JPH05188B2 - - Google Patents

Info

Publication number
JPH05188B2
JPH05188B2 JP60022800A JP2280085A JPH05188B2 JP H05188 B2 JPH05188 B2 JP H05188B2 JP 60022800 A JP60022800 A JP 60022800A JP 2280085 A JP2280085 A JP 2280085A JP H05188 B2 JPH05188 B2 JP H05188B2
Authority
JP
Japan
Prior art keywords
polishing
abrasive
resin
cured product
soft metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60022800A
Other languages
Japanese (ja)
Other versions
JPS61182774A (en
Inventor
Kan Sato
Mitsuru Maruya
Akio Nakamura
Masaru Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP2280085A priority Critical patent/JPS61182774A/en
Publication of JPS61182774A publication Critical patent/JPS61182774A/en
Publication of JPH05188B2 publication Critical patent/JPH05188B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> 本発明は平坦な表面を有する金属板、例えば、
磁気デイスク基盤の素材たるアルミニウム合金製
デイスク原盤(以下アルミデイスクと略称する)
等の軟質金属の表面の研削・琢磨、すなわち研磨
に供する合成砥石に関する。 <従来の技術> 従来、平坦な表面を有する金属板で比較的軟質
なもの、例えばアルミデイスク等の表面研磨は、
精密旋盤等を用いた機械加工、炭化珪素等の微粉
末スラリーを用いた所謂ラツピング加工、あるい
はレジノイド系砥石や、ウレタン系砥石等の合成
砥石を用いた加工等が一般的であつた。 しかしながら、精密旋盤等を用いた機械加工
は、作業者の熟練度により仕上り精度、作業効率
が異る上、全般的に作業性が悪く、小型の被研磨
体を大量に処理するような場合、その効率の低さ
が顕著であつた。 また、炭化珪素等の砥粒微粉末スラリーを用い
たラツピリング加工法の場合は、スラリーのロ
ス、使用量が多く経済的に不利な上、周囲の作業
環境や作業者を汚染し、更には高濃度廃液の処理
に大変な手間と費用とを要するという問題点があ
つた。 かゝる砥粒微粉末スラリーを用いるラツピング
加工法に代えて、レジノイド系砥石、あるいはウ
レタン系砥石等、既存の固型砥石を用いた場合
は、研磨性能が不十分で十分な仕上り精度が得ら
れなかつたり、研削力が不足したり、あるいは目
詰まり現象等好ましからざる現象を惹起し、高能
率をもつて一定の性能が得られない等の問題点が
あつた。すなわち、平面部分の研磨、特にアルミ
デイスク等、平坦度と面精度とが同時に要求され
る研磨においては、被研磨体の表面と、研磨材の
表面との面相互間を接触させ、一時に研磨を進め
てゆく事が必要であり、例えばレジノイド系ある
いはウレタン系等の独立気孔構造の合成砥石を使
用した場合は、研磨作用による研磨屑、脱落研粒
等がこの気孔に入り込み、目詰まり現象を惹き起
し易く、研磨効果の持続性に欠け、頻繁なドレツ
シング(表面更新)作業が必要となるのである。 これに対して、連続気孔を有するポリビニルア
セタール系樹脂を結合材として用いたものは、研
磨屑、脱落砥粒等が気孔外に排出され易く、目詰
まり現象を起こし難いため、優れた合成砥石とし
て一般的に知られてたものであるが、比較的耐水
性に劣り、かかる精密研磨用途には不向きであ
る。 また耐水性付与を目的として熱硬化性樹脂硬化
体を配合したものも、特公昭39−1898号および同
53−6752号公報などに提案され、耐水性合成砥石
として公知のものである。特に後者の発明におい
ては、熱硬化性樹脂の配合比率を変えることによ
り、弾性のあるものから剛性に至るまでの性質を
有する研磨材が得られ、殊に粒度の細かい砥石
は、軟質、硬質、難削材の研磨に有用である旨の
一般的かつ定性的な開示がなされているが、平坦
な表面を有する軟質金属板、特にアルミデイスク
等の平面研磨に好適な精度研磨用砥石として適合
するための砥粒の配位・分布状態や、砥粒粒度に
対する砥石表面硬度の所要値等、物性上の諸条件
に関しては、依然として何等究明されておらず、
未だかゝる用途に有用且つ好適な人造砥石の出現
を見ていない。 <発明が解決しようとする問題点> 本発明者等は、上述の技術的現状と問題点とに
鑑み鋭意研究を行なつた結果、本発明を完成する
に至つたものであり、その目的とするところは、
優れた平坦度と高い面精度とを同時に満足するよ
うに仕上げられた軟質金属板、特にアルミデイス
ク等、就中、極めて精密な用途に供せられる特殊
アルミ合金の環状盤等を効率良く取得するにあ
る。本発明の他の目的は、かゝる精密平面研磨に
好適にして、特に両面ラツピング研磨機に適用し
て優れた性能を発揮する人造砥石を提供するにあ
る。 <問題を解決するための手段> 上述の目的は、平均気孔径が10〜100μmかつ
気孔率が60〜85容量%である連続微細気孔を具え
た三次元網状組織をなす構造体であつて、該組織
がポリビニルアセタール系樹脂、メラニン系樹脂
の硬化体およびその他の熱硬化性樹脂の硬化体よ
