JPH08257912A - Grinding wheel with conductivity and elasticity, and electrophoretic grinding method therewith - Google Patents

Grinding wheel with conductivity and elasticity, and electrophoretic grinding method therewith

Info

Publication number
JPH08257912A
JPH08257912A JP9183995A JP9183995A JPH08257912A JP H08257912 A JPH08257912 A JP H08257912A JP 9183995 A JP9183995 A JP 9183995A JP 9183995 A JP9183995 A JP 9183995A JP H08257912 A JPH08257912 A JP H08257912A
Authority
JP
Japan
Prior art keywords
grindstone
grinding
abrasive grains
amount
polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9183995A
Other languages
Japanese (ja)
Inventor
Takuya Senba
卓弥 仙波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP9183995A priority Critical patent/JPH08257912A/en
Publication of JPH08257912A publication Critical patent/JPH08257912A/en
Pending legal-status Critical Current

Links

Landscapes

  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

PURPOSE: To provide grinding wheel dressing (regenerative) during grinding work by forming an electrophoretic type in-process dressing grinding wheel with conductivity and elasticity out of an abrasive grain and a conductive resin matrix. CONSTITUTION: A grinding wheel 10 used for grinding a prescribed work to be ground by an electrophoretic method has a circular grinding surface at one side, and is formed with a plurality of grinding surfaces apart from each other in the peripheral direction, at prescribed angular intervals from the center of the circle. By mixing a resin matrix abrasive including prescribed abrasive grain with carbon fiber of 5μm or less in diameter, a grinding wheel having conductivity and elasticity is obtained. During grinding work, by making the grinding wheel 10 face a work 30 held in grinding fluid 38 where abrasive grains charged with negative potential are dispersed with the grinding wheel 10 serving as an electrode and positive potential applied, abrasive grains charged with negative potential are attracted to the grinding wheel 10. It is thus possible to dress the grinding surface of the grinding wheel with the abrasive grains in addition to grinding work.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、樹脂(レジン)ボンド
研磨材からなる導電性および弾性を有する砥石並びにそ
れを使用した電気泳動研磨方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive and elastic whetstone made of a resin (resin) bond abrasive and an electrophoretic polishing method using the whetstone.

【0002】[0002]

【従来の技術】従来から、アルミナやダイヤモンド砥粒
を金属マトリックスで固めたメタルボンドの砥石やホイ
ールは公知である。かかる砥石は、硬質であるため、曲
げることが困難であり、曲面研磨に際しては、同じ曲面
を有する砥石を製作して使用する必要があり、研磨作業
を面倒にしていた。また、砥粒が摩耗してくると、金属
マトリックスが研磨対象物と擦られるために、研磨対象
物と噛み合ったり、研磨対象物の研磨面に傷を付けたり
する欠点を有していた。
2. Description of the Related Art Conventionally, a metal-bonded grindstone or wheel in which alumina or diamond abrasive grains are hardened with a metal matrix has been known. Since such a grindstone is hard, it is difficult to bend, and it is necessary to manufacture and use a grindstone having the same curved surface when polishing a curved surface, which complicates the polishing work. Further, when the abrasive grains are worn, the metal matrix rubs against the object to be polished, so that it has a drawback that it meshes with the object to be polished or scratches the polishing surface of the object to be polished.

【0003】なお、かかる摩耗したメタルボンドの砥石
やホイールの再生は、電気分解により砥石表面のマトリ
ックス金属の溶出させて埋もれた砥粒を露出させること
により行われている。
Regeneration of such a worn metal-bonded grindstone or wheel is carried out by electrolysis to elute the matrix metal on the surface of the grindstone to expose the buried abrasive grains.

【0004】一方、樹脂(レジン)マトリックスを使用
した、いわゆるレジンボンド砥石は、メタルボンド砥石
に比べて柔軟であるため、必要な曲面に沿う形状に曲げ
て使用できるという長所を有している。また、研磨対象
物の研磨面を傷付けることがない利点がある。ところ
が、このレジンボンド砥石やホイールは、電気分解によ
る再生ができない。
On the other hand, a so-called resin-bonded grindstone using a resin (resin) matrix is more flexible than a metal-bonded grindstone and therefore has an advantage that it can be used by bending it into a shape along a required curved surface. Further, there is an advantage that the polishing surface of the object to be polished is not damaged. However, this resin bond grindstone and wheel cannot be regenerated by electrolysis.

【0005】また、弾性を有する樹脂に炭素繊維を配合
し、導電性を付与して電極とし、帯電した砥粒を分散し
た液中で該電極に電圧を印加して、加工物表面上を摺動
させ、電気泳動により電極と加工物の接触面に引き寄せ
られた砥粒で加工物を研磨することも試みられている。
この方法は、電極には砥粒を使用していないので、再生
の必要がないということや、弾性変形して曲面に沿い易
いという利点はあるものの、電極の摩耗が激しく、かつ
加工物の除去量が僅少であるために、一般的な実用化は
困難である。
Further, carbon fiber is mixed with a resin having elasticity to give conductivity to an electrode, and a voltage is applied to the electrode in a liquid in which charged abrasive grains are dispersed to slide on the surface of the workpiece. It has also been attempted to abrade a work piece with abrasive grains that are moved and electrophoretically attracted to the contact surface of the electrode and the work piece.
Since this method does not use abrasive grains in the electrode, it has the advantage that it does not need to be regenerated and that it is elastically deformed and easily conforms to the curved surface, but the electrode is severely worn and the work piece is removed. Due to the small amount, general practical application is difficult.

【0006】[0006]

【発明が解決しようとする課題】このような観点から、
レジンボンドの砥石やホイールにおいて、マトリックス
に導電性をもたせる試みが種々行われている。
From this point of view,
Various attempts have been made to impart conductivity to the matrix of resin-bonded grindstones and wheels.

【0007】その1つは、銀や銅等の金属粉をマトリッ
クスに配合する方法である。この場合、第2の砥粒懸濁
媒体として一般に水が使用されるため、摩擦熱の発生も
あり、粉体表面が酸化されて導電性が低下してしまい、
研磨面のドレッシングが不十分なものとなる欠点があ
る。
One of them is a method of blending a metal powder such as silver or copper into a matrix. In this case, since water is generally used as the second abrasive grain suspension medium, frictional heat is also generated, the surface of the powder is oxidized, and the conductivity decreases,
There is a drawback that dressing on the polishing surface is insufficient.

【0008】また、導電性のカーボンブラックをマトリ
ックスに配合する方法も試みられているが、かかるカー
ボンの導電性は余り高くないので、十分な導電性を得る
ためには、カーボン添加量を増す必要がある。しかし、
この場合、マトリックス強度が低下して、砥石自体の強
度が十分でなくて破壊され易くなったり、砥粒が落ち易
くなったりする問題を生じる。
Further, a method of blending conductive carbon black into a matrix has been tried, but since the conductivity of such carbon is not so high, it is necessary to increase the amount of carbon added in order to obtain sufficient conductivity. There is. But,
In this case, the matrix strength is lowered, and the strength of the grindstone itself is not sufficient, so that the grindstone is easily broken or the abrasive grains are easily dropped.

【0009】さらに、前記金属粉やカーボンブラック等
の導電性粉末を使用した場合は、粉末同士の接触界面に
樹脂層が入り込んで、粉末同士が十分に固体接触し難い
ので、電気抵抗が大きくなってしまい、このため電流に
より粉末が発熱して体積膨脹し、砥石に内部ひずみを生
じ、脆化を起生する。
Further, when the conductive powder such as the metal powder or carbon black is used, the resin layer enters the contact interface between the powders, and it is difficult for the powders to come into solid contact with each other, so that the electric resistance becomes large. As a result, the powder heats up due to the electric current and expands in volume, causing internal strain in the grindstone and causing embrittlement.

