JPH01188266A - Electrolytic dressing for electric conductive grindstone and device thereof - Google Patents

Electrolytic dressing for electric conductive grindstone and device thereof

Info

Publication number
JPH01188266A
JPH01188266A JP1230588A JP1230588A JPH01188266A JP H01188266 A JPH01188266 A JP H01188266A JP 1230588 A JP1230588 A JP 1230588A JP 1230588 A JP1230588 A JP 1230588A JP H01188266 A JPH01188266 A JP H01188266A
Authority
JP
Japan
Prior art keywords
grindstone
grinding
dressing
electrolytic
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1230588A
Other languages
Japanese (ja)
Other versions
JPH0675823B2 (en
Inventor
Hitoshi Omori
整 大森
Takeo Nakagawa
威雄 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP63012305A priority Critical patent/JPH0675823B2/en
Publication of JPH01188266A publication Critical patent/JPH01188266A/en
Publication of JPH0675823B2 publication Critical patent/JPH0675823B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a mirror surface and a flat surface at high speed and with high precision by applying a voltage onto an electric conductive grindstone and dressing said electric conductive grindstone through electrolytic decomposition. CONSTITUTION:During the grinding work for a workpiece (e.g., silicone wafer) 13, a weakly electric conductive liquid (coolant liquid) 16 is supplied between an electric conductive grindstone 10 and the workpiece 13 by a liquid feeding means. A voltage is applied between the grindstone 10 and the weakly electric conductive liquid 16 by an electric power source device 12. The grindstone 10 is dressed by the electrolytic effect due to the application, and the workpiece 13 is ground to a mirror surface and a flat surface.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、機械加工分野における研削加工に用いられる
研削砥石のドレッシング方法および装置に係わり、特に
、鋳鉄ファイバボンドダイヤモンド砥石等の導電性を有
する砥石を、電解効果によりドレッシングする導電性砥
石の電解ドレッシング方法および装置に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a dressing method and device for a grinding wheel used for grinding in the field of machining, and particularly relates to a dressing method and device for a grinding wheel used for grinding in the field of machining, and particularly for dressing a grinding wheel having conductivity such as a cast iron fiber bonded diamond grinding wheel. The present invention relates to a method and apparatus for electrolytically dressing a conductive grindstone, in which the grindstone is dressed by electrolytic effect.

′(従来技術およびその問題点) 鋳鉄ファイバボンドダイヤモンド砥石(以下、CI F
B−D砥石と言う: Ca5t  Iron  Fib
erBonded −Diamond)は、鋳鉄ファイ
バの基材にダイヤモンド砥粒とカーボニル鉄粉を混合し
て成形焼結した繊維強化複合材料の一種で、砥粒は強い
結合力によって保持され、セラミックス等の硬脆材料の
高(除去)能率研削加工を実現するために研究されてき
た。
(Prior art and its problems) Cast iron fiber bond diamond grinding wheel (hereinafter referred to as CI F
It is called B-D whetstone: Ca5t Iron Fib
erBonded-Diamond) is a type of fiber-reinforced composite material made by mixing diamond abrasive grains and carbonyl iron powder into a base material of cast iron fibers and molding and sintering them. Research has been conducted to realize high (removal) efficient grinding of materials.

従来のいわゆる目こぶれ型と呼ぶ砥石車の基本的な研削
作用は、切削のような一定の切れ刃が最後まで削ってゆ
くのと異なり、砥石を構成する砥粒と結合材と空孔とが
作用し、加工時に砥粒と結合材が粉砕されつつ常に新た
な切れ刃と空孔が自生されて被削材の除去が行われるも
のである。しかし、上記CIFB−D砥石は、いわゆる
目つぶれ型の典型であり、ダイヤモンド砥粒とその強固
なボンド材のために、前述したような砥粒切れ刃と空孔
の自生作用が発生しないこと、また、酸化アルミニウム
砥粒から成るWAスティック砥石を用いたドレッシング
方法を用いても、研削の主要条件となる砥粒の充分な突
き出し量が得られないという問題があった。そこで、最
近では難削材を強引に研削する際に発生するスパークで
被削材と共に本砥石のボンド材をも除去するようなドレ
ッシングと研削を兼ねたスパークドレッシング法が開発
されている。しかしながら、実際の生産ラインにおいて
は、このような単に高除去量を必要とする研削加工工程
がない上、強力な研削力に耐える剛性・出力をもつ加工
機械も未だ少なく、むしろ、ラッピング等の研磨工程へ
の応用研究が望まれていた。
The basic grinding action of the conventional grinding wheel, which is called the so-called "koubure-type" grinding wheel, is different from that of a cutting machine where a constant cutting edge grinds until the end. During machining, the abrasive grains and binder are pulverized, new cutting edges and holes are constantly generated, and the workpiece material is removed. However, the above-mentioned CIFB-D grindstone is a typical so-called blind type, and because of the diamond abrasive grains and its strong bond material, the above-mentioned self-growth effect of the abrasive grain cutting edge and pores does not occur. Further, even if a dressing method using a WA stick grindstone made of aluminum oxide abrasive grains is used, there is a problem in that a sufficient protrusion amount of the abrasive grains, which is a main condition for grinding, cannot be obtained. Therefore, recently, a spark dressing method has been developed that combines dressing and grinding, in which the sparks generated when forcibly grinding difficult-to-cut materials remove the bond material of the main grindstone as well as the work material. However, in actual production lines, there is no grinding process that simply requires a high removal amount, and there are still few processing machines that have the rigidity and output to withstand strong grinding forces. Applied research to processes was desired.

