JPH0138612B2 - - Google Patents

Info

Publication number
JPH0138612B2
JPH0138612B2 JP56121643A JP12164381A JPH0138612B2 JP H0138612 B2 JPH0138612 B2 JP H0138612B2 JP 56121643 A JP56121643 A JP 56121643A JP 12164381 A JP12164381 A JP 12164381A JP H0138612 B2 JPH0138612 B2 JP H0138612B2
Authority
JP
Japan
Prior art keywords
abrasive grains
workpiece
tool
electrolytic
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56121643A
Other languages
Japanese (ja)
Other versions
JPS5822626A (en
Inventor
Koichi Kyomya
Katsumi Noda
Hiroshi Hatsuno
Shohei Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Diesel Kiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Diesel Kiki Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP12164381A priority Critical patent/JPS5822626A/en
Publication of JPS5822626A publication Critical patent/JPS5822626A/en
Publication of JPH0138612B2 publication Critical patent/JPH0138612B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

【発明の詳細な説明】 本発明は、電解研削複合超仕上げ方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrolytic grinding composite superfinishing method.

従来、円筒内面その他の被加工物を1μ以内の
面あらさに仕上げる場合に、ホーニング加工では
面あらさが得られず、ラツプ加工が採用されてい
る。しかしながら、ラツプ加工では加工取代を大
きくとれず、所要の仕上げ寸法を得るのに時間を
要し、またラツプ剤としては一般にペーストを使
用しているため、加工物が汚れ、洗浄に時間と労
力を要し、且つ作業環境が一般機械加工の職場に
比べて非常に悪いという問題がある。
Conventionally, when finishing the inner surface of a cylinder or other workpiece to a surface roughness of 1 μm or less, honing cannot achieve the surface roughness, so lapping has been used. However, wrapping processing does not allow for large machining allowances, and it takes time to obtain the required finished dimensions.Additionally, since paste is generally used as a wrapping agent, the workpiece gets dirty and requires time and effort to clean. The problem is that the working environment is very poor compared to general machining workplaces.

本発明は、このような被加工物の超仕上げ加工
を、上記ラツプ加工等に比べて極めて短時間に、
安定した寸法精度で、しかもすぐれた作業環境に
おいて加工できる方法を提供しようとするもので
ある。
The present invention enables super finishing processing of such workpieces in an extremely short time compared to the above-mentioned lap processing, etc.
The objective is to provide a method that allows processing with stable dimensional accuracy and in an excellent working environment.

而して、本発明の方法は、被加工物をプラス極
とし、非電導性砥粒を電導性材料によつて表面に
固定した工具をマイナス極として、被加工物表面
を不働態化し易い電解液中において、両極間に電
流を流しながら、工具と被加工物との間に相対運
動を与えて上記工具上の砥粒及び電解液に混入し
た遊離状態の砥粒で被加工物の研削を行うにあた
り、上記両極間の電流を、数A/cm2以下の微小電
流であつて、上記両砥粒による被加工物表面の不
働態被膜の除去により電気的に活性化された部分
のみが実質的な電解作用を受ける程度に設定し、
これらの砥粒及び電解の複合作用によつて被加工
物の超仕上げ加工を行うことを特徴とするもので
ある。
In the method of the present invention, the workpiece is used as a positive electrode, and a tool having non-conductive abrasive grains fixed to the surface by a conductive material is used as a negative electrode, and an electrolytic process that easily passesivates the surface of the workpiece is applied. In a liquid, a current is passed between the two electrodes, giving relative motion between the tool and the workpiece, and the workpiece is ground using the abrasive grains on the tool and the free abrasive grains mixed in the electrolyte. In performing this process, the current between the two poles is a minute current of several A/cm 2 or less, and only the part that is electrically activated by the removal of the passive film on the surface of the workpiece by the two abrasive grains is substantially heated. set to the extent that it receives electrolytic action,
This method is characterized in that the workpiece is superfinished by the combined action of these abrasive grains and electrolysis.

