JP2838314B2 - Electrolytic interval dressing grinding method - Google Patents

Electrolytic interval dressing grinding method

Info

Publication number
JP2838314B2
JP2838314B2 JP23398390A JP23398390A JP2838314B2 JP 2838314 B2 JP2838314 B2 JP 2838314B2 JP 23398390 A JP23398390 A JP 23398390A JP 23398390 A JP23398390 A JP 23398390A JP 2838314 B2 JP2838314 B2 JP 2838314B2
Authority
JP
Japan
Prior art keywords
grinding
electrode
dressing
electrolytic
interval
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23398390A
Other languages
Japanese (ja)
Other versions
JPH04115867A (en
Inventor
整 大森
圭烈 朴
一郎 高橋
威雄 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP23398390A priority Critical patent/JP2838314B2/en
Publication of JPH04115867A publication Critical patent/JPH04115867A/en
Application granted granted Critical
Publication of JP2838314B2 publication Critical patent/JP2838314B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は鏡面研削加工の分野に係わり、特に、電解イ
ンプロセスドレッシング研削法(以下、ELID法と言
う。)を応用した小径円筒内面の鏡面研削に好適な電解
インターバルドレッシング研削方法に関する。
Description: TECHNICAL FIELD The present invention relates to the field of mirror grinding, and more particularly, to the mirror surface of the inner surface of a small-diameter cylinder to which electrolytic in-process dressing grinding (hereinafter referred to as ELID) is applied. The present invention relates to an electrolytic interval dressing grinding method suitable for grinding.

(従来技術) 従来、鋳鉄ファイバボンド・ダイヤモンド/立方晶窒
化ホウ素砥石(以下、総称してCIFB砥石と言い、個別に
はCIFB−D/CBN砥石と言う。)を用いた第5図に示すよ
うな内面研削加工が行われている。同図では、回転する
チャック50に取り付けられた円筒形被削材51に軸付CIFB
砥石52を当接させて切り込みを与え、砥石の送りにより
鏡面を創成するものであるが、この方法は切り屑による
目詰まりが発生し易く、1〜数回のパス毎に単石ドレッ
サ53によるドレッシングを行い、正常な除去作用を確保
し、表面粗さを向上して光沢面が得られている。しか
し、十数ミクロン程度の砥粒が限界であり、ミクロンオ
ーダーの砥粒から成る砥石は適用でなかった。従って、
この方法は高精度の鏡面創成には不向きであった。
(Prior Art) Conventionally, as shown in FIG. 5 using a cast iron fiber bond diamond / cubic boron nitride grindstone (hereinafter collectively referred to as CIFB grindstone and individually referred to as CIFB-D / CBN grindstone). Internal grinding is performed. In the figure, a cylindrical workpiece 51 attached to a rotating chuck 50 has a shaft-mounted CIFB.
The cut is given by abutting the grindstone 52, and a mirror surface is created by feeding the grindstone. However, in this method, clogging due to chips is easily generated, and the single-stone dresser 53 is used every one to several passes. Dressing is performed to ensure normal removal action, and the surface roughness is improved to obtain a glossy surface. However, abrasive grains of about several tens of microns are the limit, and a grindstone composed of abrasive grains on the order of microns has not been applied. Therefore,
This method is not suitable for creating a high-precision mirror surface.