りなり、ポリビニルアセタール系樹脂に対するメ
ラミン系樹脂の硬化体およびその他の熱硬化性樹
脂の硬化体の和の比率が、重量比において40〜
150重量%であるマトリツクスと、該マトリツク
ス中において相連接し実質的に連続状態をなして
存在する低粒微細粒子との混合体からなると共
に、表面硬度(H)と砥粒番手(G)とが式、 −230≦H+G/55≦−80 但し H:ロツクウエル硬度計、スーパーフイシヤル15
−yスケールで測定した値。 G:JIS−R−6001により分級された砥粒番手。 を満足する関係にあることを特徴とする軟質金属
用合金成砥石によつて達成される。 本発明における先ず第一の要点は、アルミデイ
スク等比較的軟質な金属の平面研磨用砥石とし
て、連続微細気孔を具えた三次元網状組織をなす
構造体を用いた点にある。すなわち、 本発明の如き三次元網状組織構造体は、レジノ
イド系ウレタン系人造砥石の独立気泡構造とは組
織を全く異にし、独立気泡は存在せず、空隙中に
枝が立体的に伸びた様な組織であり、気孔は無限
に連通したものとなる。従つて、研磨屑脱落砥粒
等はこの間隙から系外に排出され易く、また補足
された場合も目詰まり現象をおこしにくいもので
ある。 この効果が十分に得られるのは平均気孔径10乃
至100μmの範囲であり、これを下廻ると密すぎ
て、目詰まり等の現象が出易い。またこれを上廻
ると、構造的に粗すぎて物性の均一性という面で
やゝ難がある。 また気孔率は60〜85容量%の範囲にある事が好
ましい。60容量%未満の場合は、独立気孔が存在
するようになり、85容量%を超えると強度の面で
やゝ不十分なものとなる。 本発明において、第二の要点は、砥粒の結合材
であるマトリツクスとして、ポリビニルアセター
ル系樹脂と、メラミン系樹脂の硬化体及びその他
の熱硬化性樹脂の硬化体との混合体を用いた点に
ある。 既述の通り、ポリビニルアセタール系樹脂に耐
水性付与を目的として熱硬化性樹脂硬化体を配合
したものは耐水性合成砥石として公知であるが本
発明者等は、ポリビニルアセタール系樹脂の他に
メラニン系樹脂を選定し、更にその他の熱硬化性
樹脂を併用し、その合計の比率が重量比において
ポリビニルアセタール系樹脂に対し40〜150重量
%の範囲内にあるものが、本発明の目的であるア
ルミデイスク等比較的軟質の金属の表面研磨に好
適である事を見出したものである。 すなわち、結合材をかかる比率に設定し、後述
するが如き方法で熱処理を施すことにより、本発
明の目的である軟質金属の表面研磨に必要な硬
さ、切りれ味(研削力)、および適度な弾性をも
つ砥石となりうるのである。 特に、本発明の目的に適合するためにには、砥
石の靭性(ねばり)が少ない事が必要であり、靭
性が高いと、切り味が落ち、目詰まり現象も起こ
し易くなる。ポリビニルアセタール系樹脂は、砥
粒の保持力、結合力及び親水性には優れるが、
やゝ靭性の高いものである為、メラミン系樹脂硬
化体を用いることでその靭性を低減せしめ、脆性
を与えるとともに、その硬度の不足を他の熱硬化
性樹脂で補おうとするものである。他の熱硬化性
樹脂としては、フエノール系樹脂、尿素系樹脂、
熱硬化型ウレタン系樹脂、エポキシ系樹脂等、が
挙げられるが、本発明の目的達成の為には、特に
フエノール系樹脂が好適であり、またこれらの熱
硬化性樹脂は前記メラミン系樹脂に対し、重量比
にて20〜40重量%の比率にて用いることが特に好
適である。 すなわち本発明において、マトリツクスとして
ポリビニルアセタール系樹脂と、メラミン系樹脂
硬化体及びその他の熱硬化性樹脂硬化体とを併用
することは、ポリビニルアセタール系樹脂の持つ
砥粒保持力、親水性及び弾性が、それ以外の樹脂
の硬さ、脆性、耐水性等の優れた性質とを相俟つ
て、軟質金属表面研磨に適した切れ味と研磨力と
を有し、目詰まりの起こりにくい、すなわち効果
の持続性に優れた砥石となり得るのである。 上述の特長を象徴する特性値としては、ロツク
ウエル硬度計スーパーフイシヤル15−Yスケール
で測定した砥石の表面硬度(H)が挙げられ、この値
が下式に示す不等式を満足する場合、砥石は本発
明の目的である軟質金属の平面研磨に好適な物性
を有するものである。 −230≦H+G/55≦−80 (但し、G: JIS−R−6001により分級された
砥粒番手、) 上式の下限を下廻ると脆弱過ぎて切り味が劣
り、また砥石自体の消耗が激しく、一方、上限を
上廻ると硬度および靭性が高過ぎて目詰まり現象
が起こり易く、本発明の目的とする砥石としての
好適な性能を発揮し難い。 上式によつて明確な如く、砥粒番手が低い程、
すなわち砥粒々径が大きい程、硬度を高目にする
ことが好ましい。 本発明における第三の要点は、研磨性能を持つ
砥粒の配位・分布状態に係わる点である。すなわ
ちこの種の合成砥石においては、樹脂マトリツク
ス等の結合材の中に砥粒の粒子が分布されてお
り、研磨作用においては、研磨面が存在する砥
粒々子が摩擦により被研磨体が摺擦して脱落し、
系外へ排出されるという現象を繰り返し、砥石は
自らの厚味を減少させつつ、被研磨体表面を研磨
してゆくものであるが、砥粒の比率が少ないと、
1個の砥粒が独立して存在する事となり、その砥
粒が脱落した後は、ミクロ的見方をすれば結合材
のみで表面を摺擦する。すなわち研磨刀のない部
分での摺擦を行なう為、切れ味(研削力)が劣る
ものとなる。特に本発明の如く、アルミデイスク
等軟質金属の表面研磨を目的とする場合、かかる
現象は好ましくなく、表面斑、研磨斑等の問題に
つながり易い。 本発明においては、かかる好ましからざる現象
を回避する為、個々の砥粒がマトリツクス中で
各々独立して存在せず隣接した砥粒粒子と相互に
連接し、実質的に連続した状態をなして分布して
いる。かゝる砥粒の状態は、本発明になる砥石の
マトリツクスが、60〜85容量%という高い気孔率