本発明者等は、電子材料であるシリコンの鏡面研削にC
IFB−D砥石を適用することを目的として研究を重ね
、前記砥石の砥粒突き出し量が不充分であると良好な光
沢面が得られないことに着目し、従来のドレッシング方
法について種々検討を行った。特に、良好な鏡面を得る
ために砥粒を小さくすればするほど、CI FB−D砥
石のドレッシングは困難となり、うかつに従来のWAス
ティック砥石を用いた機械的なドレッシングを行えば、
充分な砥粒突き出しを得る間もなく微細な砥粒を落とし
てしまうという問題があった。また、遊離砥粒を供給し
ながら研削を行うことでスラリードレッシング法を本砥
石に適用したのをはじめ、放電研削法の適用によって従
来には得られなかった光沢面が得られることを見い出し
、ついに、研削加工中に微細砥粒CI FB−D砥石と
電解によるドレッシング法とを組み合わせることにより
、良好なシリコンウェハの鏡面研削を実現するに至った
O (問題を解決するための手段) 本発明は、導電性を有する砥石を、被加工物の研削加工
中に弱導電性の液体と介在させて、前記砥石と液体とに
電圧を印加して、その間の電解効果により、前記砥石を
ドレッシング、すなわち砥石の適切な砥粒突き出し量を
獲得することを特徴とする特に、研削の開始時は砥粒突
き出しを充分に得るため強い電解ドレッシングを行い、
更に、研削中、砥粒間に研削屑が目詰まりを起こして平
滑になった時には、弱い電解ドレッシングを行う。
The present inventors have developed a C
We conducted repeated research with the aim of applying the IFB-D whetstone, and focused on the fact that a good glossy surface cannot be obtained if the abrasive grains of the whetstone are insufficiently protruded, and various studies were conducted on conventional dressing methods. Ta. In particular, the smaller the abrasive grains are made to obtain a good mirror surface, the more difficult it becomes to dress the CI FB-D grindstone, and if you carelessly perform mechanical dressing using a conventional WA stick grindstone,
There was a problem in that fine abrasive grains were dropped before sufficient abrasive grain protrusion was obtained. In addition, we applied the slurry dressing method to the main whetstone by grinding while supplying free abrasive grains, and discovered that by applying the electric discharge grinding method, it was possible to obtain a glossy surface that could not be obtained conventionally. By combining a fine abrasive CI FB-D grindstone and an electrolytic dressing method during the grinding process, good mirror polishing of silicon wafers was achieved. (Means for solving the problem) The present invention , a conductive grindstone is interposed with a weakly conductive liquid during the grinding process of a workpiece, a voltage is applied between the grindstone and the liquid, and the electrolytic effect therebetween causes the grindstone to be dressed, i.e. It is characterized by obtaining an appropriate amount of abrasive grain protrusion from the grinding wheel. In particular, at the start of grinding, strong electrolytic dressing is performed to obtain sufficient abrasive grain protrusion.
Furthermore, during grinding, when grinding debris clogs between abrasive grains and the surface becomes smooth, weak electrolytic dressing is applied.

具体的な構成としては、前記導電性砥石の被加工物との
接触面に弱導電性の液体を供給する供給手段、あるいは
研削液等の液体槽の液面調節によって前記砥石の被加工
物との接触面に前記液体を介在させる手段を設け、前記
導電性砥石と前記弱導電性液体間に電圧を印加する電源
装置を備えて構成される電解ドレッシング装置によって
達成することができる。
As a specific configuration, a supply means for supplying a weakly conductive liquid to the contact surface of the conductive grindstone with the workpiece, or adjusting the liquid level of a liquid tank such as grinding fluid, is used to connect the grindstone to the workpiece. This can be achieved by an electrolytic dressing device comprising a means for interposing the liquid on the contact surface of the electrode, and a power supply device for applying a voltage between the conductive grindstone and the weakly conductive liquid.

(作用) 以下に、本発明の電解ドレッシング法による砥粒突き出
し形成過程および研削作用について詳細に述べる。
(Function) The abrasive grain protrusion formation process and grinding action by the electrolytic dressing method of the present invention will be described in detail below.