そこで本発明者等は、CIFB砥石を用いたELID法による
鏡面研削法(特開平1−188266号)を開発し、更に、前
記ELID法を応用した第4図に示すような内面鏡面研削法
を提案した〔朴、大森、高橋、中川:1989年度精密工学
会秋季大会学術講演会・講演論文集,p899−p900〕。第
4図において、回転するチャック40に取り付けられた円
筒形被削材41に切り込みを与えた軸付CIFB砥石42を当接
させて送りをかけ、鏡面創成を行うものである。このと
き、あらかじめツルーイングした前記砥石の軸部46に接
触して給電電極(+)43を設け、また、前記砥石部に近
接してELID電極(−)44を設け、砥石と電極の間に導電
性研削液(クーラント)45を流して介在させ、前記両極
間に電圧を印加し、鋳鉄ファイバボンドを微弱な電気分
解で溶出させ、ミクロンオーダーのダイヤモンドや窒化
ホウ素の砥粒の突出を確保して鏡面研削を実現するもの
である。この砥石42と電極44を一体化して駆動させる方
法により、円筒内径45mm〜70mm、長さ30mm〜70mmにおい
て、最大粗さRmax=60nm、中心線平均粗さRa=8nmの表
面粗さを得ることができた。
Therefore, the present inventors have developed a mirror surface grinding method by the ELID method using a CIFB grinding wheel (Japanese Patent Laid-Open No. 1-188266), and further applied an internal mirror surface grinding method as shown in FIG. Proposed [Park, Omori, Takahashi, Nakagawa: Scientific Lectures and Proceedings of the 1989 Autumn Meeting of the Japan Society of Precision Engineering, p899-p900]. In FIG. 4, a cylindrical work material 41 attached to a rotating chuck 40 is fed with a cut CIFB grindstone 42 having a notch in contact therewith to create a mirror surface. At this time, a feeding electrode (+) 43 is provided in contact with the shaft portion 46 of the grinding stone which has been trued in advance, and an ELID electrode (-) 44 is provided in proximity to the grinding stone portion. The abrasive grinding fluid (coolant) 45 is flowed and interposed, a voltage is applied between the two electrodes, and the cast iron fiber bond is eluted by weak electrolysis to ensure the projection of micron-order diamond or boron nitride abrasive grains. This realizes mirror grinding. By a method in which the grinding wheel 42 and the electrode 44 are integrated and driven, to obtain a surface roughness of a maximum roughness Rmax = 60 nm and a center line average roughness Ra = 8 nm in a cylindrical inner diameter of 45 mm to 70 mm and a length of 30 mm to 70 mm. Was completed.

(発明が解決しようとする課題) 上記方法は、所望の安定な内面鏡面研削を実現できる
が、その反面、砥石径とELID電極の大きさの関係から加
工可能な内径が限定されるという欠点があった。従っ
て、小径円筒内面の鏡面研削加工を行うことができなか
った。
(Problems to be Solved by the Invention) The above method can realize a desired stable internal mirror surface grinding, but has a disadvantage that the inner diameter that can be processed is limited due to the relationship between the grinding wheel diameter and the size of the ELID electrode. there were. Therefore, the mirror grinding of the inner surface of the small-diameter cylinder could not be performed.

本発明は、高精度の表面粗さを有する円筒内面、特に
小径円筒内面の鏡面研削を目的として、電解目立てと研
削加工を交互に行うインターバルドレッシング研削方法
を提供することにある。
An object of the present invention is to provide an interval dressing grinding method in which electrolytic dressing and grinding are alternately performed for the purpose of mirror grinding of the inner surface of a cylinder having high-precision surface roughness, particularly the inner surface of a small-diameter cylinder.

(課題を解決するための手段) 上記の課題は、 円筒形の被削材の端面から軸線方向に間隔をおいて電
極を設け、 前記被削材と前記電極間で導電性砥石を反復駆動さ
せ、また、電圧が印加された前記導電性砥石と前記電極
間に導電性研削液を介在させ、 電解ドレッシングと研削加工を交互に行うことを特徴
とするインターバルドレッシング研削方法によって解決
することができる。
(Means for Solving the Problems) The above-mentioned problem is solved by providing an electrode at an axial distance from an end face of a cylindrical work material, and repeatedly driving a conductive grindstone between the work material and the electrode. In addition, the present invention can be solved by an interval dressing grinding method characterized in that a conductive grinding fluid is interposed between the conductive whetstone to which a voltage is applied and the electrode, and electrolytic dressing and grinding are alternately performed.