をもつて三次元的に均一に連通した、平均孔径10
〜100μmの連続気孔構造をなし、このようなマ
トリツクスの微細骨格中に適度な粒度の砥粒微細
粒子が充分な量をもつて、所謂、目白押しをなし
て配位され、均一に分布していることに由来す
る。また、かゝる配位・分布を確実にするための
好適な砥粒番手は、少なくとも800番、含有量は
混合体重量の25重量%以上、更に好適には40重量
%以上である。 本発明にかゝる砥石は次の如き方法にて製造さ
れる。 すなわち、平均重合度300〜2000鹸化度80モル
%以上のポリビニルアルコール又はその誘導体、
変成体を一種あるいはそれ以上混合して水溶液と
なし、それにメラミン系樹脂およびその他の熱可
塑性樹脂のモノマー、オリゴマーあるいは重合体
等からなる前駆体の水溶液、非水溶媒溶液、エマ
ルジヨン等を加え、均一に撹拌し、更に砥粒、架
橋剤としてのアルデヒド類、触媒としての酸類、
及び気孔生成剤としての澱粉類等を加えて、均一
粘調スラリーを調製し、これを所定の型枠に注型
する。然る後、40乃至100℃の温度にて均一昼夜、
湯浴あるいはその他の浴中で反応固化を行なつた
後取出し、水洗して余剰のアルデヒド類、酸類、
気孔生成剤を除去する。こうして得られた中間体
は、形態的には砥石の形態を整えてはいるが、樹
脂の硬化反応が行なわれておらず、性能は不十分
である。 従つてこの中間体を100℃程度の温度で加熱し、
水分を蒸発除去、乾燥した後、樹脂の硬化を行な
う為の熱処理(キユアリング)を行なわねばなら
ないが、キユアリングに必要な温度及び時間は、
使用した樹脂の種類及び量によつて微妙に異なる
ものである。一般的には100乃至250℃で20乃至
100時間のキユアリングを施せば、硬化反応は
ほゞ達成される。 硬化が不十分であると靭性が大きく、またキユ
アリング条件が過酷で硬化が進みすぎると熱分解
が同時に生起し、好ましからざる現象を起こり易
いので、条件の特定は慎重に行なう必要がある。 またセキユアリングにおいて急激な昇温を避け
る為、段階的な昇温を行なつたり、不活性ガス雰
囲気中で行なつたりすることも有効である。 ポリビニルアルコール以外の樹脂については前
述の如く、反応原液の段階で混合(プレミツク
ス)しても良いが反応終了後の中間体にその液状
前駆体を含浸せしめてからキユアリングしてもよ
く、また一つの樹脂をプレミツクスし、もう一つ
の樹脂を後処理するという手段を用いてよく、特
に方法については限定されない。更に熱硬化を促
進するための触媒を併用することも有効である。 液状の樹脂は、水溶液、有機溶剤に溶解した溶
液、エマルジヨン、あるいは樹脂原液のいずれも
使用しうるが、作業性および混合比のコントロー
ルのし易さから見て、水溶液を使用する方法が最
も好適である。 また、本発明に言う砥粒微細粒子とは、ダイヤ
モンド、窒化硼素、炭化珪素、熔融アルミナ、ガ
ーネツト、エメリー、酸化セリウム酸化クロム等
研削力を有する化合物又は単体からなる研磨材料
のいずれかを粉砕し、適当な方法にてJIS規格
R6001に規定された粒度に分級されたものを指す
ものであるが、特に本発明の目的を達成するに
は、炭素珪素、熔融アルミナ、酸化クロム、酸化
セリウムよりなる超硬セラミツクス砥粒の内少な
くとも1種を選定することが好ましい。 <作用> 前述の如くして得られた砥石は所望の形状に成
型された後、軟質金属の表面研磨用途に供せられ
るが、特にアルミデイスク等、特殊アルミ合金の
環状盤の表面研磨の如き、極めて精密な用途に供
せられる場合、研磨前後の厚味、すなわち切削量
が精度高く定められており、しかも平坦度、厚味
のバラツキが極端におさえられている為、一般的
な研磨装置には適用されにくく、例えば両面ラツ
ピング式研磨機等、極めて精密な装置に装着して
用いる事が好ましい。ここで言う両面ラツピング
式研磨機とは、円形又は環形盤状の金属製定盤を
上下面に備え、その間に被研磨体を1枚またはそ
れ以上はさみこんで圧着し、上下両定盤を逆方向
あるいは同方向の場合は速度を変えて回動せし
め、被研磨体表面を摺動擦過せしめて、研磨を行
なう装置を言い、本発明になる砥石を適用する場
合には、砥石が均一平面を形成するよう、両定盤
にこれを装着して用いるものである。稼動時には
研磨助剤たる液体を適量流し、研磨面を濡らしつ
つ研磨が行なわれるものであるが、ここで用いら
れる液体所謂、研磨液は、水、ある種の界面活性
剤を含んだ水あるいは有機溶剤等である。 かくして本発明になる砥石を両面ラツピング式
研磨機に装着し、例えばアルミデイスクの研磨を
行なうと、優れた耐水性と砥粒保持力とを有する
マトリツクス樹脂中に均一且つ緻密に充填され、
相互に連接した砥粒微細粒子は、マトリツクスの
適度な硬度、弾性、脆性などと相俟つて、冴えた
切れ味すなわち研削力を示し、また砥粒々子は摺
擦研磨作用により順次脱落しても背後に連接した
新しい砥粒が表面に現れて砥面が直ちに更新再生
されると共に、研削屑、脱落砥粒等は連続微細気
孔から排出され易いため、目詰まりを起こ難いか
ら高い研磨力が長期に亘つて維持される。また、
本発明砥石の超微細砥粒の前述せる特殊の配位・
分布状態のために、研磨作業時、マトリツクス樹
脂のみによる摺擦現象を生ずることなく、平坦な
被研磨体全面に亘つて砥粒々子が接触・摺擦し、
常時均一な研磨作用が行なわれる。従つて、本発
明砥石は、平坦な表面を有する軟質金属板に、研
磨斑のない、高い平滑度と優れた仕上り面精度と
を効率良く与えるものである。 <実施例> 以下実施例に従い本発明の実施態様を説明す
る。尚、本実施例において使用した装置・器具は
次の通りである。 ●研磨装置……スピードフアム社製両面研磨機
(型式SFDL 9B−5SSG) ●表面粗さ計……東京精密社製 表面粗さ計(型
式、サーフコム553A) ●結合度……大越式砥石結合度試験機(東京工機