【0010】砥石の強度を下げない程度の少量の導電性
粉末を配合すれば、さらに電気抵抗が高くなって、電流
により発熱して体積膨脹によるマトリックスの脆化を起
生する。なお、カーボンブラックの粒径を小さく、例え
ば1μm以下にしても、かかる状況は十分に改善し得な
い。
If a small amount of conductive powder is added to such an extent that the strength of the grindstone is not lowered, the electric resistance will be further increased and heat will be generated by the electric current to cause embrittlement of the matrix due to volume expansion. Even if the particle size of carbon black is small, for example, 1 μm or less, such a situation cannot be sufficiently improved.

【0011】そして、通常の炭素繊維の使用も検討され
ている。この場合も、粉末に比べると電気抵抗率は低い
が、その値は1Ωmm以上であり、決して低いとはいえ
ず、カーボンブラックと同様の問題が生じている。ま
た、通常の炭素繊維は、繊維直径が7〜8μmと大きい
ので、繊維が欠落した部分に第2の砥粒が侵入してしま
い、再生能力が低下するという欠点も有している。
The use of ordinary carbon fibers is also under consideration. In this case as well, the electric resistivity is lower than that of the powder, but the value is 1 Ωmm or more, which is not low at all, and the same problem as that of carbon black occurs. Further, since the ordinary carbon fiber has a large fiber diameter of 7 to 8 μm, it has a drawback that the second abrasive grains intrude into the portion where the fiber is missing and the regenerating ability is lowered.

【0012】また、通常の炭素繊維は、直径が7〜8μ
mあって、砥粒の直径と大きさは変わらないため、砥粒
の全ての間隙に均一分散し難く、ドレッシングが均一に
行われないという問題もある。
Further, the diameter of the ordinary carbon fiber is 7 to 8 μm.
Since the diameter and size of the abrasive grains do not change, it is difficult to uniformly disperse them in all the gaps of the abrasive grains, and there is also a problem that dressing cannot be performed uniformly.

【0013】そこで、本発明の第1の目的は、弾性を有
する樹脂マトリックスを使用し、研磨作業中に砥石のド
レッシング(再生)を行うことにある。
Therefore, a first object of the present invention is to perform dressing (regeneration) of a grindstone during a polishing operation by using a resin matrix having elasticity.

【0014】また、本発明の第2の目的は、酸化等によ
る不導体膜を形成することなく、また抵抗による発熱お
よび膨脹をも生じることなく、電気泳動による目詰まり
を防止して研磨性能の継続性を保持することができる導
電性および弾性を有する砥石並びにそれを使用した電気
泳動研磨方法を提供することにある。
A second object of the present invention is to prevent clogging due to electrophoresis without forming a non-conductive film due to oxidation or the like and without causing heat generation and expansion due to resistance, thereby improving polishing performance. An object of the present invention is to provide a whetstone having conductivity and elasticity capable of maintaining continuity, and an electrophoretic polishing method using the whetstone.

【0015】[0015]

【課題を解決するための手段】前記目的を達成するた
め、本発明に係る導電性および弾性を有する砥石、すな
わち電気泳動式インプロセスドレッシング用砥石は、砥
粒と導電性樹脂マトリックスとからなることを特徴とす
る。
In order to achieve the above object, a grindstone having electroconductivity and elasticity according to the present invention, that is, an electrophoretic in-process dressing grindstone, comprises abrasive grains and a conductive resin matrix. Is characterized by.

【0016】また、本発明に係る導電性および弾性を有
する砥石は、砥粒と、直径5μm以下の炭素繊維を含有
する樹脂マトリックスとからなることを特徴とする。
The electrically conductive and elastic whetstone according to the present invention is characterized by comprising abrasive grains and a resin matrix containing carbon fibers having a diameter of 5 μm or less.

【0017】この場合、樹脂マトリックスに含有される
炭素繊維は、黒鉛化された気相成長炭素繊維を使用する
ことができる。
In this case, the carbon fiber contained in the resin matrix may be a graphitized vapor grown carbon fiber.

【0018】さらに、本発明に係る導電性および弾性を
有する砥石を使用する電気泳動研磨方法は、前記導電性
および弾性を有する砥石に所要電圧を印加し、この砥石
を前記電圧と逆電位に帯電した第2の砥粒を分散した液
中において、研磨対象物を研磨すると同時に砥石の再生
を行うことを特徴とする電気泳動式インプロセスドレッ
シングである。
Further, in the electrophoretic polishing method using a conductive and elastic grindstone according to the present invention, a required voltage is applied to the conductive and elastic grindstone, and the grindstone is charged to a potential opposite to the voltage. The electrophoretic in-process dressing is characterized in that the object to be polished is polished and the grindstone is regenerated at the same time in the liquid in which the second abrasive particles are dispersed.

【0019】[0019]

【作用】本発明に係る導電性および弾性を有する砥石に
よれば、所要の砥粒を含むレジンマトリックス研磨材に
炭素繊維を混入することにより導電性および弾性を有す
る砥石を形成し、この砥石を電極としてこれに正電位を
印加し、これを負電位に帯電させた砥粒を分散させた液
体中に保持した研磨対象物に、対向させることにより、
液体中に分散する負電位に帯電された砥粒を、砥石に引
き寄せると共に砥石の研磨面と研磨対象物との間に引き
込み、これら砥粒が研磨作業と同時に砥石の研磨面をド
レッシングすることができる。これにより、砥石の研磨
面は常に新しい研磨面を形成することができることか
ら、砥石の研磨面の摩滅に際し砥石を取り外してドレッ
シングしたり、砥石を交換する等の作業が不要となる。
According to the electrically conductive and elastic grindstone of the present invention, the electrically conductive and elastic grindstone is formed by mixing carbon fibers into the resin matrix abrasive containing the required abrasive grains. A positive potential is applied to this as an electrode, and the object to be polished is held in a liquid in which abrasive particles charged to a negative potential are dispersed.
Abrasive particles charged to a negative potential dispersed in the liquid are attracted to the grindstone and are also drawn between the polishing surface of the grindstone and the object to be polished, and these abrasive particles can dress the grinding surface of the grindstone at the same time as the polishing work. it can. As a result, since the polishing surface of the grindstone can always form a new polishing surface, it is not necessary to remove the grindstone for dressing or replace the grindstone when the grinding surface of the grindstone is worn away.

【0020】すなわち、本発明においては、レジンボン
ド砥石等の再生方法として、研磨作業中に電気泳動研磨
によるインプロセスドレッシング(再生)を行うことが
できることを特徴とするものである。
That is, the present invention is characterized in that, as a method of reclaiming a resin bond grindstone or the like, in-process dressing (regeneration) by electrophoretic polishing can be performed during polishing.

【0021】本発明の砥石においてレジンマトリックス
を形成するための樹脂材料としては、アクリロニトリル
・ブタジェン・スチレン樹脂(ABS樹脂)、ナイロ
ン、ポリエチレン、ポリエステル、ビニルエステル樹
脂、ポリウレタン、ポリカーボネート、ポリプロピレ
ン、ポリ酢酸樹脂(PVAC)、ブタジェンゴム等の熱
可塑性樹脂を、またエポキシ樹脂、フェノール樹脂等の
熱硬化性樹脂を好適に使用することができる。
As the resin material for forming the resin matrix in the grindstone of the present invention, acrylonitrile / butadiene / styrene resin (ABS resin), nylon, polyethylene, polyester, vinyl ester resin, polyurethane, polycarbonate, polypropylene, polyacetic acid resin Thermoplastic resins such as (PVAC) and butadiene rubber, and thermosetting resins such as epoxy resins and phenol resins can be preferably used.