(作用) 第3A図、第3B図、第3C図は、インターバルドレッシン
グ研削方法を用いた内面研削加工の研削経路を説明する
正面断面図である。第3A図において、回転するチャック
30に取り付けられた円筒形被削材31の円筒部の端面から
軸線方向に距離を隔ててELID電極(−)34を固定する。
まず、加工前に給電用電極(+)33が接触した軸付CIFB
砥石32をELID電極34の位置で停止させ、クーラント35を
流し、CIFB砥石に通電して電解初期目立てを行う。次の
第3B図では、一定切り込みを与え、円筒底部までトラバ
ース研削を行う。そして、電極のある元の位置まで戻
す。第3C図の状態でインターバル電解ドレッシングを行
い、その後は再び第3B図、第3C図の工程を切り込みを与
えながら反復的に行う。ここで、電位は印加したままで
ある。つまり、本発明は、CIFB砥石を円筒形被削材と、
前記被削材の円筒部の端面から軸線方向に間隔をおいて
設けられたELID電極との間で反復駆動させながら、電解
目立てと研削加工を交互に行う方法である、従って、EL
ID電極を被研削材の外部に配置して、インターバルドレ
ッシングを行うのでCIFB砥石の外径とほぼ同等の内径を
有する円筒内面の鏡面研削を行うことができる。
(Operation) FIGS. 3A, 3B, and 3C are front cross-sectional views illustrating a grinding path of internal grinding using an interval dressing grinding method. In FIG. 3A, the rotating chuck
The ELID electrode (-) 34 is fixed at a distance in the axial direction from the end surface of the cylindrical portion of the cylindrical work material 31 attached to 30.
First, the CIFB with shaft that the power supply electrode (+) 33 contacts before processing
The grindstone 32 is stopped at the position of the ELID electrode 34, a coolant 35 is flowed, and electricity is supplied to the CIFB grindstone to perform initial electropolishing. In the next FIG. 3B, a constant cut is given and traverse grinding is performed to the bottom of the cylinder. Then, the electrode is returned to the original position. The interval electrolytic dressing is performed in the state shown in FIG. 3C, and thereafter, the steps shown in FIGS. 3B and 3C are repeatedly performed while giving a cut. Here, the potential remains applied. In other words, the present invention provides a CIFB grinding wheel with a cylindrical work material,
This is a method in which electrolytic dressing and grinding are alternately performed while repeatedly driving between the end face of the cylindrical portion of the work material and an ELID electrode provided at an interval in the axial direction.
Since the ID electrode is arranged outside the workpiece and the interval dressing is performed, the inner surface of the cylinder having the inner diameter substantially equal to the outer diameter of the CIFB grinding wheel can be mirror-polished.

また、本発明はELID法において、被削材の加工形状が
特殊な場合やELID電極が加工工程を阻害する場合等の用
件に応じて適用することができる。
In addition, the present invention can be applied to the ELID method according to requirements such as a case where a processing shape of a work material is special or a case where an ELID electrode hinders a processing step.

(実施例) 以下に、本発明の実施例を詳細に説明する。(Example) Hereinafter, an example of the present invention will be described in detail.

第1図は、本発明の電解インターバルドレッシング研
削を専用の電極を用いて内面鏡面研削に適用した概念図
である。同図において、ターニングセンタ加工機の回転
チャック10に被削材11を取り付け、また、これに対向し
往復駆動が可能なチャック(図示せず)に軸付CIFB砥石
12を取り付ける。軸付砥石の軸部には給電用電極13を接
触させる。電解ドレス用ELID電極14は、研削機械の一部
に固定して取り付けられる支持部材15と絶縁部材16とに
よって支持され、砥石と対向する電極面にクーラント供
給孔を備えている。水道水希釈の水溶性クーラントはク
ーラント供給口17から上記供給孔を通して砥石と電極の
隙間に供給される。電極には端子18を設け、ELID電源に
接続される。研削加工は、被削材の回転方向と逆方向に
前記砥石を回転させ、切り込みと送りをかけて行われ
る。
FIG. 1 is a conceptual diagram in which the electrolytic interval dressing grinding of the present invention is applied to internal mirror surface grinding using a dedicated electrode. In the figure, a work material 11 is mounted on a rotating chuck 10 of a turning center processing machine, and a CIFB grinding wheel with a shaft is mounted on a chuck (not shown) capable of reciprocatingly driving the work material.
Attach 12 The power supply electrode 13 is brought into contact with the shaft of the whetstone with a shaft. The ELID electrode for electrolytic dressing 14 is supported by a support member 15 and an insulating member 16 fixedly attached to a part of a grinding machine, and has a coolant supply hole on an electrode surface facing the grindstone. The water-soluble coolant diluted with tap water is supplied from the coolant supply port 17 to the gap between the grindstone and the electrode through the supply hole. A terminal 18 is provided on the electrode and connected to an ELID power supply. Grinding is performed by rotating the grindstone in a direction opposite to the rotating direction of the work material, and cutting and feeding.