社製) ●硬度計……松沢精機製ロツクウエル硬度計(型
式 SF−15Y) ●被研磨材……アルミニウム合金製環状板で、
JIS規格AA5086 合金製のものを用いた。 また研磨条件および、表面精度、硬度、結合度
の測定条件は下記の通りである。 ●研磨条件(SFDL−9B−5SSG) ●圧力100gr/cm2 ●研磨時間 ……3分/1バツチ ●上部定盤回転数 ……20R/M(左回り) ●下部定盤回転数 ……60R/M(右回り) ●キヤリアー定盤回転数 ……20R/M(右回り) ●水供給量 ……5/分 ●表面精度測定条件(Ra Rnax)(サーフコム553A) ●表面精度測定条件(WCM) ●カツトオフ値 ……0.8mm以上 ●測定長 ……2.5mm ●カツトオフ値 ……0.8mm以下 ●測定長 ……80mm なおこゝでいうRa、Rmax、WCMについては、
次式で表わされるパラメーターである Ra ……中心線平均粗さ Ra=1/L∫L O|f(x)|dx Rmax……最大高さ Rmax=Pmax−Vmin WCM……3波最大うねり WCM=Pmax−Vmin Ra 粗さ曲線より計算 Rmax 断面曲線より計算 WCM 3波うねり曲線より計算 ◎表面硬度測定条件 ロツクウエルスーパーフイシヤル15−Yスケ
ール使用 荷重15Kg 測定子1/2インチ鋼球 ◎結合度 荷重10Kg用いJIS R−6240法に準処した方法
にて測定 実施例 1 砥粒としてC砥粒2000番(炭化珪素、平均粒径
7.1〜8.9ミクロンメーターのもの)を用いた。 ポリビニルアルコールは重合度1700完全鹸化の
ものを用いて水溶液化し、これに水溶性のフエノ
ール樹脂として住友デユレズ(株)製PR−96IA、水
溶性のメラミ樹脂として昭和高分子(株)製SM−
700をそれぞれ所定量混合し、更にこれに触媒と
しての硫酸、架橋剤としてのホルムアルデハイ
ド、気孔生成剤としてのコーンスターチを加え、
前述砥粒と混合して均一のスラリー状液を調整し
た。このスラリー液を所定の型枠に注型し、60℃
の水浴中にて1昼夜反応固化せしめて中間体を得
た後、水洗し、過剰の酸、ホルムアルデハイド、
コーンスターチ等を除去して乾燥し、然る後、
130℃の温度にて約50時間熱処理して、所期の砥
石を得た。 本実施例で用いた砥石の組成は第1表に示す。
かくして得られた砥石を、第1図に示す如き略扇
形の形状1に切断成型し、金属製取付板2に接合
し、ボルトにて研磨装置SFDL−9B5SSGの上下
ラツピング盤3に取付けた。キヤリアーを用い
て、被研磨材を固定し、研磨装置の所定の条件に
て、研磨を行なつた。研磨液(クーラント)とし
ては水を用い、所定時間研磨後、被研磨材の表面
形状を検査した。 また、砥石面の目詰まり状態等確認の為砥石の
ドレツシング作業なしで15バツチ連続研磨を行な
い、砥面の状態および研磨の状態を検査した。結
果を第1表に記す。
<Industrial Application Field> The present invention is applicable to metal plates having a flat surface, for example,
Aluminum alloy disk master (hereinafter abbreviated as aluminum disk), which is the material of the magnetic disk base
This invention relates to a synthetic whetstone used for grinding and polishing the surface of soft metals such as metals. <Conventional technology> Conventionally, surface polishing of relatively soft metal plates with flat surfaces, such as aluminum disks, has been carried out using
Machining using a precision lathe, so-called lapping processing using a slurry of fine powder such as silicon carbide, or processing using a synthetic grindstone such as a resinoid grindstone or a urethane grindstone were common. However, machining using precision lathes, etc. has different finishing accuracy and work efficiency depending on the skill level of the worker, and is generally poor in workability, and when processing a large number of small objects to be polished, The low efficiency was remarkable. In addition, in the case of rapilling processing using a slurry of fine abrasive powder such as silicon carbide, it is economically disadvantageous due to the large amount of slurry lost and used, and it also contaminates the surrounding working