【0022】ここで弾性を有することは、力を加えるこ
とにより変形して、曲面に沿って研磨可能であることを
意味し、マトリックスに通常の樹脂を使用してさえいれ
ば、該当する。
Here, having elasticity means that it can be deformed by applying a force and can be polished along a curved surface, and it is applicable as long as a normal resin is used for the matrix.

【0023】また、前記レジンマトリックスを形成する
ための砥粒材料としては、ダイヤモンド、立方晶系窒化
ホウ素等の超砥粒や、アルミナ(Al2 3 )、SiO
2 、ZrO2 等の通常の砥粒を好適に使用することがで
きる。すなわち、ここで砥石とは、いわゆる超砥石と称
されるホイールを包含する。一方、遊離砥粒(液側の第
2の砥粒)としては、第1の砥粒として上記したものが
全て使用可能であるが、砥石を形成する砥粒(第1の砥
粒)と比べて、それ程硬度を必要としないので、経済性
の面から安価なものを選択することが可能であり、アル
ミナが特に好適である。
As the abrasive grain material for forming the resin matrix, superabrasive grains such as diamond and cubic boron nitride, alumina (Al 2 O 3 ) and SiO 2 are used.
Ordinary abrasive grains such as 2 and ZrO 2 can be preferably used. That is, the grindstone here includes a wheel called a so-called super grindstone. On the other hand, as the loose abrasive grains (second abrasive grains on the liquid side), all of the above-mentioned first abrasive grains can be used, but compared with the abrasive grains forming the grindstone (first abrasive grains). Since it does not require so much hardness, it is possible to select an inexpensive one from the economical point of view, and alumina is particularly preferable.

【0024】さらに、導電性材料としては、直径5μm
以下、好ましくは3μm以下の炭素繊維が好適である。
炭素繊維は、PAN系炭素繊維やピッチ系の黒鉛繊維を
適宜切断して使用可能であるが、好ましくは気相成長炭
素繊維、特にその黒鉛化物は直径が小さいこと、導電性
が高いことから好ましい。
Further, the conductive material has a diameter of 5 μm.
Hereafter, carbon fibers of 3 μm or less are preferable.
As the carbon fiber, a PAN-based carbon fiber or a pitch-based graphite fiber can be appropriately cut and used, but it is preferable that the vapor-grown carbon fiber, especially the graphitized product thereof has a small diameter and high conductivity. .

【0025】しかるに、前記砥石の砥粒の大きさは、研
磨対象物の研磨後の表面粗さによって決定されるが、第
2の砥粒の大きさは、砥石の砥粒に比較して、1/5〜
2倍の範囲、さらに好ましくは1/3〜1.5倍の範囲
が研磨加工の能率の点から好ましく、特に両者がほぼ等
しい(±30%)場合が最も好適である。なお、第2の
砥粒の大きさは、平均値での比が炭素繊維の直径の1.
5倍以上であることが好ましい。
However, the size of the abrasive grains of the grindstone is determined by the surface roughness of the object to be polished, and the size of the second abrasive grain is larger than that of the grindstone. 1/5
The range of 2 times, more preferably 1/3 to 1.5 times, is preferable from the viewpoint of polishing efficiency, and the case where both are substantially equal (± 30%) is most preferable. In addition, as for the size of the second abrasive grains, the average ratio is 1.
It is preferably 5 times or more.

【0026】また、前記砥石における砥粒の含有率は5
〜30%が好ましく、さらには9〜18%が好適であ
る。一方、前記第2の砥粒を分散させる研磨液として
は、ポリアクリル酸塩、ポリメタクリル酸塩、その他カ
ルボキシル基を多数有する高分子の塩の溶液、例えば水
溶液が使用可能であり、しかも広範囲の分子量のものが
選択可能であって、特に水溶性が高い点でカルボキシメ
チルセルロース(CMC)が好適である。しかも、この
カルボキシメチルセルロースは、アルミナ砥粒を効率よ
く帯電させるという点からも好ましい。なお、研磨液中
における前記高分子電解質の濃度は、液の粘度にも影響
し、また使用する砥粒と高分子電解質の組合わせ毎に吸
着性能が異なるので、研磨加工性に基づいて決定するの
が好適である。
The content of the abrasive grains in the grindstone is 5
-30% is preferable, and further 9-18% is preferable. On the other hand, as the polishing liquid for dispersing the second abrasive grains, a solution of a polyacrylate salt, a polymethacrylate salt, or a salt of a polymer having a large number of carboxyl groups, such as an aqueous solution, can be used, and a wide range of solutions can be used. Carboxymethyl cellulose (CMC) is preferable because it has a high molecular weight and can be selected. Moreover, this carboxymethyl cellulose is preferable from the viewpoint of efficiently charging the alumina abrasive grains. The concentration of the polymer electrolyte in the polishing liquid also affects the viscosity of the liquid, and since the adsorption performance is different for each combination of the abrasive grains and the polymer electrolyte used, it is determined based on the polishing processability. Is preferred.

【0027】さらに、研磨液において、遊離砥粒に対し
逆帯電させるアミノ基の塩酸塩を多数有する高分子を使
用し、従って砥石と砥粒の電圧を前記とは逆転させた系
を使用することも可能である。研磨液として使用する液
体は、通用は水であるが、高分子を解離させて砥粒を帯
電させることが可能であれば、他の極性液体も使用可能
である。
Furthermore, in the polishing liquid, use should be made of a polymer having a large number of amino group hydrochlorides that are oppositely charged to the free abrasive grains, and therefore a system in which the voltage of the grindstone and the abrasive grains is reversed from the above. Is also possible. The liquid used as the polishing liquid is generally water, but other polar liquids can be used as long as they can dissociate the polymer and charge the abrasive grains.

【0028】[0028]

【実施例】次に、本発明に係る導電性および弾性を有す
る砥石並びにそれを使用した電気泳動研磨方法の実施例
につき、添付図面を参照しながら以下詳細に説明する。
Embodiments of the electrically conductive and elastic grindstone according to the present invention and an electrophoretic polishing method using the same will be described below in detail with reference to the accompanying drawings.

【0029】図1は、本発明に係る導電性および弾性を
有する砥石の一実施例を示す斜視図である。すなわち、
図1において、参照符号10は円板状に形成した砥石を
示す。この砥石10の形状は、外径DO =30mm、内
径DI =20mm、厚さt=5.5mmの環状の研磨面
を一方の面に有し、その円の中心Oから所定の角度θ=
30°間隔をもって、幅w=4mm、長さl=5mmか
らなる複数(図示例では12個)の研磨面12を周方向
にそれぞれ離間して形成する。なお、前記各研磨面12
の離間部分は深さh=1.5mmの溝14を形成する。
FIG. 1 is a perspective view showing an embodiment of a whetstone having conductivity and elasticity according to the present invention. That is,
In FIG. 1, reference numeral 10 indicates a disc-shaped grindstone. The shape of the grindstone 10 has an annular polishing surface having an outer diameter D O = 30 mm, an inner diameter D I = 20 mm, and a thickness t = 5.5 mm on one surface, and a predetermined angle θ from the center O of the circle. =
A plurality (12 in the illustrated example) of polishing surfaces 12 each having a width w = 4 mm and a length l = 5 mm are formed at 30 ° intervals so as to be separated from each other in the circumferential direction. In addition, each polishing surface 12
A groove 14 having a depth h = 1.5 mm is formed in the separated portion.