CIFB砥石は、被削材質に応じてCIFB−DまたはCIFB−
CBN砥石を選択し、あらかじめ#100カーボランダム
(C)砥石によりツルーイングを行った。まず、初期目
立て(第3A図)を電解ドレッシングにより10〜15min程
度行った後に内面鏡面研削を行い、インターバルドレッ
シングの条件、被削材への影響、加工面粗さ等の検討を
行った。下表には、各種材料についてELID内面鏡面研削
を試みた実験システムの仕様を示す。
CIFB grinding wheels are available in CIFB-D or CIFB-
A CBN grinding wheel was selected and truing was performed in advance using a # 100 carborundum (C) grinding wheel. First, after the initial dressing (FIG. 3A) was performed for about 10 to 15 minutes by electrolytic dressing, the inner mirror surface was ground, and the conditions of interval dressing, the influence on the work material, the surface roughness of the machined surface, and the like were examined. The table below shows the specifications of the experimental system that attempted ELID internal mirror grinding for various materials.

第1の実施例として、硬脆材料を選択し、超硬合金
(WC)、炭化ケイ素(SiC)、アルミナ(Al2O3)につい
て#4000CIFB−D砥石を用いて内面鏡面研削を行った。
内径は全てφ30mmである。電極は砥石外周の約1/3をカ
バーすう大きさの電極を用い、砥石外径と電極の間隔は
0.1mm、被削材端面と電極との軸方向距離は約10mmであ
る。加工条件は、砥石周速度vt283m/min、ワーク周速vw
10m/min、砥石送りF130mm/min、切り込みd4μm(直径
当たり)、以上の条件下において、インターバルドレス
タイミングを気にせずRmax=52nm、Ra=7nmで安定し加
工が行えた。
As a first example, a hard and brittle material was selected, and internal mirror polishing was performed on a cemented carbide (WC), silicon carbide (SiC), and alumina (Al 2 O 3 ) using a # 4000CIFB-D grindstone.
The inner diameters are all φ30 mm. Use an electrode that is large enough to cover about one-third of the circumference of the grinding wheel.
The axial distance between the end face of the workpiece and the electrode is about 10 mm. The processing conditions are: grinding wheel peripheral speed vt283m / min, work peripheral speed vw
Under the conditions of 10 m / min, whetstone feed F130 mm / min, depth of cut d4 μm (per diameter), stable processing was possible at Rmax = 52 nm and Ra = 7 nm without concern for interval dress timing.

インターバルドレスの条件を決定するパラメータであ
る電解条件、送り速度等についての指標となる加工回数
(パス)とドレス電流の関係を第2図に示す。同図は、
ELID電源のピーク電流Ipをα=24A、β=12Aの2種の条
件で設定した場合の、初期ドレスからインターバル回数
に伴う電解ドレッシングに要した電流値Irの変化の相違
を示したものである。条件αでは毎回の最大電流に変動
はなかったが、条件βでは漸増傾向にあり、ドレス不足
状態に陥ってしまうことを表している。つまり、条件α
では、各インターバルドレッシングにおける砥粒突き出
しが充分確保されると共に、溶出したボンドが不導体被
膜化する割合が当然多く、砥石(+)とELID電極(−)
間の導電性がある程度抑制されていることにより、前記
実電流Irの最大電流値が一定値化している現象につなが
っている。ところが、条件βでは毎回のインターバルド
レッシングにおける砥粒突出量が少なく、当然ボンド材
の溶出量も少ないために、不導体被膜化して砥石面に残
る割合が少なく、砥石と電極間の導電性は、絶縁体であ
る前記不導体被膜厚の加工中の摩擦による減少に従い上
昇していく。こうした各条件での電極インターバルドレ
ッシング効率の違いが、実電流の変化として現れてく
る。条件αは本使用装置、本実施例では最適に近いもの
であった。
FIG. 2 shows the relationship between the dressing current and the number of times of processing (pass), which is an index for the electrolysis conditions and feed rates, which are parameters for determining the conditions of the interval dress. The figure shows
It shows the difference in the change in the current value Ir required for electrolytic dressing from the initial dress to the number of intervals when the peak current Ip of the ELID power supply is set under two conditions of α = 24 A and β = 12 A. . Under the condition α, the maximum current did not fluctuate every time, but under the condition β, the maximum current tended to increase gradually, indicating that a shortage of dressing would occur. That is, the condition α
In this case, the protrusion of the abrasive grains in each interval dressing is sufficiently ensured, and the ratio of the eluted bond to the nonconductive film is naturally large, so that the grinding stone (+) and the ELID electrode (-)
The fact that the conductivity between them is suppressed to some extent leads to the phenomenon that the maximum current value of the actual current Ir is constant. However, under the condition β, the amount of abrasive grains projected in each interval dressing is small, and naturally the amount of the bond material eluted is small.Therefore, the ratio of the nonconductive film remaining on the grinding wheel surface is small, and the conductivity between the grinding wheel and the electrode is The non-conductive film thickness, which is an insulator, increases as the friction decreases during processing. The difference in the electrode interval dressing efficiency under each of these conditions appears as a change in the actual current. The condition α was close to the optimum in the present apparatus and the present embodiment.