environment and workers, and is even more expensive. There was a problem that processing the concentrated waste liquid required a great deal of effort and expense. If existing solid grinding wheels such as resinoid grinding wheels or urethane grinding stones are used instead of the lapping process using a fine abrasive powder slurry, the polishing performance is insufficient and sufficient finishing accuracy cannot be achieved. There have been problems such as insufficient grinding power, insufficient grinding force, or undesirable phenomena such as clogging, making it impossible to obtain a certain level of performance with high efficiency. In other words, when polishing a flat surface, especially when polishing an aluminum disk that requires flatness and surface precision at the same time, the surface of the object to be polished and the surface of the polishing material are brought into contact with each other, and the polishing is carried out at once. For example, if a resinoid-based or urethane-based synthetic whetstone with an independent pore structure is used, polishing debris, fallen abrasive grains, etc. from the abrasive action can enter these pores and cause clogging. The polishing effect is not long-lasting, and frequent dressing (surface renewal) work is required. On the other hand, those using polyvinyl acetal resin with continuous pores as a bonding material are easy to discharge polishing debris, fallen abrasive grains, etc. to the outside of the pores, and are less likely to cause clogging, making them excellent synthetic grindstones. Although it is generally known, it has relatively poor water resistance and is unsuitable for such precision polishing applications. In addition, there are also products containing a cured thermosetting resin for the purpose of imparting water resistance.
It was proposed in Japanese Patent No. 53-6752 and is known as a water-resistant synthetic whetstone. In particular, in the latter invention, by changing the blending ratio of the thermosetting resin, abrasives with properties ranging from elastic to rigid can be obtained. Although it has been generally and qualitatively disclosed that it is useful for polishing difficult-to-cut materials, it is suitable as a precision polishing whetstone suitable for flat polishing of soft metal plates with flat surfaces, especially aluminum disks. Conditions regarding physical properties, such as the coordination and distribution of abrasive grains and the required value of grindstone surface hardness relative to abrasive grain size, have not yet been clarified.