【0030】このようにして構成された本発明に係る砥
石は、電気抵抗が約10Ω以下からなる弾性を有するも
のとして得られた。
The grindstone according to the present invention thus constituted was obtained as one having elasticity having an electric resistance of about 10 Ω or less.

【0031】次に、前記構成からなる導電性および弾性
を有する砥石10を使用して、所定の研磨対象物に対し
電気泳動による研磨を行う方法について説明する。図2
は、前記電気泳動研磨方法を実施する装置の概略構成を
示すものである。すなわち、図2において、参照符号2
0は研磨液貯留槽を示し、この研磨液貯留槽20の底部
の一部に導電性材料からなるジグ22を形成し、このジ
グ22の底面を、基台24上に配置した切削工具動力計
26の上部に、絶縁体28を介して載置固定する。しか
るに、前記ジグ22の上面には、加工物30を載置す
る。
Next, a method of performing electrophoretic polishing on a predetermined object to be polished by using the whetstone 10 having the above-mentioned structure and having conductivity and elasticity will be described. Figure 2
Shows a schematic configuration of an apparatus for carrying out the electrophoretic polishing method. That is, in FIG. 2, reference numeral 2
Reference numeral 0 denotes a polishing liquid storage tank. A jig 22 made of a conductive material is formed on a part of the bottom of the polishing liquid storage tank 20, and the bottom surface of the jig 22 is placed on a base 24. It is placed and fixed on the upper portion of the insulating member 26 via the insulator 28. However, the workpiece 30 is placed on the upper surface of the jig 22.

【0032】一方、前記加工物30に対向して、その上
方に前述した図1に示す構成からなる砥石10を、導電
性材料からなる支持体32により支持すると共に、この
支持体32を絶縁体34を介して工作機械の工具取付用
スピンドル36に結合固定する。
On the other hand, the grindstone 10 having the above-mentioned structure shown in FIG. 1 is supported above the work piece 30 by a support body 32 made of a conductive material, and the support body 32 is made of an insulating material. It is coupled and fixed to a tool mounting spindle 36 of the machine tool via 34.

【0033】しかるに、前記研磨液貯留槽20には、加
工物30の研磨加工に際して、前記砥石10が研磨液中
に十分浸漬するレベルまで研磨液38を貯留する。ま
た、前記砥石10を支持する支持体32と、加工物30
を保持するジグ22に対し、それぞれ直流電源40から
導出される正電位端子40Aと負電位端子40Bをそれ
ぞれ導通接続する。
However, the polishing liquid 38 is stored in the polishing liquid storage tank 20 to a level at which the grindstone 10 is sufficiently immersed in the polishing liquid when polishing the workpiece 30. Further, the support 32 that supports the grindstone 10 and the workpiece 30.
The positive potential terminal 40A and the negative potential terminal 40B derived from the DC power supply 40 are conductively connected to the jig 22 holding.

【0034】前記構成からなる電気泳動研磨装置を使用
して、次の条件下に加工物30に対する研磨加工を行っ
た。
Using the electrophoretic polishing apparatus having the above structure, the workpiece 30 was polished under the following conditions.

【0035】(1)実施例 砥石: 砥粒として、直径約10、30、60μmのア
ルミナをそれぞれ使用し、樹脂としてABS樹脂を使用
した。砥石中の砥粒含有量を12.5 vol%とした。そ
して、砥石の設定切込み量tを0〜10μmの範囲に設
定した。
(1) Example Grinding Stone: Alumina having diameters of about 10, 30, and 60 μm was used as abrasive grains, and ABS resin was used as resin. The content of abrasive grains in the grindstone was 12.5 vol%. Then, the set cutting depth t of the grindstone was set in the range of 0 to 10 μm.

【0036】研磨液: 分子量が約216,000のカ
ルボキシメチルセルロース(CMC)を使用し、これを
溶液粘度が約30cPとなるように蒸溜水に溶解し、こ
れに電気泳動させる遊離砥粒として粒径が約10μmの
アルミナ砥粒を使用し、これを砥粒の含有率ρg 約2.
5wt%で添加した。
Polishing liquid : Carboxymethyl cellulose (CMC) having a molecular weight of about 216,000 is dissolved in distilled water so that the solution viscosity becomes about 30 cP, and the particle size is used as free abrasive grains to be electrophoresed. Is about 10 μm, and the content of the abrasive grains is ρg about 2.
It was added at 5 wt%.

【0037】加工物: 加工面を1μmRmax 程度に予
備成形した耐摩耗性、耐蝕性、耐圧性に優れている時効
硬化型プラスチック金型用鋼(AISIP21)を使用
した。
The workpiece: using the wear resistance was preformed working surface about 1MyumRmax, corrosion resistance, aging hardening plastic die steel which has excellent pressure resistance and (AISIP21).

【0038】直流電源: 最大電流5A、最大電圧10
0Vの直流安定化電源を使用し、最大電流5Aとし、電
圧を1〜4Vの範囲で印加した。
DC power supply : maximum current 5 A, maximum voltage 10
A DC stabilized power supply of 0 V was used, the maximum current was 5 A, and the voltage was applied in the range of 1 to 4 V.

【0039】加工条件: スピンドルの回転数を100
0rpm、電極の送り速度を2m/min の平面研削方式
とし、砥石の加工面に対するパス回数を200回とし
た。
Processing conditions : Spindle speed is 100
The surface was ground at 0 rpm and the electrode feed speed was 2 m / min, and the number of passes of the grindstone with respect to the processed surface was 200.

【0040】以上の加工条件による加工物に対する加工
終了時に、それぞれ加工物の除去量Sr(μm)と砥石
の損耗量Sw(μm)とを測定した結果は次の通りであ
る。
The results of measuring the removal amount Sr (μm) of the workpiece and the wear amount Sw (μm) of the grindstone at the end of the processing of the workpiece under the above processing conditions are as follows.

【0041】1.炭素繊維径Df の変化による除去量S
rと損耗量Swとの関係 直径Df が1μmの気相成長炭素繊維、7μmのPAN
系炭素繊維または14.5μmのピッチ系の黒鉛繊維を
約1μmに切断したものと、粒径が10μmのアルミナ
砥粒とを配合した砥石を使用して電気泳動研磨を行い、
加工物の除去量Srと砥石の損耗量Swとを測定した。
この結果、図3に示すように、加工物の除去量Srは、
径Df を大きくするに従って減少する傾向を示した。ま
た、砥石の損耗量Swは、径Dを大きくするに従って増
加する傾向を示した。これは、径Df を大きくすると、
砥石の研磨面の凹凸が大きくなり、泳動された砥粒が転
動し易くなったために、砥石の損耗が大きくなり、また
砥石から繊維が抜けた後に第2の砥粒が嵌まり込んで目
詰まりを起こして加工物除去量が減少すると考えられ
る。なお、比較のため、研磨液に砥粒を含まないカルボ
キシメチルセルロース(CMC)のみを使用した場合に
ついて測定した結果、これらの場合は、前記除去量Sr
および損耗量Sw共に著しく少ないことが確認された。
すなわち、これらの測定結果から、炭素繊維の繊維径D
f が5μm以下、特に3μm以下で、砥石の損耗が少な
く、加工物の除去量が大きく、従って加工効率の点から
優れていることが判る。繊維径Df を小さくすることに
より、同一加工物除去量に対する砥石の摩耗量が大幅に
減少し、また同一の砥石摩耗量に対する加工物除去量が
大幅に増加することは明白である。
1. Removal amount S due to change in carbon fiber diameter Df
Relationship between r and wear amount Sw Vapor grown carbon fiber with diameter Df of 1 μm, PAN of 7 μm
Electrophoretic polishing is performed using a grindstone containing a mixture of carbon-based carbon fibers or 14.5 μm pitch-based graphite fibers cut to about 1 μm and alumina abrasive grains with a particle diameter of 10 μm.
The removal amount Sr of the workpiece and the wear amount Sw of the grindstone were measured.
As a result, as shown in FIG. 3, the removal amount Sr of the workpiece is
It showed a tendency to decrease as the diameter Df was increased. Further, the wear amount Sw of the grindstone showed a tendency to increase as the diameter D was increased. This is because if the diameter Df is increased,
Since the unevenness of the polishing surface of the grindstone became large and the migrated abrasive grains became easy to roll, the abrasion of the grindstone became large, and the second abrasive grain got stuck after the fibers fell out of the grindstone and It is thought that clogging will occur and the amount of workpiece removal will decrease. For comparison, as a result of measurement using only carboxymethylcellulose (CMC) containing no abrasive grains in the polishing liquid, in these cases, the removal amount Sr
It was confirmed that both the wear amount Sw and the wear amount Sw were extremely small.
That is, from these measurement results, the fiber diameter D of the carbon fiber
It can be seen that when f is 5 μm or less, particularly 3 μm or less, the abrasion of the grindstone is small, the amount of the workpiece removed is large, and therefore the processing efficiency is excellent. It is clear that by reducing the fiber diameter Df, the amount of wear of the grindstone with respect to the same amount of workpiece removal is significantly reduced, and the amount of work removal with respect to the same amount of wheel wear is significantly increased.