以下に図面を参照して本発明をさらに詳細に説
明する。
The present invention will be explained in more detail below with reference to the drawings.

第1図において、1は加工すべき円筒内面2を
もつた被加工物、3は工具を示し、工具3の周囲
表面にはボラゾン、ダイヤモンド、カーボランダ
ム砥粒の如き非電導性砥粒4を電導性材料5によ
つて固定している。砥粒4の固定は、例えばニツ
ケル、クロム等からなる電導性材料5の電着によ
りその電導性材料5中に砥粒4の一部を埋設して
固定するのが望ましいが、その他の方法を用いる
こともできる。
In FIG. 1, 1 is a workpiece having a cylindrical inner surface 2 to be machined, 3 is a tool, and the peripheral surface of the tool 3 is coated with non-conductive abrasive grains 4 such as borazone, diamond, or carborundum abrasive grains. It is fixed by a conductive material 5. It is preferable to fix the abrasive grains 4 by embedding a part of the abrasive grains 4 in the conductive material 5 by electrodeposition of a conductive material 5 made of, for example, nickel or chromium, but other methods may also be used. It can also be used.

このように構成した工具3によつて被加工物1
の円筒内面2を加工する場合、その被加工物1を
プラス極、被加工物1の円筒内に挿入した工具3
をマイナス極として、それらを電源に接続し、
NaNO3またはKNO3等の水溶液のように被加工
物表面を不働態化し易い電解液の槽中において、
あるいはその電解液を円筒内面に流しながら、両
極間に数ボルトの電圧で単位面積当り数アンペア
以下の微少電流を流した状態で、通常は後述の実
施例に示すような1A/cm2程度またはそれ以下の
電流密度において、工具3と被加工物1との間に
相対的な回転運動及び軸方向の往復運動を与えて
円筒内面を加工する。而して、上記電解液中に
は、工具3上の砥粒4よりも微小な砥粒6を遊離
状態で混入させ、これを被加工物1と工具3との
相対的な運動に伴う電解液の流れ、あるいは積極
的に流動させた電解液の流れによつて、被加工物
に衝突させる。
The workpiece 1 can be machined by the tool 3 configured in this way.
When machining the inner surface 2 of a cylinder, the workpiece 1 is the positive pole, and the tool 3 inserted into the cylinder of the workpiece 1 is
as the negative pole, connect them to the power supply,
In a bath containing an electrolytic solution that easily passivates the surface of the workpiece, such as an aqueous solution such as NaNO 3 or KNO 3 ,
Alternatively, while flowing the electrolyte on the inner surface of the cylinder, a small current of several amperes or less per unit area is passed between the two electrodes at a voltage of several volts, usually around 1 A/cm 2 or as shown in the example below. At a current density lower than that, relative rotational motion and axial reciprocating motion are applied between the tool 3 and the workpiece 1 to machine the inner surface of the cylinder. The abrasive grains 6, which are finer than the abrasive grains 4 on the tool 3, are mixed in the electrolytic solution in a free state, and the abrasive grains 6 are mixed into the electrolytic solution in a free state, and the abrasive grains 6 are mixed into the electrolytic solution in a free state. A flow of liquid or a flow of actively flowing electrolyte is caused to collide with the workpiece.