第5A図は、CI FB−D砥石の使用前の断面形状を
示す模式図であり、ダイヤモンド砥粒が鋳鉄ファイバと
ボンド材と空孔の中に適宜分布している。一般に、使用
前の砥石は荒い凹凸表面や軸心の振れ等を有しているた
め、加工目的に応じたツルーイングを行う必要がある。
FIG. 5A is a schematic diagram showing the cross-sectional shape of the CI FB-D grindstone before use, in which diamond abrasive grains are appropriately distributed in the cast iron fibers, bond material, and pores. In general, a grindstone before use has a rough uneven surface and a runout of the axis, so it is necessary to perform truing according to the purpose of processing.

第5B図は、WAスティック砥石研削によりツルーイン
グおよびドレッシングを行ったCIFB−D砥石の断面
形状を示す模式図である。冒頭に述べたように、本砥石
は、従来の砥石のような砥粒の粉砕がないため、第5B
図のように表面は平滑化するものの砥粒が形成する切り
刃や空孔が発生していない。
FIG. 5B is a schematic diagram showing the cross-sectional shape of a CIFB-D grindstone that has been subjected to truing and dressing by WA stick grindstone grinding. As mentioned at the beginning, this whetstone does not crush the abrasive grains like conventional whetstones, so the 5B
As shown in the figure, although the surface is smoothed, there are no cutting edges or holes formed by abrasive grains.

従って、この表面状態で研削加工を始めると、当初は、
幾つかのダイヤモンド砥粒の突き出しによって研削は可
能であるが、短時間のうちに、砥粒の摩耗減退、目詰ま
り等によって砥粒以外のボンド材や鋳鉄ファイバが被加
工物に接触するようになり、清浄な研削加工が行われな
くなる。
Therefore, when you start grinding with this surface condition, initially,
Grinding is possible by protruding some diamond abrasive grains, but within a short time, bond material and cast iron fibers other than the abrasive grains come into contact with the workpiece due to abrasion reduction and clogging of the abrasive grains. As a result, clean grinding cannot be performed.

電気メツキとは逆に、電解液中に被加工物を陽極として
通電すると被加工物表面は溶解し、陰極に金属が析出す
るような電解研摩技術が公知である。CI FB−D砥
石は鋳鉄ファイバと鉄粉を含有しているため導電性を有
し、また、クーラント(研削液)は弱導電性であるので
、電源から砥石とクーラント間に通電すると電解効果に
より砥石表面の金属部が溶解し、非導電性のダイヤモン
ド砥粒が突出する。
Contrary to electroplating, an electrolytic polishing technique is known in which the surface of the workpiece is dissolved and metal is deposited on the cathode when an electric current is applied to the workpiece in an electrolytic solution using the workpiece as an anode. The CI FB-D grinding wheel contains cast iron fibers and iron powder, so it is electrically conductive, and the coolant (grinding fluid) is weakly conductive, so when electricity is passed between the grinding wheel and the coolant from a power source, an electrolytic effect occurs. The metal part on the surface of the whetstone melts, and non-conductive diamond abrasive grains protrude.

第4A図は、本発明の第1のプロセスを示し、CIFB
−D砥石を第5B図の表面状態から強い電解効果によっ
てドレッシングを行った断面形状を示す模式図である。
FIG. 4A shows a first process of the invention, in which CIFB
FIG. 5 is a schematic diagram showing a cross-sectional shape of the -D grindstone obtained by dressing the surface state shown in FIG. 5B by a strong electrolytic effect.

導電性金属部は電解によって溶解し、一方、非導電性の
ダイヤモンド砥粒はそのまま残留して、研削可能な突き
出し量が得られている。所望の砥粒突き出し量は、電源
装置の印加電圧、電流、時間、研削液の導電性等によっ
て設定することが可能である。
The conductive metal part is dissolved by electrolysis, while the non-conductive diamond abrasive grains remain as they are, providing a protrusion that allows for grinding. The desired abrasive grain protrusion amount can be set by the applied voltage of the power supply device, current, time, conductivity of the grinding fluid, etc.

本発明のCIFB−D砥石の被加工物に対する研削作用
は、従来の砥粒粉砕による研削と若干具なり、本砥石中
のダイヤモンド砥粒が切り刃として作用する程度が高く
、切削に近い作用で被加工物を除去するものである。従
って、砥粒は被加工物を除去しながら摩耗消滅すること
になる。
The grinding action of the CIFB-D grinding wheel of the present invention on the workpiece is slightly different from conventional grinding by grinding abrasive grains, and the diamond abrasive grains in this grinding wheel act to a high degree as cutting edges, resulting in an action close to cutting. This is to remove the workpiece. Therefore, the abrasive grains are worn away while removing the workpiece.

