の電解ドレッシング効果による磁石表
面の砥粒突き出し状態を示す、砥石断面の模式図、 第4B図は、本発明の電解研削加工中において、ドレッシ
ング効果により目詰まりの除去を示す、磁石断面の模式
図、 第5A図は、CIFB−D砥石の使用前の断面形状を示す模式
図、 第5B図は、CIFB−D砥石をWAスティック砥石でツルーイ
ングおよびドレッシングした断面形状の模式図である。 (符号の説明) 11……精密ロータリー平面研削盤の主要部、 12……電源用電源装置、 13……シリコン被削材、 14……ロータリーテーブル、 15……クーラント水槽、 16……クーラント液、 17……給電ブラシ、18……銅線。
1 is a configuration diagram of a grinding apparatus of the present invention, FIG. 2 is a graph showing an effect of electrolytic dressing of the present invention, FIG. 3 is a graph showing electrolytic grinding characteristics of the present invention, and FIG. 4A is Showing the protruding state of the abrasive grains on the magnet surface by the electrolytic dressing effect of the present invention, a schematic view of a grindstone cross section, FIG. 4B shows the removal of clogging by the dressing effect during the electrolytic grinding process of the present invention. Schematic diagram, FIG. 5A is a schematic diagram showing a cross-sectional shape before use of the CIFB-D grindstone, and FIG. 5B is a schematic diagram of a cross-sectional shape obtained by truing and dressing the CIFB-D grindstone with a WA stick grindstone. (Description of symbols) 11 …… Main part of precision rotary surface grinder, 12 …… Power supply unit for power supply, 13 …… Silicon work material, 14 …… Rotary table, 15 …… Coolant tank, 16 …… Coolant liquid , 17 ... Power supply brush, 18 ... Copper wire.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】供給された弱導電性の研削液を受ける液受
け部、鋳鉄をボンド材とするメタルボンド砥石であっ
て、この砥石の研削作業面全体が前記液受け部で受けた
研削液中に湿潤され、前記作業面が一時的に部分的に被
加工物と接触するメタルボンド砥石、前記メタルボンド
砥石の研削作業面を前記被加工物に対して相対的に移動
して、前記研削作業面を前記被加工物の研削面上で摺動
させる手段、及び前記メタルボンド砥石を陽極とし、前
記研削液に湿潤された電極を陰極として、前記摺動が行
われている間に、パルス直流電圧を印加するパルス直流
電源を備えることを特徴とする研削加工装置。
1. A liquid receiving part for receiving a supplied weakly conductive grinding liquid, a metal bond grindstone using cast iron as a bonding material, and the entire grinding surface of the grindstone received by the liquid receiving part. A metal bond grind that is wetted inside and whose work surface is temporarily in partial contact with the work piece, and the grinding work surface of the metal bond grindstone is moved relative to the work piece to perform the grinding. A means for sliding the working surface on the ground surface of the work piece, and the metal bond grindstone as an anode, the electrode wetted by the grinding liquid as a cathode, and a pulse while the sliding is performed. A grinding apparatus comprising a pulsed DC power supply for applying a DC voltage.
JP63012305A 1988-01-22 1988-01-22 Grinding machine Expired - Lifetime JPH0675823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63012305A JPH0675823B2 (en) 1988-01-22 1988-01-22 Grinding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63012305A JPH0675823B2 (en) 1988-01-22 1988-01-22 Grinding machine

Publications (2)

Publication Number Publication Date
JPH01188266A JPH01188266A (en) 1989-07-27
JPH0675823B2 true JPH0675823B2 (en) 1994-09-28

Family

ID=11801608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63012305A Expired - Lifetime JPH0675823B2 (en) 1988-01-22 1988-01-22 Grinding machine

Country Status (1)

Country Link
JP (1) JPH0675823B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0347752U (en) * 1989-09-18 1991-05-07
JP2745725B2 (en) * 1989-10-04 1998-04-28 旭硝子株式会社 Electrolytic polishing / grinding method and apparatus
JP3286941B2 (en) * 1991-07-09 2002-05-27 株式会社日立製作所 Truing method of diamond grinding wheel
JP2001062633A (en) 1999-08-26 2001-03-13 Minebea Co Ltd Curved surface machining method and device
JP5095159B2 (en) * 2006-08-31 2012-12-12 富士重工業株式会社 Electrolytic dressing grinding equipment
CN102576592B (en) * 2010-05-19 2016-08-31 住友电气工业株式会社 Dust core and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61146467A (en) * 1984-12-18 1986-07-04 Oyo Jiki Kenkyusho:Kk Cutting-off grinding method by conductive grindstone and cutting-off grinding device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61146467A (en) * 1984-12-18 1986-07-04 Oyo Jiki Kenkyusho:Kk Cutting-off grinding method by conductive grindstone and cutting-off grinding device

Also Published As

Publication number Publication date
JPH01188266A (en) 1989-07-27

Similar Documents

Publication Publication Date Title
Ohmori et al. Utilization of nonlinear conditions in precision grinding with ELID (electrolytic in-process dressing) for fabrication of hard material components
JP5363091B2 (en) Polishing machine equipped with a device for bringing the grinding wheel into an appropriate state and method thereof
US6213843B1 (en) Method for grinding surfaces of workpieces
EP0295264A1 (en) Electrical discharge machining by redressing electrodes.
Shanawaz et al. Grinding of aluminium silicon carbide metal matrix composite materials by electrolytic in-process dressing grinding
Kramer et al. ECD (electrochemical in-process controlled dressing), a new method for grinding of modern high-performance cutting materials to highest quality
EP1877216B1 (en) Method of electrolytically microfinishing a metallic workpiece
Qian et al. Precision internal grinding with a metal-bonded diamond grinding wheel
Itoh et al. Grinding characteristics of hard and brittle materials by fine grain lapping wheels with ELID
KR970003491B1 (en) Method of dressing, dressing system and dressing electrode for conductive grindstone
JPH0675823B2 (en) Grinding machine
JPH09103940A (en) Electrolytic inprocess dressing grinding wheel, electrolytic inprocess dressing grinding method and electrolytic inprocess dressing grinder
JP2838314B2 (en) Electrolytic interval dressing grinding method
JPH11262860A (en) Extremely precise grinding method and device
CN101310927A (en) Electric spark shaving technique of non-conductive anchoring agent diamond grinding wheel
JPH06254754A (en) Mirror grinding device and method
JPH0133287B2 (en)
JPH0295574A (en) Grinding method for electrolytic dressing and method and device for compound working of polishing method serving conductive grindstone for tool as well
JP3251610B2 (en) Mirror polishing method and apparatus using electrolytic products
Sudiarso et al. In-Process Electrical Dressing of Metal-Bonded Diamond Grinding Wheels.
JP2717438B2 (en) Method and apparatus for truing and dressing conductive grindstone by electrolytic dressing grinding
JP3345532B2 (en) Electrolytic dressing grinding method and equipment
JPS61125773A (en) Extractor of cut dust on grinding process
Itoh et al. A study of smooth surface finish by ELID-lap grinding and metal-resin bonded wheel
JP3356693B2 (en) Ultra-precision grinding method and grinding device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080928

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080928

Year of fee payment: 14