このような加工を行うと、被加工物1の円筒内
面2が砥粒4によつて研削されると同時に電解研
摩され、この電解研摩は電流密度が非常に低い状
態においてNaNO3やKNO3等の電解液を用いて
行うため、被加工物表面に不働態被膜が生じ易
く、これに対して工具3上の砥粒4は円筒内面2
における凸部2aを選択的に研削切除するように
作用し、また電解液中の遊離砥粒6は主として電
解液の流れに伴う流体駆動力で上記凸部2aに衝
突し、あるいは工具上の砥粒4に保持されて微小
切刃として作用することになり、これらの作用に
より上記凸部2aが研削切除され、それに伴う不
働態被膜の除去によつてその部分が電気的に活性
化するため、砥粒4,6によつて切除された上記
凸部が主に電解研摩作用を受けることになり、従
つて円筒内面の表面あらさが効率的に改善され
る。特に、上述した砥粒による研削作用は、加工
の初期においては工具3の表面に固定した砥粒4
が主として作用し、その後は上記砥粒4よりも微
小な遊離砥粒6が主として作用することになり、
従つて表面あらさの改善が一層効果的に行われ
る。
When such processing is performed, the cylindrical inner surface 2 of the workpiece 1 is ground by the abrasive grains 4 and electrolytically polished at the same time, and this electrolytic polishing produces NaNO 3 , KNO 3 , etc. at a very low current density. Since the electrolytic solution is used, a passive film is likely to be formed on the surface of the workpiece, and on the other hand, the abrasive grains 4 on the tool 3 are
The free abrasive grains 6 in the electrolyte mainly collide with the protrusions 2a due to the fluid driving force accompanying the flow of the electrolyte, or the abrasive particles on the tool It is held by the grains 4 and acts as a micro-cutting edge, and due to these actions, the convex portion 2a is ground and removed, and due to the accompanying removal of the passive film, that portion becomes electrically activated. The convex portions cut out by the abrasive grains 4 and 6 are mainly subjected to the electrolytic polishing action, so that the surface roughness of the inner surface of the cylinder is efficiently improved. In particular, the grinding action by the abrasive grains described above is caused by the abrasive grains 4 fixed on the surface of the tool 3 at the initial stage of machining.
acts mainly, and thereafter free abrasive grains 6, which are smaller than the abrasive grains 4, mainly act.
Therefore, surface roughness can be improved more effectively.

固定砥粒と遊離砥粒の作用についてさらに詳細
に説明すると、両砥粒は、それらの単位加工量に
大差があり、これは砥粒切刃の工作物面への切込
量の差に起因する。即ち、固定砥粒では、それが
工具上に剛に保持されているため、前加工面の表
面の凸部を能率的に除去するに対し、遊離砥粒で
は流体駆動力により切込みを行わせるため、固定
砥粒の何十分の一、何百分の一のオーダーの単位
加工量であり、固定砥粒による加工後に残つた凸
部をひつかく程度に凸部の一部を除去するにすぎ
ない。
To explain in more detail the effects of fixed abrasive grains and free abrasive grains, there is a large difference in the unit machining amount of the two abrasive grains, and this is due to the difference in the amount of cut into the workpiece surface by the abrasive cutting edge. do. In other words, fixed abrasive grains are rigidly held on the tool, so they efficiently remove convexities on the surface to be machined, whereas free abrasive grains use fluid driving force to make the cut. , the unit processing amount is on the order of a tenth or a hundredth of a fixed abrasive grain, and it only removes a part of the convex part that remains after processing with a fixed abrasive grain. .

従つて、固定砥粒と遊離砥粒には明瞭な役割分
担があり、固定砥粒が主として加工量を得ること
を目的とし、速やかに大きな凸部を除去する役割
を果たすのに対し、遊離砥粒は表面あらさを最終
仕上げ面あらさにまで改善する。
Therefore, there is a clear division of roles between fixed abrasive grains and free abrasive grains. Fixed abrasive grains are mainly used for the purpose of increasing the amount of processing and quickly remove large protrusions, whereas free abrasive grains play the role of quickly removing large protrusions. The grains improve the surface roughness to the final finished surface roughness.

第2図及び第3図は、以上の2種類の砥粒の役
割の差異を明らかにするため、固定砥粒のみの場
合と遊離砥粒を混入した場合の表面あらさ、加工
量の時間変化の状況を示すものである。
In order to clarify the difference in the roles of the above two types of abrasive grains, Figures 2 and 3 show the changes in surface roughness and processing amount over time when only fixed abrasive grains are used and when free abrasive grains are mixed. It indicates the situation.