第4B図は、本発明の第2のプロセスを示すものであり
、研削加工の過程で砥粒突き出し量が減退しつつ研削屑
が砥粒間に蓄積し目詰まりを生じた模式図である。本プ
ロセスでは研削加工の進行と共に、弱い電解効果により
研削屑を除去し、研削加工が終了するまで運転を停止さ
せることなく、実加工中でしかも自動的にドレッシング
を行うことができる。また、極めて長期間、上記第2の
プロセスを実行し、切れ刃として作用していた砥粒が全
て摩滅しても、再び、第1のプロセスを実行すれば、短
時間のうちに新しい砥粒を突出させることができるので
、砥石の砥粒層全てを生産能率を低下させることなく有
効に使いきることが可能となる。
FIG. 4B shows the second process of the present invention, and is a schematic diagram in which the amount of abrasive grain protrusion decreases during the grinding process, and grinding debris accumulates between the abrasive grains, causing clogging. In this process, as the grinding process progresses, grinding debris is removed by a weak electrolytic effect, and dressing can be performed automatically during actual processing without stopping the operation until the grinding process is completed. In addition, even if the second process is performed for an extremely long period of time and all the abrasive grains that were acting as cutting edges are worn out, if the first process is performed again, new abrasive grains can be created in a short time. Since the abrasive layer can be made to protrude, the entire abrasive grain layer of the whetstone can be used effectively without reducing production efficiency.

電解ドレッシングの可能な砥石は、CI FB−D砥石
等のメタルボンド砥石は勿論のこと非メタルであっても
金属粉等を混入し、導電性を付与することにより適用す
ることができる。
Grindstones that can be electrolytically dressed include not only metal bonded grindstones such as CI FB-D grindstones, but also non-metallic grindstones that can be applied by mixing metal powder or the like to impart conductivity.

(発明の効果) 本発明によって、従来加工困難とされていたシリコン、
フェライト、セラミックス等の硬脆材料をはじめ、超硬
合金、各種鉄鋼材料、金属磁性材料等を、導電性を有す
るC I FB−DやCIFB−CBN (鉄系材を研
削する場合)砥石等を用いて、強い電解によるドレッシ
ング効果と比較的弱い電解による電解研削加工とを順次
行うことにより、今まで得られなかった極めて良好な鏡
面ならびに平滑平面を、高能率かつ高速に得ることが可
能となった。しかも、研削加工以外の超仕上、ホーニン
グ、ラッピング等の砥粒加工に応用でき、鏡面仕上加工
のみならず重研削加工もこなすことができ、無理なく高
除去能率をも達成することができる。
(Effects of the invention) The present invention enables silicon, which was conventionally considered to be difficult to process, to
In addition to hard brittle materials such as ferrite and ceramics, cemented carbide, various steel materials, and magnetic metal materials, conductive CI FB-D and CIFB-CBN (when grinding iron-based materials) grinding wheels, etc. By sequentially performing a dressing effect using strong electrolysis and electrolytic grinding processing using relatively weak electrolysis, it has become possible to obtain extremely good mirror and smooth surfaces that were previously unobtainable with high efficiency and high speed. Ta. Moreover, it can be applied to abrasive processing other than grinding such as super finishing, honing, and lapping, and can perform not only mirror finishing but also heavy grinding, and can easily achieve high removal efficiency.

本導電性砥石の電解ドレッシング法は、電解条件を制御
して、無人かつ高速・高精度に行えるため、従来の機械
的ドレッシングを不要のものとし、また、従来極めて困
難であった超微細砥粒砥石のドレッシングも容易になり
、更に、砥石の形状に左右されることなくドレッシング
できるので、高い柔軟性を有する発明である。電解液に
おいても、市販の水溶性研削液を水道水で希釈したもの
でも弱導電性を有するため、特別な添加物を必要とせず
経済的であるばかりでなく電解液による機械の腐食の心
配もない。
This electrolytic dressing method for conductive grinding wheels can be performed unattended, at high speed, and with high precision by controlling the electrolytic conditions, making conventional mechanical dressing unnecessary. Dressing of the grindstone becomes easy, and furthermore, dressing can be performed regardless of the shape of the grindstone, so the invention has high flexibility. As for the electrolyte, even a commercially available water-soluble grinding fluid diluted with tap water has weak conductivity, so it is not only economical as it does not require special additives, but also eliminates the risk of corrosion of the machine due to the electrolyte. do not have.

電解ドレッシング装置の構成は、既存の加工機を組み合
わせ、部品類をアクッッチメント的に取り付けられるた
め、大掛かりな改造を必要としない。電解用電源装置は
、放電ツルーイングにも適用でき、機上で放電ツルーイ
ング後、そのまま即座に電解ドレッシングから電解研削
加工に移行でき、各加工段階における繁雑な手間を省き
、加工面粗さ、研削抵抗、研削液の抵抗率・温度、加工
物の抵抗率等をインプロセスで計測する機器を装備して
、常に最適な砥粒突き出し量を制御して研削加工の半自
動化を実現することができる。
The structure of the electrolytic dressing device does not require major modification, as it can be combined with existing processing machines and parts can be attached like an accessory. The electrolytic power supply device can also be applied to electrical discharge truing, and after electrical discharge truing on the machine, it can immediately shift from electrolytic dressing to electrolytic grinding, eliminating complicated labor at each processing stage, and improving machined surface roughness and grinding resistance. Equipped with equipment that measures the resistivity and temperature of the grinding fluid, the resistivity of the workpiece, etc. in-process, it is possible to constantly control the optimum abrasive grain protrusion amount and achieve semi-automation of the grinding process.