【0042】2.泳動させる砥粒径dの変化による除去
量Srと損耗量Swとの関係 直径が1μmの気相成長炭素繊維黒鉛化物と粒径が10
μmのアルミナ砥粒とを配合した砥石を使用し、泳動さ
せるアルミナ砥粒の粒径dを変化(4〜20μm)させ
て、加工物の除去量Srと砥石の損耗量Swとを測定し
た。この結果、図4に示すように、粒径dの増大と共に
加工物の除去量Srは10μm以下の範囲で増加し、そ
れ以後では減少する傾向を示した。また、砥石の損耗量
Swは、粒径dの増加に伴って減少する傾向を示した。
2. Removal by changing abrasive grain size d
Relationship between the amount Sr and the amount of wear Sw The vapor-grown carbon fiber graphitized product having a diameter of 1 μm and the particle size of 10
Using a grindstone mixed with μm alumina abrasive grains, the particle diameter d of the alumina abrasive grains to be migrated was changed (4 to 20 μm), and the removal amount Sr of the workpiece and the wear amount Sw of the grindstone were measured. As a result, as shown in FIG. 4, the removal amount Sr of the work piece increased in the range of 10 μm or less with the increase of the particle diameter d, and tended to decrease thereafter. Further, the wear amount Sw of the grindstone showed a tendency to decrease as the particle diameter d increased.

【0043】これは、泳動される砥粒の流動抵抗rが、
次式(1)
This is because the flow resistance r of the migrated abrasive grains is
The following equation (1)

【数1】 但し、η:溶液の粘度 a:粒子の半径 u:粒子の移動速度 で示され、また溶液中の砥粒の沈降速度vが、次式
(2)
[Equation 1] Where η is the viscosity of the solution, a is the radius of the particle, u is the moving speed of the particle, and the sedimentation speed v of the abrasive grains in the solution is expressed by the following equation (2).

【数2】 但し、ρ:粒子の密度 ρ0 :溶媒の密度 g:重力加速度 で示されることから、粒径dが小さくなると、泳動され
る砥粒の流動抵抗rが小さくなり、砥石の研磨面に砥粒
が集まり易くなる。しかし、単位砥粒当りの加工物の除
去量Srが小さい上に砥粒が転動し易いため、砥石の損
耗量Swが多く、加工物の除去量Srが少なくなったも
のと考えられる。
[Equation 2] However, since ρ: particle density ρ 0: solvent density g: gravitational acceleration, when the particle diameter d becomes smaller, the flow resistance r of the migrated abrasive particles becomes smaller and the abrasive surface of the grindstone becomes It's easier to get together. However, it is considered that the removal amount Sr of the workpiece is large and the removal amount Sr of the workpiece is small because the removal amount Sr of the workpiece per unit abrasive grain is small and the abrasive grains are easily rolled.

【0044】また、粒径dが大きくするに従って、単位
当りの加工物の除去量Srは増加するが、泳動される砥
粒の流動抵抗rや溶液中の砥粒の沈降速度vが大きくな
るため、砥粒が泳動され難くなり、加工物の除去量Sr
と砥石の損耗量Swとが減少したものと考えられる。
Further, as the particle size d increases, the removal amount Sr of the workpiece per unit increases, but the flow resistance r of the abrasive particles to be migrated and the sedimentation speed v of the abrasive particles in the solution increase. , It becomes difficult for the abrasive grains to migrate, and the removal amount Sr of the workpiece
It is considered that the abrasion loss Sw of the whetstone and the whetstone decreased.

【0045】3.砥石の設定切込み量tの変化による除
去量Srと損耗量Swとの関係 砥石の設定切込み量(砥石の摩耗設定寸法)tを変化
(0〜10μm)させて、加工物の除去量Srと砥石の
損耗量Swとを測定した。この結果、図5に示すよう
に、砥石の設定切込み量tが1〜5μmの範囲では、加
工物の除去量Srは変化せず、5μm付近から急激に増
加する傾向を示した。また、砥石の損耗量Swは、設定
切込み量tの増加に伴って減少する傾向を示した。
3. Removal by changing the set cutting depth t of the grindstone
Relationship between the removal amount Sr and the wear amount Sw The amount of removal of the workpiece Sr and the wear amount Sw of the grindstone were measured by changing (0 to 10 μm) the set cutting amount of the grindstone (wear setting dimension of the grindstone) t. As a result, as shown in FIG. 5, when the set cutting depth t of the grindstone is in the range of 1 to 5 μm, the removal amount Sr of the work piece does not change, and tends to increase sharply from around 5 μm. Further, the wear amount Sw of the grindstone showed a tendency to decrease as the set depth of cut t increased.

【0046】4.砥石の圧縮加重P(N)と圧縮変位L
(μm)との関係 設定切込み量tの変化による測定に使用した砥石につい
て、圧縮荷重P(N)に対する圧縮変位L(μm)に関
する圧縮特性を測定した。この結果、図6に示すよう
に、圧縮荷重P(N)が図9に示す加工物の除去量Sr
と同様の変化を示している。このことから、砥石の硬さ
が加工物の除去量Srに関係していることが確認され
た。
4. Grinding stone compression load P (N) and compression displacement L
Relation with (μm) With respect to the grindstone used for the measurement based on the change in the set depth of cut t, the compression characteristic regarding the compression displacement L (μm) with respect to the compression load P (N) was measured. As a result, as shown in FIG. 6, the compression load P (N) is the removal amount Sr of the workpiece shown in FIG.
Shows the same change as. From this, it was confirmed that the hardness of the grindstone is related to the removal amount Sr of the workpiece.