なお、一般に円筒内面の研削を行う場合には、
工具の径を拡大にするなどの手段によつてその工
具を円筒内面に対して垂直に押し付けることが必
要であるが、上記ボラゾン等の砥粒4を固定した
工具3の外径が加工すべき円筒の内径に対して適
切な寸法関係を有している場合、あるいは上記遊
離砥粒6を用いた場合には、その工具3を被加工
物1に対して相対的に回転させると共に軸方向に
摺動させることにより、上述した円筒内面の凸部
が切除されることになり、適切な加工を行うこと
ができる。また、ここでは円筒内面を加工する場
合について説明したが、本発明は円筒外周面や平
面等についても適用することができる。
In general, when grinding the inner surface of a cylinder,
It is necessary to press the tool perpendicularly to the inner surface of the cylinder by enlarging the diameter of the tool, etc., but the outer diameter of the tool 3 to which the abrasive grains 4, such as Borazon, are fixed should be machined. When the tool 3 has an appropriate dimensional relationship with the inner diameter of the cylinder, or when the free abrasive grains 6 are used, the tool 3 is rotated relative to the workpiece 1 and rotated in the axial direction. By sliding, the above-mentioned convex portion on the inner surface of the cylinder is removed, and appropriate processing can be performed. Further, although the case where the inner surface of the cylinder is processed has been described here, the present invention can also be applied to the outer peripheral surface of the cylinder, the flat surface, etc.

このような本発明の方法によれば、被加工物を
砥粒による研摩と電解の相互作用により加工する
ので、加工時間が大幅に短縮され、しかも微少電
流で電解研摩加工を行うと共に、電解液中に遊離
砥粒を混入させてそれを主に電解液の流れにより
被加工物に衝突させるようにしたので、極めて能
率的に1μ以内の面あらさが得られ、寸法精度も
安定し、形状のだれ、変形の心配もない。さら
に、ラツプ剤としてペーストを使用するラツプ加
工に比べて作業環境を大幅に改善することもでき
る。
According to the method of the present invention, the workpiece is processed through the interaction of polishing with abrasive grains and electrolysis, so the processing time is significantly shortened.Moreover, electrolytic polishing is performed using a minute current, and electrolytic solution Free abrasive grains are mixed in and collided with the workpiece mainly by the flow of electrolyte, so surface roughness within 1μ can be obtained extremely efficiently, dimensional accuracy is stable, and the shape can be easily adjusted. No one has to worry about deformation. Furthermore, the working environment can be significantly improved compared to wrapping processes that use paste as a wrapping agent.

以下に実施例を示す。 Examples are shown below.

第4図に示すような装置を用いて被加工物10
(SCM22)における円筒内面の電解研削複合超
仕上げを行つた。被加工物10における下穴は
5.96mmφで、これに挿入した電極工具11は、粒
径190μのCBN砥粒をニツケル電着し、その砥粒
を含めた外径を5.962mmφとしたものである。電
極工具11は、その回転速度を1500rpmとし、上
下動ストロークを6mmとした。
The workpiece 10 is
Electrolytic grinding composite superfinishing of the inner surface of the cylinder (SCM22) was performed. The prepared hole in the workpiece 10 is
The electrode tool 11 inserted into the electrode tool 11 had a diameter of 5.962 mm, including the abrasive grains, by electrodepositing CBN abrasive grains of 190 μm in diameter on nickel. The electrode tool 11 had a rotational speed of 1500 rpm and a vertical stroke of 6 mm.

電解は、加工液槽12からポンプ13によつて
電解液(NaNO320%溶液)を被加工物10と電
極工具11の間に供給しながら、被加工物10に
電源14のプラス側を電極工具11にそのマイナ
ス側を接続して行い、極間電圧を4V、電流密度
を約1A/cm2とした。
Electrolysis is performed by connecting the positive side of the power source 14 to the workpiece 10 as an electrode while supplying electrolyte (NaNO 3 20% solution) between the workpiece 10 and the electrode tool 11 from the workpiece tank 12 by the pump 13. The negative side was connected to the tool 11, and the inter-electrode voltage was 4 V and the current density was about 1 A/cm 2 .