以上述べたように、本発明は、研削・研磨加工等の分野
に対して、導電性であれば砥石の種類、形状に拘わりな
く、しかもインプロセスで半自動的に加工を行えるので
、従来に例のない能率的、長寿命、経済的、広範な適用
分野を有する方法として多大な効果をもたらすものであ
る。
As described above, the present invention is applicable to fields such as grinding and polishing, regardless of the type and shape of the grinding wheel as long as it is conductive, and can be performed semi-automatically in-process. This method is highly efficient, has a long life, is economical, and has a wide range of applications.

(実施例) 下表は、本発明を実施するために用いた研削加ニジステ
ムの仕様内容である。
(Example) The table below shows the specifications of the grinding system used to carry out the present invention.

本実施例は、硬脆材料であるシリコンの鏡面研削を目的
として、精密ロータリー平面研削盤に微粉度CIFB−
D砥石(#4000)を取り付け、これに電解を発生さ
せる既存のワイヤカット電源を用いた。前記研削盤は、
砥石軸、テーブル回転軸共に静圧軸受を採用している上
、実験機ゆえの高剛性を有し、クーラント(研削液)は
磁石軸中心から放出されるため、砥石の目詰まり軽減効
果が大きい。また、前記電源は印加電圧、最大電流値、
周波数を任意設定できる。更に、電解研削に用いるクー
ラント水槽や給電ブラシ等に改良を加え、クーラントは
市販のものを使用し、なんら特別な電解液を混合してい
ない。
In this example, a precision rotary surface grinder with a fineness of CIFB-
A D grindstone (#4000) was attached, and an existing wire-cut power source was used to generate electrolysis. The grinding machine is
In addition to using static pressure bearings for both the grinding wheel shaft and table rotation shaft, it has high rigidity as it is an experimental machine, and the coolant (grinding fluid) is released from the center of the magnet shaft, which has a great effect in reducing clogging of the grinding wheel. . In addition, the power supply has an applied voltage, a maximum current value,
Frequency can be set arbitrarily. Furthermore, improvements have been made to the coolant tank, power supply brush, etc. used for electrolytic grinding, and commercially available coolants are used without mixing any special electrolyte.

第1図は、本発明の電解ドレッシング法を実施するため
の装置の構成図である。同図は精密ロータリー平面研削
盤の主要部分1)と電解用電源装置12から構成されて
いる。同図において、被削材のシリコン13はロータリ
ーテーブル14上の水槽15内に固定され、クーラント
液16中に沈めた状態でCIFB−D砥石10研削加工
される。
FIG. 1 is a block diagram of an apparatus for carrying out the electrolytic dressing method of the present invention. The figure shows the main parts of a precision rotary surface grinder 1) and an electrolytic power supply 12. In the figure, silicon 13 as a work material is fixed in a water tank 15 on a rotary table 14, and is ground with a CIFB-D grindstone 10 while submerged in a coolant liquid 16.

電源装置12の陽(+)電極(正電圧)は、砥石10外
周に当てた給電ブラシ17、陰(−)電極(負電圧)は
、クーラント液16中に垂らした銅線18に接続されて
いる。すなわち、クーラント自体を陰(−)極とするこ
とにより常時電解を発生させる。加工前に、WAスティ
ック砥石(#80゜#400)をCI FB−D砥石(
#4000)で研削することでツルーイングおよびドレ
ッシングを行っておき、その後、種々の電解条件、研削
条件の下でシリコンの研削加工を行った。また、研削後
の面粗さは基準長2.5mmで測定した。
The positive (+) electrode (positive voltage) of the power supply device 12 is connected to the power supply brush 17 applied to the outer periphery of the grinding wheel 10, and the negative (-) electrode (negative voltage) is connected to the copper wire 18 suspended in the coolant liquid 16. There is. That is, by using the coolant itself as a negative (-) electrode, electrolysis is constantly generated. Before processing, use the WA stick whetstone (#80° #400) with the CI FB-D whetstone (
Truing and dressing were performed by grinding with #4000), and then silicon was ground under various electrolytic conditions and grinding conditions. Moreover, the surface roughness after grinding was measured using a reference length of 2.5 mm.