【0047】(2)比較例 電極 : 機械的性質および物理的性質の異なる8種類の
熱可塑性樹脂(ポリエチレン-PL 、ポリウレタン-PT 、
ナイロン12-NY 、フェノール樹脂-PH 、ポリエステル-P
E 、ABS樹脂-A、ビニルエステル-VL 、エポキシ樹脂
-EP )に、炭素繊維繊維を配合して電極とした。炭素繊
維の樹脂への配合率は、電気抵抗を10Ω以下にして、
加工時の発熱を抑制するために、約50 Vol%とした。
この電極を図1の砥石10に代えて使用した。
(2) Comparative Example Electrode : Eight types of thermoplastic resins (polyethylene-PL, polyurethane-PT,) having different mechanical and physical properties
Nylon 12-NY, Phenolic Resin-PH, Polyester-P
E, ABS resin-A, vinyl ester-VL, epoxy resin
-EP) was mixed with carbon fiber fiber to form an electrode. The blending ratio of carbon fiber to resin is such that the electric resistance is 10Ω or less,
In order to suppress heat generation during processing, it was set to about 50 Vol%.
This electrode was used in place of the grindstone 10 of FIG.

【0048】研磨液: 分子量が約216,000のカ
ルボキシメチルセルロース(CMC)を使用し、これを
溶液粘度が約30cPとなるように蒸溜水に溶解し、こ
れに電気泳動させる遊離砥粒として粒径が約2.3〜1
0μmのアルミナ砥粒を使用し、これを砥粒の含有率ρ
g を約0.1〜4wt%の範囲で添加した。
Polishing liquid : Carboxymethyl cellulose (CMC) having a molecular weight of about 216,000 is dissolved in distilled water so that the solution viscosity becomes about 30 cP, and the particle size is used as free abrasive grains to be electrophoresed. Is about 2.3 to 1
Alumina grain of 0 μm was used, and the content rate of the grain was ρ
g was added in the range of about 0.1 to 4 wt%.

【0049】加工物: 加工面を1μmRmax 程度に予
備成形したクロム合金ステンレス鋼を使用した。
The workpiece: Using chromium alloy stainless steel with preformed working surface about 1MyumRmax.

【0050】直流電源: 最大電流5A、最大電圧10
0Vの直流安定化電源を使用し、最大電流5Aとし、電
圧を1〜4Vの範囲で印加した。
DC power supply : maximum current 5 A, maximum voltage 10
A DC stabilized power supply of 0 V was used, the maximum current was 5 A, and the voltage was applied in the range of 1 to 4 V.

【0051】加工条件: スピンドルの回転数を100
0rpm、電極の送り速度を2m/min の平面研削方式
とした。
Processing conditions : Spindle speed is 100
The surface grinding method was 0 rpm and the electrode feed rate was 2 m / min.

【0052】以上の加工条件による加工物に対する加工
終了時に、それぞれ加工物の加工量Vr(mm3 /pas
s)と電極の損耗量Vw(mm3 /pass)とを測定した
結果は次の通りである。
At the end of processing of the workpiece under the above processing conditions, the processing amount of each workpiece Vr (mm 3 / pas
s) and the amount of electrode wear Vw (mm 3 / pass) were measured and the results are as follows.

【0053】1.各樹脂による場合の加工量Vrと損耗
量Vwとの関係 上記の8種類の熱可塑性樹脂を使用した場合について、
それぞれ加工物の加工量Vrと電極の損耗量Vwとを測
定した。この結果、図7に示す特性が得られた。この場
合、ナイロン12では、その表面を観察した際に、炭素繊
維が抜け落ちた微細な凹凸が確認された。従って、この
凹凸に泳動された砥粒が保持されることにより、ナイロ
ン12の場合は、図7に示すように、8種類の樹脂の中で
は最も高い加工能率が得られたものと考えられる。
1. Processing amount Vr and wear when using each resin
Relationship with the amount Vw When the above eight kinds of thermoplastic resins are used,
The processing amount Vr of the workpiece and the electrode wear amount Vw were measured. As a result, the characteristics shown in FIG. 7 were obtained. In this case, when observing the surface of Nylon 12, fine irregularities in which the carbon fibers had fallen off were confirmed. Therefore, it is considered that, in the case of nylon 12, the highest processing efficiency among the eight types of resin was obtained by holding the migrated abrasive grains on the irregularities, as shown in FIG. 7.

【0054】2.印加電圧Vの変化による加工量Vrと
損耗量Vwとの関係 印加電圧Vを変化(0〜7V)させて、加工物の加工量
Vrと電極の損耗量Vwとを測定した。この結果、図8
に示すように、印加電圧3V付近より加工物の加工量V
rの増加が顕著に現れた。これは、電圧の増加に伴って
単位時間に泳動する砥粒数が増加したものと考えられ
る。また、電極の損耗量Vwは、二次曲線状に増加する
傾向を示した。
2. Processing amount Vr due to change in applied voltage V
Relationship with wear amount Vw The applied voltage V was changed (0 to 7 V), and the working amount Vr of the workpiece and the electrode wear amount Vw were measured. As a result, FIG.
As shown in, the machining amount V
The increase of r was remarkable. It is considered that this is because the number of abrasive grains that migrated per unit time increased as the voltage increased. Further, the amount of electrode wear Vw showed a tendency to increase in a quadratic curve.

【0055】3.砥粒径dの変化による加工量Vrと印
加電圧Vとの関係 砥粒径dを変化(10μm、5μm、2.3μm)させ
て、加工物の加工量Vrと印加電圧Vとの関係について
測定した。この結果、図9に示すように、砥粒径dを小
さくするに従って、加工物の加工量Vrは減少する傾向
を示した。これは、砥粒が電極の研磨面に埋没するのみ
で、研磨面に保持されなかったものと考えられる。
3. Marked as the machining amount Vr due to the change of the abrasive grain size d
Relation with applied voltage V The abrasive grain size d was changed (10 μm, 5 μm, 2.3 μm), and the relation between the processing amount Vr of the workpiece and the applied voltage V was measured. As a result, as shown in FIG. 9, the working amount Vr of the work piece tended to decrease as the abrasive grain size d was decreased. It is considered that this is because the abrasive grains were only buried in the polishing surface of the electrode and were not retained on the polishing surface.

【0056】4.砥粒の含有率ρg の変化と加工量Vr
と損耗量Vwとの関係 砥粒の含有率ρg を変化(0.1〜4wt%)させて、加
工物の加工量Vrと電極の損耗量Vwとを測定した。こ
の結果、図10に示すように、砥粒の含有率度ρg を高
くするに従って、加工物の加工量Vrは増加する傾向を
示し、2wt%付近でほぼ一定となった。これは、砥粒
の含有率ρg の増加に伴って砥粒に吸着する研磨液のカ
ルボキシメチルセルロースが不足し、溶液中に安定分散
した砥粒数が減少したものと考えられる。また、電極の
損耗量Vwは、砥粒の含有率ρgを高くするに従って増
加する傾向を示した。
4. Change of abrasive grain content ρg and processing amount Vr
The amount of abrasive grains Vg and the amount of wear Vw of the electrode were measured by changing the content ρg of the abrasive grains (0.1 to 4 wt%). As a result, as shown in FIG. 10, the processed amount Vr of the work piece tended to increase as the content rate ρg of the abrasive grains was increased, and became substantially constant in the vicinity of 2 wt%. It is considered that this is because the carboxymethyl cellulose in the polishing liquid adsorbed to the abrasive grains became insufficient with the increase of the abrasive grain content ρg, and the number of the abrasive grains stably dispersed in the solution decreased. Further, the wear amount Vw of the electrode showed a tendency to increase as the content ratio ρg of the abrasive grains was increased.

【0057】[0057]

【発明の効果】前述した実施例から明らかなように、本
発明に係る導電性および弾性を有する砥石によれば、砥
粒と導電性樹脂マトリックスとから構成することによ
り、研磨作業中において、砥石のドレッシング(再生)
を簡便に行うことができる。
As is apparent from the above-described embodiments, the conductive and elastic grindstone according to the present invention is constituted by the abrasive grains and the conductive resin matrix, so that the grindstone can be used during the polishing operation. Dressing (playback)
Can be performed easily.