また、上記加工液槽12内の電解液中に遊離砥
粒(#3000Al2O3)を混入浮遊させ、撹拌器15
で撹拌することによつてその浮遊状態を保持させ
た。
In addition, free abrasive grains (#3000 Al 2 O 3 ) are mixed and suspended in the electrolyte in the processing liquid tank 12, and the agitator 15
The suspended state was maintained by stirring with

上記加工により、加工前の表面あらさが0.8μの
被加工物を約1分間の加工で0.2μにまで仕上げ加
工することができた。
Through the above processing, a workpiece with a surface roughness of 0.8μ before processing could be finished to a roughness of 0.2μ in about 1 minute.

同条件で遊離砥粒を使用しないときには、表面
あらさは、一般に0.3〜0.5μ程度の値を示し、0.3μ
程度が限界と考えられるが、本発明によれば、容
易に上述の0.2μにまで仕上げ加工することができ
た。
When free abrasive grains are not used under the same conditions, the surface roughness generally shows a value of about 0.3 to 0.5μ, and 0.3μ.
Although the degree is considered to be the limit, according to the present invention, finishing processing to the above-mentioned 0.2μ was easily possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を説明するための要部断
面図、第2図及び第3図は遊離砥粒の作用を説明
するための表面あらさ及び加工量の時間変化を示
す線図、第4図は本発明についての実験に用いた
装置の構成図である。 1,10…被加工物、2…円筒内面、3…工
具、4…砥粒、5…電導性材料。
FIG. 1 is a sectional view of a main part to explain the method of the present invention, FIGS. 2 and 3 are diagrams showing changes in surface roughness and processing amount over time to explain the effect of loose abrasive grains, and FIG. FIG. 4 is a configuration diagram of an apparatus used in experiments regarding the present invention. DESCRIPTION OF SYMBOLS 1, 10... Workpiece, 2... Cylindrical inner surface, 3... Tool, 4... Abrasive grain, 5... Electrically conductive material.

Claims (1)

【特許請求の範囲】[Claims] 1 被加工物をプラス極とし、非電導性砥粒を電
導性材料によつて表面に固定した工具をマイナス
極として、被加工物表面を不働態化し易い電解液
中において、両極間に電流を流しながら、工具と
被加工物との間に相対運動を与えて上記工具上の
砥粒及び電解液に混入した遊離状態の砥粒で被加
工物の研削を行うにあたり、上記両極間の電流
を、数A/cm2以下の微小電流であつて、上記両砥
粒による被加工物表面の不働態被膜の除去により
電気的に活性化された部分のみが実質的な電解作
用を受ける程度に設定し、これらの砥粒及び電解
の複合作用によつて被加工物の超仕上げ加工を行
うことを特徴とする電解研削複合超仕上げ方法。
1. With the workpiece as the positive pole and a tool with non-conductive abrasive grains fixed to the surface using a conductive material as the negative pole, a current is applied between the two poles in an electrolytic solution that can easily passivate the workpiece surface. When grinding the workpiece with the abrasive grains on the tool and the free abrasive grains mixed in the electrolyte by applying relative motion between the tool and the workpiece while flowing, the current between the two poles is , a minute current of several A/cm 2 or less, set to such an extent that only the portion electrically activated by the removal of the passive film on the surface of the workpiece by the above-mentioned abrasive grains receives substantial electrolytic action. An electrolytic grinding composite superfinishing method characterized in that a workpiece is superfinished by the combined action of these abrasive grains and electrolysis.
JP12164381A 1981-08-03 1981-08-03 Method of compound super finishing of electrolysis and grinding Granted JPS5822626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12164381A JPS5822626A (en) 1981-08-03 1981-08-03 Method of compound super finishing of electrolysis and grinding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12164381A JPS5822626A (en) 1981-08-03 1981-08-03 Method of compound super finishing of electrolysis and grinding