炭化ケイ素の場合は、超硬合金と同等の傾向で安定し
た鏡面加工が行えたが、アルミナの場合には脆性的研削
屑から、実電流Irがα条件の2倍が必要とされた。その
ために、アルミナの場合には条件αの場合の電圧60Vか
ら90V程度に引き上げ、さらなる電解インターバルドレ
ッシング効率の向上を図った。
In the case of silicon carbide, stable mirror finishing was performed with the same tendency as that of a cemented carbide, but in the case of alumina, the actual current Ir was required to be twice the α condition due to brittle grinding dust. Therefore, in the case of alumina, the voltage was raised from about 60 V under the condition α to about 90 V to further improve the electrolytic interval dressing efficiency.

第2の実施例として、各種鉄鋼材の内面鏡面加工を#
4000CIFB−CBN砥石を用いて行った。その他の研削条件
は第1の実施例と同じである。鉄鋼材の場合、その研削
屑は超硬合金の場合と同様の電解性を持ち、インターバ
ルドレス条件は、第2図の電解ドレッシング条件αと同
等に設定することによって良好な結果が得られた。ま
た、低硬度であるS15C材の加工にはアルミナと同様のド
レス強度の設定が必要とされることがわかった。
As a second embodiment, the inner surface mirror processing of various steel materials is
Performed using a 4000CIFB-CBN grinding wheel. Other grinding conditions are the same as in the first embodiment. In the case of a steel material, the grinding dust has the same electrolytic properties as in the case of cemented carbide, and good results were obtained by setting the interval dress condition to be equal to the electrolytic dressing condition α in FIG. In addition, it was found that setting of the same dressing strength as that of alumina was necessary for processing of the S15C material having low hardness.

下表に、本発明を実施して得られた上記各種被削材の
平均的加工面粗さの測定結果を示す。
The following table shows the measurement results of the average machined surface roughness of the various work materials obtained by carrying out the present invention.

同表によれば、硬脆材料では、若干材質間の仕上面粗
さの相違が見られるものの、超硬合金ではRmax=52nm
と、良好な面粗さが得られた。炭化ケイ素では、Rmax=
105nmであったが、これは適用した材質の焼結むらから
くる空孔による値で本加工による本質的なものではな
い。また、鉄鋼材料に関しては、焼き入れ材をRmax=60
nm前後に鏡面加工でき、同様の仕上効果が確認できた。
生材(S15C)や鋳鉄(FC25)では、炭化ケイ素と同様に
材質の特徴が現れていることがわかった。
According to the table, although there is a slight difference in the surface finish between the hard and brittle materials, Rmax = 52 nm for the cemented carbide
And good surface roughness were obtained. For silicon carbide, Rmax =
The value was 105 nm, but this is a value based on pores generated from uneven sintering of the applied material, and is not essential due to this processing. For steel materials, the quenched material is Rmax = 60
Mirror finishing was possible around nm, and the same finishing effect was confirmed.
It was found that the characteristics of the raw material (S15C) and cast iron (FC25) were similar to those of silicon carbide.

更に、上述した内径φ30mmの内面鏡面加工の他に、内
径φ12mmの加工を行った結果、低硬度、小径材ほど面粗
さが悪化し易い傾向にあった。
Further, in addition to the above-mentioned inner mirror surface processing of the inner diameter φ30 mm, as a result of processing the inner diameter φ12 mm, the lower the hardness and the smaller the diameter, the more the surface roughness tends to be deteriorated.

以上の結果から、本発明により、特に、硬脆材料にお
いて良好な鏡面とナノメータオーダーの粗さ精度を有す
る表面を実現することができた。
From the above results, according to the present invention, a surface having a good mirror surface and a roughness accuracy of nanometer order was able to be realized particularly in a hard and brittle material.