【0058】また、本発明に係る導電性および弾性を有
する砥石によれば、砥粒と、直径5μm以下の炭素繊維
を含有する樹脂マトリックスとから構成することによ
り、酸化等による不導体膜を形成することなく、また抵
抗による発熱および膨脹をも生じることなく、電気泳動
による目詰まりを防止して研磨性能の継続性を保持する
ことができる砥石を得ることができる。
According to the electrically conductive and elastic grindstone of the present invention, the nonconductive film is formed by oxidation or the like by being composed of the abrasive grains and the resin matrix containing the carbon fibers having a diameter of 5 μm or less. It is possible to obtain a grindstone that can prevent clogging due to electrophoresis and maintain continuity of polishing performance without causing heat generation and expansion due to resistance.

【0059】また、本発明において、前記砥石に所要の
電位の電圧を印加し、この砥石を前記電圧とは逆電位に
帯電した第2の砥粒を分散してなる研磨液中において、
研磨対象物に当接して研磨を行うことにより、液体中に
分散する帯電された砥粒を、砥石に引き寄せると共に砥
石の研磨面と研磨対象物との間に引き込み、これら砥粒
が研磨作業と同時に砥石の研磨面を研磨することができ
る。これにより、砥石の研磨面は常に新しい研磨面を形
成することができることから、砥石の研磨面の摩滅に際
し砥石を取り外して再生したり、砥石を交換する等の作
業が不要となる等の多くの優れた利点が得られる。
Further, in the present invention, a voltage having a required potential is applied to the grindstone, and the grindstone is dispersed in a polishing liquid in which second abrasive grains charged to a potential opposite to the voltage are dispersed.
By carrying out polishing by contacting the object to be polished, the charged abrasive particles dispersed in the liquid are attracted to the grindstone and drawn between the polishing surface of the grindstone and the object to be polished, and these abrasive particles are used for the polishing work. At the same time, the polishing surface of the grindstone can be polished. As a result, since the polishing surface of the grindstone can always form a new polishing surface, when the grinding surface of the grindstone is worn out, the grindstone is removed and regenerated, and the work such as exchanging the grindstone is unnecessary. Excellent advantages are obtained.

【0060】特に、本発明の砥石においては、電気泳動
させる金属砥粒の粒径や砥石の設定切込み量を変えるこ
とにより、砥石の再生(ドレッシング)や加工物の除去
量を変化させることができることが判った。すなわち、
加工物の除去量や砥石の再生に応じて、電気泳動させる
金属砥粒の粒径や砥石の設定切込み量に応じて、適正な
ものを選択設定することができる。
Particularly, in the grindstone of the present invention, by changing the particle size of the metal abrasive grains to be electrophoresed or the set cut amount of the grindstone, it is possible to change the regrind (dressing) of the grindstone or the removal amount of the workpiece. I understood. That is,
It is possible to select and set an appropriate one according to the removal amount of the work piece and the reproduction of the grindstone, according to the particle size of the metal abrasive grains to be electrophoresed and the set cutting depth of the grindstone.

【0061】また、本発明において、繊維直径が7μm
以上では必要であった、系の冷却、または放冷のための
運転一次停止は、5μm以下の繊維の時には不要とな
る。
In the present invention, the fiber diameter is 7 μm.
The primary stop of operation for cooling or cooling the system, which is necessary in the above, is not necessary for fibers of 5 μm or less.

【0062】そして、本発明の砥石によれば、電気泳動
によるドレッシングを行うことにより、砥粒を泳動させ
ない場合に比べて、研磨性能を著しく向上させることが
可能であり、しかも弾性を有することから、その用途も
大幅に拡大することができ、この種の砥石の生産性の増
大と共に需要度の拡大に寄与する効果は極めて大きい。
すなわち、本発明に係る砥石は、例えば金型精密研磨、
精密レンズ研磨、シリコンウエハ研磨等の研削もしくは
研磨用として応用することができる。その他、砥石に混
入するダイヤモンド粉末を、下に粗粒、上に行くに従っ
て細粒を分散させることにより、摩耗に従い、荒仕上げ
から精密仕上げに至るまで、1つの砥石で対応すること
が可能となる。
Further, according to the grindstone of the present invention, by performing the dressing by electrophoresis, it is possible to remarkably improve the polishing performance as compared with the case where the abrasive grains are not migrated, and moreover, it has elasticity. The use thereof can be greatly expanded, and the effect of increasing the productivity of this type of grindstone and increasing the demand level is extremely large.
That is, the grindstone according to the present invention, for example, precision polishing of the mold,
It can be applied for grinding or polishing such as precision lens polishing and silicon wafer polishing. In addition, by dispersing diamond powder mixed in the grindstone into coarse particles down and fine particles up, it is possible to handle from roughing to fine finishing with one grinding wheel, depending on wear. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る導電性および弾性を有する砥石の
一実施例を示す概略断面図である。
FIG. 1 is a schematic cross-sectional view showing an embodiment of a whetstone having conductivity and elasticity according to the present invention.

【図2】本発明に係る導電性および弾性を有する砥石を
使用した電気泳動研磨方法の一実施例を示す研磨装置の
要部断面概略構成図である。
FIG. 2 is a schematic cross-sectional configuration diagram of main parts of a polishing apparatus showing an embodiment of an electrophoretic polishing method using a whetstone having conductivity and elasticity according to the present invention.

【図3】炭素繊維径の変化による加工物の除去量と砥石
の損耗量との関係を示す特性図である。
FIG. 3 is a characteristic diagram showing a relationship between a removal amount of a work piece and a wear amount of a grindstone due to a change in a carbon fiber diameter.

【図4】泳動させる砥粒径の変化による加工物の除去量
と砥石の損耗量との関係を示す特性図である。
FIG. 4 is a characteristic diagram showing a relationship between a removal amount of a workpiece and a wear amount of a grindstone due to a change in an abrasive grain size to be electrophoresed.

【図5】砥石の設定切込み量の変化による加工物の除去
量と砥石の損耗量との関係を示す特性図である。
FIG. 5 is a characteristic diagram showing a relationship between a removal amount of a workpiece and a wear amount of a grindstone due to a change in a set cutting depth of the grindstone.

【図6】砥石の圧縮荷重と圧縮変位との関係を示す特性
図である。
FIG. 6 is a characteristic diagram showing a relationship between a compressive load and a compressive displacement of a grindstone.

【図7】各種樹脂による場合の加工物の加工量と電極の
損耗量との関係を示す特性図である。
FIG. 7 is a characteristic diagram showing the relationship between the processing amount of a workpiece and the amount of electrode wear when using various resins.

【図8】印加電圧の変化による加工物の加工量と電極の
損耗量との関係を示す特性図である。
FIG. 8 is a characteristic diagram showing a relationship between a machining amount of a workpiece and a wear amount of an electrode due to a change in applied voltage.

【図9】砥粒径の変化による加工物の加工量と電極の損
耗量との関係を示す特性図である。
FIG. 9 is a characteristic diagram showing a relationship between a machining amount of a workpiece and a wear amount of an electrode due to a change in abrasive grain size.

【図10】砥粒密度の変化による加工物の加工量と電極
の損耗量との関係を示す特性図である。
FIG. 10 is a characteristic diagram showing a relationship between a machining amount of a workpiece and a wear amount of an electrode due to a change in abrasive grain density.