第2図は、本発明の第1のプロセスによる電解ドレッシ
ングの効果を示すグラフである。あらかじめ、CI F
B−D砥石は、WAスティック砥石でツルーイング等を
行ったものを用いてシリコンの電解研削を行った。送り
速度は107mm/minで一定とし、最大電流値を各
々100,120゜140.160Aの4つの場合につ
いて、研削距離1000mmによる電解研削面粗さの変
化を示すものである。同図から明らかなように、いずれ
の場合も電解研削距離と共に面粗さは向上し、最大電流
値が140,160Aの場合において、研削距離700
mm以上でRmaxo、 1−0.21) mが達成さ
れ、電解効果によるC I FB−D砥石のドレッシン
グが有効であることがわかる。
FIG. 2 is a graph showing the effect of electrolytic dressing according to the first process of the present invention. In advance, CIF
The BD grindstone was a WA stick grindstone that had undergone truing, etc., and was used for electrolytic grinding of silicon. The graph shows the change in electrolytically ground surface roughness depending on the grinding distance of 1000 mm for four cases where the feed rate is constant at 107 mm/min and the maximum current value is 100, 120, and 140.160 A, respectively. As is clear from the figure, the surface roughness improves with the electrolytic grinding distance in all cases, and when the maximum current value is 140 and 160 A, the grinding distance is 700 A.
It can be seen that Rmaxo, 1-0.21) m is achieved at mm or more, and dressing of the C I FB-D grindstone by the electrolytic effect is effective.

次いで、上記ドレッシング効果の後に引き続いて、電解
を与えながら研削加工を行う本発明の第2のプロセスを
実施する。第3図は、電解研削特性を示すグラフであり
、最大電流値を16OAで保持し、研削距離1000m
mにおいて、その送り速度を各々359,202,10
7.76.44mm/minと設定して加工したもので
ある。同図から、電解研削の面粗さは、高速送り359
mm/minでもRmaxo、4μmの研削面が持続し
、低速送り44mm/minにおいて、Rmaxo、 
06 0.08μmの鏡面が実現できた。同図では最大
電流値を16OAとしたが、CIFB−D砥石を用いた
電解研削は電流値をIOA程度まで下げて行っても面粗
さを同様に仕上げることができる。
Next, following the dressing effect described above, a second process of the present invention is performed in which grinding is performed while applying electrolysis. Figure 3 is a graph showing the electrolytic grinding characteristics, where the maximum current value was maintained at 16OA and the grinding distance was 1000m.
m, the feed speed is 359, 202, 10, respectively.
The processing speed was set at 7.76.44 mm/min. From the same figure, the surface roughness of electrolytic grinding is 359
Rmaxo even at mm/min, the ground surface of 4μm persists, and at low speed feed of 44mm/min, Rmaxo,
06 A mirror surface of 0.08 μm was achieved. In the figure, the maximum current value is 16OA, but electrolytic grinding using a CIFB-D grindstone can achieve the same surface roughness even if the current value is lowered to about IOA.

以上、本発明は、電解ドレッシング効果と電解研削加工
を順次行うことによって極めて良好な鏡面を達成するこ
とができた。更に、本方法によって得た研削面は、被削
材が脆性材料であってもほぼ完全な塑性流動による面性
状を呈し、鏡面となっている。この鏡面には脆性破砕が
ほとんど生じていないことから表層に残留するクランク
も少ないことが確認された。
As described above, the present invention was able to achieve an extremely good mirror surface by sequentially performing the electrolytic dressing effect and the electrolytic grinding process. Furthermore, the ground surface obtained by this method exhibits a surface texture due to almost perfect plastic flow even if the workpiece material is a brittle material, and has a mirror surface. This mirror surface had almost no brittle fractures, and it was confirmed that there were few cranks remaining on the surface layer.