(発明の効果) 本発明によれば、ELID電極を被削材の外部に設置し、
CIFB砥石の反復駆動により研削加工と砥粒の突き出しの
ための電解ドレッシングを交互に行う。ELID電極は、砥
石に常時近接させ、しかも同体で設置する必要がないの
で、従来、極めて困難であった微小径の内面研削、つま
り砥石とほぼ同径の内面研削が可能になった。しかも、
加工能率を損なうことなく安定した精密加工を行うこと
ができ、更に、従来技術で問題であったドレッサの摩耗
量や余分(過度)のドレスによる砥石の損失を皆無にす
ることができた。
(Effect of the Invention) According to the present invention, the ELID electrode is installed outside the work material,
Grinding and electrolytic dressing for protruding abrasive grains are alternately performed by repeatedly driving the CIFB grinding wheel. Since the ELID electrode is always in close proximity to the grindstone and does not need to be installed in the same body, it has become possible to grind a minute diameter inner surface, which was extremely difficult in the past; Moreover,
Stable precision machining could be performed without impairing the machining efficiency, and further, the loss of the grindstone due to the wear amount of the dresser and excess (excessive) dressing, which were problems in the prior art, could be eliminated.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明による加工例を示す概念図、 第2図は、本発明による加工時間(回数)とドレス電流
の関係を示すグラフ、 第3A図〜第3C図は、本発明による内面研削加工の研削経
路を示す正面断面図、 第4図は、従来のELID法を用いた鏡面内面研削加工を示
す正面断面図、 第5図は、従来のCIFB砥石を用いた内面研削加工を示す
正面断面図である。 (符号の説明) 10,30,40,50……回転チャック、 11,31,41,51……被削材、 12,32,42,52……軸付CIFBD砥石、 13,33,43……給電用電極、 14,34,44……ELID電極、 15……支持部材、 16……絶縁部材、 17……クーラント供給口、 18……端子、 35,45……クーラント、 46……軸部、 47,47′,54……クーラントノズル、 53……ドレッサ。
FIG. 1 is a conceptual diagram showing a processing example according to the present invention, FIG. 2 is a graph showing a relationship between processing time (number of times) and dress current according to the present invention, and FIGS. 3A to 3C are inner surfaces according to the present invention. FIG. 4 is a front cross-sectional view showing a grinding path of a grinding process. FIG. 4 is a front cross-sectional view showing a mirror inner surface grinding process using a conventional ELID method. FIG. 5 is a front sectional view showing a conventional CIFB grinding wheel. It is a front sectional view. (Explanation of reference numerals) 10,30,40,50 …… Rotating chuck, 11,31,41,51 …… Work material, 12,32,42,52 …… CIFBD grinding wheel with shaft, 13,33,43… … Power supply electrode, 14,34,44 …… ELID electrode, 15 …… Support member, 16 …… Insulation member, 17 …… Coolant supply port, 18 …… Terminal, 35,45 …… Coolant, 46 …… Shaft Part, 47, 47 ', 54 ... coolant nozzle, 53 ... dresser.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−35869(JP,A) 特開 平3−251352(JP,A) (58)調査した分野(Int.Cl.6,DB名) B24B 53/00────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-4-35869 (JP, A) JP-A-3-251352 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) B24B 53/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】円筒形の被削材の端面から軸線方向に間隔
をおいて電極を設け、前記被削材と前記電極間で導電性
砥石を反復駆動させ、また、電圧が印加された前記導電
性砥石と前記電極間に導電性研削液を介在させ、 電解ドレッシングと研削加工を交互に行うことを特徴と
するインターバルドレッシング研削方法。
An electrode is provided at an axial distance from an end surface of a cylindrical work material, and a conductive grindstone is repeatedly driven between the work material and the electrode. An interval dressing grinding method characterized in that a conductive grinding fluid is interposed between a conductive grindstone and the electrode, and electrolytic dressing and grinding are alternately performed.
JP23398390A 1990-09-04 1990-09-04 Electrolytic interval dressing grinding method Expired - Lifetime JP2838314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23398390A JP2838314B2 (en) 1990-09-04 1990-09-04 Electrolytic interval dressing grinding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23398390A JP2838314B2 (en) 1990-09-04 1990-09-04 Electrolytic interval dressing grinding method

Publications (2)

Publication Number Publication Date
JPH04115867A JPH04115867A (en) 1992-04-16
JP2838314B2 true JP2838314B2 (en) 1998-12-16