【符号の説明】[Explanation of symbols]

10 砥石 12 研磨面 14 溝 20 研磨液貯留槽 22 ジグ 24 基台 26 切削工具動力計 28 絶縁体 30 加工物 32 支持体 34 絶縁体 36 工具取付用スピンドル 38 研磨液 40 直流電源 40A 正電位端子 40B 負電位端子 10 Grinding Stone 12 Polishing Surface 14 Groove 20 Polishing Liquid Storage Tank 22 Jig 24 Base 26 Cutting Tool Dynamometer 28 Insulator 30 Workpiece 32 Support 34 Insulator 36 Tool Mounting Spindle 38 Polishing Liquid 40 DC Power Supply 40A Positive Potential Terminal 40B Negative potential terminal

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 砥粒と導電性樹脂マトリックスとからな
る導電性および弾性を有する電気泳動式インプロセスド
レッシング用砥石。
1. A whetstone for electrophoretic in-process dressing having conductivity and elasticity, which is composed of abrasive grains and a conductive resin matrix.
【請求項2】 砥粒と、直径5μm以下の炭素繊維を含
有する樹脂マトリックスとからなる導電性および弾性を
有する砥石。
2. A grindstone having conductivity and elasticity, which is composed of abrasive grains and a resin matrix containing carbon fibers having a diameter of 5 μm or less.
【請求項3】 樹脂マトリックスに含有される炭素繊維
は、黒鉛化された気相成長炭素繊維からなる請求項2記
載の導電性および弾性を有する砥石。
3. The electrically conductive and elastic whetstone according to claim 2, wherein the carbon fiber contained in the resin matrix is composed of graphitized vapor grown carbon fiber.
【請求項4】 砥粒と導電性樹脂マトリックスとからな
る導電性および弾性を有する砥石に所要電圧を印加し、
この砥石を前記電圧とは逆電位に帯電した第2の砥粒を
分散してなる液中において、研磨対象物ヲ研磨すると同
時に砥石の再生を行うことを特徴とする電気泳動式イン
プロセスドレッシング方法。
4. A required voltage is applied to a grindstone having conductivity and elasticity, which is composed of abrasive grains and a conductive resin matrix,
An electrophoretic in-process dressing method characterized in that the grinding stone is regenerated at the same time as polishing the object to be polished in a liquid in which second abrasive grains charged to a potential opposite to the voltage are dispersed in the grinding stone. .
JP9183995A 1995-03-25 1995-03-25 Grinding wheel with conductivity and elasticity, and electrophoretic grinding method therewith Pending JPH08257912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9183995A JPH08257912A (en) 1995-03-25 1995-03-25 Grinding wheel with conductivity and elasticity, and electrophoretic grinding method therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9183995A JPH08257912A (en) 1995-03-25 1995-03-25 Grinding wheel with conductivity and elasticity, and electrophoretic grinding method therewith

Publications (1)

Publication Number Publication Date
JPH08257912A true JPH08257912A (en) 1996-10-08

Family

ID=14037767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9183995A Pending JPH08257912A (en) 1995-03-25 1995-03-25 Grinding wheel with conductivity and elasticity, and electrophoretic grinding method therewith

Country Status (1)

Country Link
JP (1) JPH08257912A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0938949A1 (en) * 1998-02-26 1999-09-01 The Institute Of Physical & Chemical Research Electrodeless electrolytic dressing grinding method and apparatus
EP1078714A2 (en) * 1999-08-26 2001-02-28 Minebea Co., Ltd. Method and apparatus for grinding curved surfaces
US7438630B2 (en) 1997-09-30 2008-10-21 Hoya Corporation Polishing method, polishing device, glass substrate for magnetic recording medium, and magnetic recording medium
CN108436749A (en) * 2018-05-21 2018-08-24 浙江工业大学 A kind of the liquid metal burnishing device and method of electrode up and down motion
CN108436747A (en) * 2018-05-21 2018-08-24 浙江工业大学 A kind of face contact type liquid metal plane polishing device and method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7438630B2 (en) 1997-09-30 2008-10-21 Hoya Corporation Polishing method, polishing device, glass substrate for magnetic recording medium, and magnetic recording medium
US7494401B2 (en) 1997-09-30 2009-02-24 Hoya Corporation Polishing method, polishing device, glass substrate for magnetic recording medium, and magnetic recording medium
US7690969B2 (en) 1997-09-30 2010-04-06 Hoya Corporation Polishing method, polishing device, glass substrate for magnetic recording medium, and magnetic recording medium
EP0938949A1 (en) * 1998-02-26 1999-09-01 The Institute Of Physical & Chemical Research Electrodeless electrolytic dressing grinding method and apparatus
US6162348A (en) * 1998-02-26 2000-12-19 The Institute Of Physical And Chemical Research Electrodeless electrolytic dressing grinding method and apparatus
EP1078714A2 (en) * 1999-08-26 2001-02-28 Minebea Co., Ltd. Method and apparatus for grinding curved surfaces
EP1078714A3 (en) * 1999-08-26 2003-08-20 Minebea Co., Ltd. Method and apparatus for grinding curved surfaces
US6752699B2 (en) 1999-08-26 2004-06-22 Minebea Co., Ltd. Working method for curved surface of a work and an apparatus thereof
CN108436749A (en) * 2018-05-21 2018-08-24 浙江工业大学 A kind of the liquid metal burnishing device and method of electrode up and down motion
CN108436747A (en) * 2018-05-21 2018-08-24 浙江工业大学 A kind of face contact type liquid metal plane polishing device and method
CN108436749B (en) * 2018-05-21 2024-03-12 浙江工业大学 Liquid metal polishing device and method with electrode moving up and down

Similar Documents

Publication Publication Date Title
US7494404B2 (en) Tools for polishing and associated methods
US5318604A (en) Abrasive articles incorporating abrasive elements comprising abrasive particles partially embedded in a metal binder
EP0576937A2 (en) Apparatus for mirror surface grinding
CN1929955A (en) Insulated pad conditioner and method of using same
JPS61192480A (en) Synthetic grinding stone for soft metal
US4685440A (en) Rotary dressing tool
Shanawaz et al. Grinding of aluminium silicon carbide metal matrix composite materials by electrolytic in-process dressing grinding
US6117001A (en) Electrolytic in-process dressing method, electrolytic in-process dressing apparatus and grindstone
US5108561A (en) Method of dressing, dressing system and dressing electrode for conductive grindstone
JPH08257912A (en) Grinding wheel with conductivity and elasticity, and electrophoretic grinding method therewith
JP7385985B2 (en) Blade processing equipment and blade processing method
JP2838314B2 (en) Electrolytic interval dressing grinding method
JP4737492B2 (en) Metalless bond grindstone and electrolytic dressing grinding method and apparatus using the same
JP3320194B2 (en) Electrolytic dressing grinding method and apparatus
Shanawaz et al. Characteristics of electrolysis in-process dressing grinding of Al/SiCp composite materials
JP2003266246A (en) Electrolytic composite polishing device, electrolytic composite polishing tool, and electrolytic composite polishing method
JPH01188266A (en) Electrolytic dressing for electric conductive grindstone and device thereof
JP3253903B2 (en) Electrolytic texturing method and electrolytic slurry liquid
JP3839297B2 (en) Grinding method
JPH05188B2 (en)
JP3310385B2 (en) Polishing whetstone
JP2552043B2 (en) Contact discharge dressing and truing method and device, and electrode member therefor
Kimura et al. Fabrication of high-quality surfaces on precise lens mold materials by a new ELID grinding wheel
Ohmori et al. Highly efficient and precision fabrication of cylindrical parts from hard materials with the application of ELID (electrolytic in-process dressing)
JPH09168970A (en) Dressing method and dressing device for grinding wheel