本発明者等は、上記実施例のシリコンの外にフェライト
、アルミナについても極めて良好な結果を得たので下表
にその実施結果を示す。
The inventors of the present invention obtained very good results with ferrite and alumina in addition to the silicon used in the above examples, and the results are shown in the table below.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の電解ドレッシング法を実施するための
装置の構成図、 第2図は、本発明の電解ドレッシングの効果を示すグラ
フ、 第3図は、本発明の電解研削特性を示すグラフ、第4A
図は、本発明の電解ドレッシング効果による磁石表面の
砥粒突き出し状態を示す、砥石断面の模式図、 第4B図は、本発明の電解研削加工中において、ドレッ
シング効果により目詰まりの除去を示す、磁石断面の模
式図、 第5A図は、CI FB−D砥石の使用前の断面形状を
示す模式図、 第5B図は、CI FB−D砥石をWAスティック砥石
でツルーイングおよびドレッシングした断面形状の模式
図である。 (符号の説明) 1)・・・・・・精密ロータリー平面研削盤の主要部、
12・・・・・・電源用電源装置、 13・・・・・・シリコン被削材、 14・・・・・・ロータリーテーブル、15・・・・・
・クーラント水槽、 16・・・・・・クーラント液、 17・・・・・・給電ブラシ、18・・・・・・銅線。 第4A図 電解トレッシング(フロセス1) 第4B図 電解インフロセスドレッシンク(フロセス2)第5A図 便い始め(ツルーイング前) 第5B図 ツルーイング獲 手続補正書(方式) 特許庁長官  小 川 邦 夫  殿 1、事件の表示   昭和63年特許願第12305号
3、補正をする者 事件との関係  出願人 名称 (679)理化学研究所 4、代理人
Fig. 1 is a block diagram of an apparatus for carrying out the electrolytic dressing method of the present invention, Fig. 2 is a graph showing the effect of the electrolytic dressing of the present invention, and Fig. 3 is a graph showing the electrolytic grinding characteristics of the present invention. , 4th A
The figure is a schematic diagram of a cross section of a grinding wheel showing the abrasive grains protruding from the magnet surface due to the electrolytic dressing effect of the present invention. Figure 4B is a diagram showing the removal of clogging due to the dressing effect during the electrolytic grinding process of the present invention. Fig. 5A is a schematic diagram showing the cross-sectional shape of the CI FB-D grindstone before use. Fig. 5B is a schematic diagram of the cross-sectional shape of the CI FB-D grindstone after truing and dressing with a WA stick grindstone. It is a diagram. (Explanation of symbols) 1) Main parts of precision rotary surface grinder,
12...Power supply device, 13...Silicon work material, 14...Rotary table, 15...
・Coolant tank, 16... Coolant liquid, 17... Power supply brush, 18... Copper wire. Figure 4A Electrolytic Tresching (Flocess 1) Figure 4B Electrolytic Inflow Dressing (Flocess 2) Figure 5A Beginner (Before Truing) Figure 5B Trueing Acquisition Procedure Amendment (Method) Director of the Patent Office Kunio Ogawa 1. Indication of the case 1986 Patent Application No. 12305 3. Person making the amendment Relationship with the case Applicant name (679) RIKEN 4. Agent

Claims (6)

【特許請求の範囲】[Claims] (1)導電性砥石に電圧を印加し、前記砥石を電解によ
りドレッシングすることを特徴とする導電性砥石の電解
ドレッシング方法。
(1) An electrolytic dressing method for a conductive grindstone, which comprises applying a voltage to the conductive grindstone and dressing the grindstone by electrolysis.
(2)前記導電性砥石の使用開始時は、比較的高速に前
記ドレッシングを行い、前記砥石面が平坦化した後は、
比較的低速に前記ドレッシングを行うことを特徴とする
特許請求の範囲第(1)項記載の電解ドレッシング方法
(2) When starting to use the conductive grindstone, perform the dressing at a relatively high speed, and after the grindstone surface is flattened,
The electrolytic dressing method according to claim 1, wherein the dressing is performed at a relatively low speed.
(3)前記導電性砥石が、砥粒とメタルボンドからなる
ことを特徴とする特許請求の範囲第(1)項記載の電解
ドレッシング方法。
(3) The electrolytic dressing method according to claim (1), wherein the conductive grindstone comprises abrasive grains and metal bonds.
(4)前記導電性砥石が砥石と金属粒子を含む非メタル
ボンドからなることを特徴とする特許請求の範囲第(1
)項記載の電解ドレッシング方法。
(4) Claim No. 1, characterized in that the conductive grindstone is made of a non-metal bond containing a grindstone and metal particles.
) The electrolytic dressing method described in section ).
(5)前記ドレッシングが、被加工物体研削中に行われ
ることを特徴とする特許請求の範囲第(1)項記載の電
解ドレッシング方法。
(5) The electrolytic dressing method according to claim (1), wherein the dressing is performed during grinding of the workpiece.
(6)導電性砥石、この導電性砥石の被加工物との接触
面に弱導電性液を供給する液供給手段、および前記導電
性砥石と前記弱導電性液体間に電圧を印加する電源装置
を備えて構成される導電性砥石の電解ドレッシング装置
(6) A conductive grindstone, a liquid supply means for supplying a weakly conductive liquid to the contact surface of the conductive grindstone with the workpiece, and a power supply device that applies a voltage between the conductive grindstone and the weakly conductive liquid. An electrolytic dressing device for conductive grinding wheels.
JP63012305A 1988-01-22 1988-01-22 Grinding machine Expired - Lifetime JPH0675823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63012305A JPH0675823B2 (en) 1988-01-22 1988-01-22 Grinding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63012305A JPH0675823B2 (en) 1988-01-22 1988-01-22 Grinding machine

Publications (2)

Publication Number Publication Date
JPH01188266A true JPH01188266A (en) 1989-07-27
JPH0675823B2 JPH0675823B2 (en) 1994-09-28

Family

ID=11801608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63012305A Expired - Lifetime JPH0675823B2 (en) 1988-01-22 1988-01-22 Grinding machine

Country Status (1)