Family

ID=16963700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23398390A Expired - Lifetime JP2838314B2 (en) 1990-09-04 1990-09-04 Electrolytic interval dressing grinding method

Country Status (1)

Country Link
JP (1) JP2838314B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8303799B2 (en) 2006-08-31 2012-11-06 Fuji Jukogyo Kabushiki Kaisha Process and apparatus for grinding with electrolytic dressing

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3344558B2 (en) * 1998-02-26 2002-11-11 理化学研究所 Electric dressing grinding method and apparatus
JP4144725B2 (en) 1999-09-30 2008-09-03 独立行政法人理化学研究所 Glass substrate chamfering method and apparatus
JP2003191164A (en) * 2001-12-21 2003-07-08 Inst Of Physical & Chemical Res Precise grinding method and device, composite bond grinding wheel used therefor, and its manufacturing method
JP4980759B2 (en) * 2007-03-22 2012-07-18 富士重工業株式会社 Electrolytic dressing grinding method and electrolytic dressing grinding apparatus
JP4980758B2 (en) * 2007-03-22 2012-07-18 富士重工業株式会社 Honing method and honing device for cylinder bore inner peripheral surface
JP4996299B2 (en) * 2007-03-27 2012-08-08 富士重工業株式会社 Honing device for cylindrical inner surface
JP5005483B2 (en) * 2007-09-28 2012-08-22 富士重工業株式会社 Honing device for cylindrical inner peripheral surface and honing method for cylindrical inner peripheral surface

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8303799B2 (en) 2006-08-31 2012-11-06 Fuji Jukogyo Kabushiki Kaisha Process and apparatus for grinding with electrolytic dressing
DE102007038050B4 (en) * 2006-08-31 2016-11-17 Fuji Jukogyo Kabushiki Kaisha Method and apparatus for grinding with electrolytic post-processing

Also Published As

Publication number Publication date
JPH04115867A (en) 1992-04-16

Similar Documents

Publication Publication Date Title
JPH0516070A (en) Diamond grinding wheel, method and device for truing diamond grinding wheel and grinding-finished magnetic head
JP3344558B2 (en) Electric dressing grinding method and apparatus
Qian et al. Internal mirror grinding with a metal/metal–resin bonded abrasive wheel
JP2838314B2 (en) Electrolytic interval dressing grinding method
EP1877216B1 (en) Method of electrolytically microfinishing a metallic workpiece
Qian et al. Precision internal grinding with a metal-bonded diamond grinding wheel
JPH09103940A (en) Electrolytic inprocess dressing grinding wheel, electrolytic inprocess dressing grinding method and electrolytic inprocess dressing grinder
JPH11239969A (en) Grinding method for formed mirror surface, and device for it
Lee et al. Development of Cylindrical Grinding Technology with Electrolytic In-Process Dressing Method
JPH10175165A (en) Centerless grinding method using metal bond grinding wheel, and its device
JP3530562B2 (en) Lens grinding method
JPH08243927A (en) Grinding tool and its manufacture and grinding device
JP2003191164A (en) Precise grinding method and device, composite bond grinding wheel used therefor, and its manufacturing method
JP2601750B2 (en) Wheel side shaping method by on-machine discharge truing method
JPH01188266A (en) Electrolytic dressing for electric conductive grindstone and device thereof
JPH11262860A (en) Extremely precise grinding method and device
JP2565385B2 (en) Combined processing method and apparatus of electrolytic dressing grinding method and polishing method using conductive whetstone as tool
JPS61146467A (en) Cutting-off grinding method by conductive grindstone and cutting-off grinding device
Ohmori et al. Highly efficient and precision fabrication of cylindrical parts from hard materials with the application of ELID (electrolytic in-process dressing)
JP2977508B2 (en) Truing and dressing method of diamond whetstone for performing mirror finish with surface roughness of 0.08 μm or less
JP3194624B2 (en) Grinding method and apparatus
Peng et al. Grinding and dressing tools for precision machines
JP2717438B2 (en) Method and apparatus for truing and dressing conductive grindstone by electrolytic dressing grinding
JP3078404B2 (en) Electrolytic dressing grinding method
JP3356693B2 (en) Ultra-precision grinding method and grinding device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20081016

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091016

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20091016

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20101016

EXPY Cancellation because of completion of term