Publications (2)

Publication Number Publication Date
JPS5822626A JPS5822626A (en) 1983-02-10
JPH0138612B2 true JPH0138612B2 (en) 1989-08-15

Family

ID=14816329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12164381A Granted JPS5822626A (en) 1981-08-03 1981-08-03 Method of compound super finishing of electrolysis and grinding

Country Status (1)

Country Link
JP (1) JPS5822626A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020179741A1 (en) * 2019-03-07 2020-09-10 株式会社Cygames System and method for extracting arbitrary number of combinations of media having high appearance frequencies and included in owned medium group
WO2021015073A1 (en) * 2019-07-19 2021-01-28 株式会社Cygames Medium recommendation system, table creation system, medium recommendation device, and table creation method
WO2021045056A1 (en) * 2019-09-05 2021-03-11 株式会社Cygames Program, server, and game system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0076997B1 (en) * 1981-10-05 1987-12-23 LACH-SPEZIAL-Werkzeuge GmbH Method and device for machining metal-bonded non-conducting material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55112731A (en) * 1979-02-24 1980-08-30 Hitachi Zosen Corp Electrolytic composite super-finishing method on the external surface of cylinder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55112731A (en) * 1979-02-24 1980-08-30 Hitachi Zosen Corp Electrolytic composite super-finishing method on the external surface of cylinder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020179741A1 (en) * 2019-03-07 2020-09-10 株式会社Cygames System and method for extracting arbitrary number of combinations of media having high appearance frequencies and included in owned medium group
WO2021015073A1 (en) * 2019-07-19 2021-01-28 株式会社Cygames Medium recommendation system, table creation system, medium recommendation device, and table creation method
WO2021045056A1 (en) * 2019-09-05 2021-03-11 株式会社Cygames Program, server, and game system

Also Published As

Publication number Publication date
JPS5822626A (en) 1983-02-10

Similar Documents

Publication Publication Date Title
EP1877216B1 (en) Method of electrolytically microfinishing a metallic workpiece
JPH0138612B2 (en)
JPH0133287B2 (en)
JP4895440B2 (en) Method and apparatus for improving surface function of workpiece
JPH01188266A (en) Electrolytic dressing for electric conductive grindstone and device thereof
JPH07164286A (en) Grinding method and device therefor
JPH0639644A (en) Grinding machine
JP2565176Y2 (en) Composite electrolytic polishing equipment
JPS6044227A (en) Method for composite polishing of small-diametered spindle by electrolytic polishing and grinding
JPWO2005000512A1 (en) Rotational surface reduction head, electrolytic surface reduction device, and electrolytic surface reduction method
JP3251610B2 (en) Mirror polishing method and apparatus using electrolytic products
JPH06254754A (en) Mirror grinding device and method
JPS62124869A (en) Method for truing and dressing of metal bonded grinding stone
JPH1158230A (en) Dressing device of grinding tool
JP2002086350A (en) Polishing fluid for electrophoretic polishing and polishing method
JPS5882626A (en) Electrolytic complex mirror-face grinding method
JPS6034227A (en) Electrolytic abrasive grain polishing method of cylindrical inner face
JPS5819412B2 (en) Electrolytic buffing processing equipment
JPS58109225A (en) Composite electrolytic-grinding method for bottom of deep well
JP3078404B2 (en) Electrolytic dressing grinding method
JP2000334644A (en) Inner surface grinding method and tool
JPH09168970A (en) Dressing method and dressing device for grinding wheel
JPH04164570A (en) Electrolytic dressing method
JP2001088016A (en) Electrophoresis polishing agent and manufacture of formed body using it and optical device
JPH06143134A (en) Electrolytic dressing grinding device