Country Link
JP (1) JPH0675823B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0347752U (en) * 1989-09-18 1991-05-07
US5032238A (en) * 1989-10-04 1991-07-16 Asahi Glass Co., Ltd. Method of and apparatus for electropolishing and grinding
US5472371A (en) * 1991-07-09 1995-12-05 Hitachi, Ltd. Method and apparatus for truing and trued grinding tool
US6752699B2 (en) 1999-08-26 2004-06-22 Minebea Co., Ltd. Working method for curved surface of a work and an apparatus thereof
US20080057835A1 (en) * 2006-08-31 2008-03-06 Fuji Jukogyo Kabushiki Kaisha Process and apparatus for grinding with electrolytic dressing
WO2011145582A1 (en) 2010-05-19 2011-11-24 住友電気工業株式会社 Dust core and method of manufacturing thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61146467A (en) * 1984-12-18 1986-07-04 Oyo Jiki Kenkyusho:Kk Cutting-off grinding method by conductive grindstone and cutting-off grinding device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61146467A (en) * 1984-12-18 1986-07-04 Oyo Jiki Kenkyusho:Kk Cutting-off grinding method by conductive grindstone and cutting-off grinding device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0347752U (en) * 1989-09-18 1991-05-07
US5032238A (en) * 1989-10-04 1991-07-16 Asahi Glass Co., Ltd. Method of and apparatus for electropolishing and grinding
US5472371A (en) * 1991-07-09 1995-12-05 Hitachi, Ltd. Method and apparatus for truing and trued grinding tool
US6752699B2 (en) 1999-08-26 2004-06-22 Minebea Co., Ltd. Working method for curved surface of a work and an apparatus thereof
US20080057835A1 (en) * 2006-08-31 2008-03-06 Fuji Jukogyo Kabushiki Kaisha Process and apparatus for grinding with electrolytic dressing
US8303799B2 (en) * 2006-08-31 2012-11-06 Fuji Jukogyo Kabushiki Kaisha Process and apparatus for grinding with electrolytic dressing
WO2011145582A1 (en) 2010-05-19 2011-11-24 住友電気工業株式会社 Dust core and method of manufacturing thereof
CN102576592A (en) * 2010-05-19 2012-07-11 住友电气工业株式会社 Dust core and method of manufacturing thereof
US8878642B2 (en) 2010-05-19 2014-11-04 Sumitomo Electric Industries, Ltd. Dust core and method for producing the same

Also Published As

Publication number Publication date
JPH0675823B2 (en) 1994-09-28

Similar Documents

Publication Publication Date Title
Ohmori et al. Analysis of mirror surface generation of hard and brittle materials by ELID (electronic in-process dressing) grinding with superfine grain metallic bond wheels
KR100293863B1 (en) Super abrasive tool and its manufacturing method
EP0576937A2 (en) Apparatus for mirror surface grinding
TW458847B (en) Electrically conductive dressing-grinding method and apparatus therefor
Kramer et al. ECD (electrochemical in-process controlled dressing), a new method for grinding of modern high-performance cutting materials to highest quality
EP1877216B1 (en) Method of electrolytically microfinishing a metallic workpiece
Qian et al. Precision internal grinding with a metal-bonded diamond grinding wheel
Qian et al. Internal mirror grinding with a metal/metal–resin bonded abrasive wheel
US6117001A (en) Electrolytic in-process dressing method, electrolytic in-process dressing apparatus and grindstone
Itoh et al. Grinding characteristics of hard and brittle materials by fine grain lapping wheels with ELID
JPH01188266A (en) Electrolytic dressing for electric conductive grindstone and device thereof
JP2838314B2 (en) Electrolytic interval dressing grinding method
JPH10175165A (en) Centerless grinding method using metal bond grinding wheel, and its device
JP3530562B2 (en) Lens grinding method
JP2565385B2 (en) Combined processing method and apparatus of electrolytic dressing grinding method and polishing method using conductive whetstone as tool
JPS61146467A (en) Cutting-off grinding method by conductive grindstone and cutting-off grinding device
JP3251610B2 (en) Mirror polishing method and apparatus using electrolytic products
JPH06254754A (en) Mirror grinding device and method
JP3136169B2 (en) Double-sided lap grinding machine
JP3169631B2 (en) Method and apparatus for electrolytic dressing with semiconductor contact electrode
JP2717438B2 (en) Method and apparatus for truing and dressing conductive grindstone by electrolytic dressing grinding
Peng et al. Grinding and dressing tools for precision machines
JP3356693B2 (en) Ultra-precision grinding method and grinding device
Ohmori et al. Highly efficient and precision fabrication of cylindrical parts from hard materials with the application of ELID (electrolytic in-process dressing)
Bandyopadhyay et al. APPLICATION OF ELECTROLYTIC IN-PROCESS DRESSING (ELID) TECHNOLOGY FOR THE ULTRA-PRECISION FABRICATION OF STRUCTURAL CERAMIC PARTS

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080928

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080928

Year of fee payment: 14