No artificial grinding wheel useful and suitable for such uses has yet appeared. <Problems to be Solved by the Invention> The inventors of the present invention have completed the present invention as a result of intensive research in view of the above-mentioned technical current state and problems. Where to do it is
Efficiently obtain soft metal plates finished to satisfy both excellent flatness and high surface precision, especially aluminum disks, and especially annular disks made of special aluminum alloys that can be used for extremely precise purposes. It is in. Another object of the present invention is to provide an artificial grindstone that is suitable for such precision surface polishing and exhibits excellent performance especially when applied to a double-sided lapping polisher. <Means for solving the problem> The above object is to provide a three-dimensional network structure having continuous fine pores with an average pore diameter of 10 to 100 μm and a porosity of 60 to 85% by volume, The structure is composed of a cured product of a polyvinyl acetal resin, a cured product of a melanin resin, and a cured product of other thermosetting resins, and is the sum of a cured product of a melamine resin and a cured product of other thermosetting resins relative to the polyvinyl acetal resin. The ratio of 40 to 40 in weight ratio
It consists of a mixture of a matrix of 150% by weight and low-grain fine particles that are interconnected and exist in a substantially continuous state in the matrix, and has a surface hardness (H) and abrasive grain count (G). is the formula, -230≦H+G/55≦-80, however, H: Rockwell hardness tester, Super Physical 15
- Values measured on the y scale. G: Abrasive grain count classified according to JIS-R-6001. This is achieved by an alloyed grindstone for soft metals characterized by a relationship that satisfies the following. The first point of the present invention is that a three-dimensional network structure having continuous fine pores is used as a grindstone for polishing relatively soft metal surfaces such as aluminum disks. In other words, the three-dimensional network structure of the present invention has a completely different structure from the closed-cell structure of resinoid-based urethane-based artificial grindstones, and there are no closed cells, and it looks like branches are extending three-dimensionally into the voids. The structure is such that the pores are infinitely connected. Therefore, the abrasive grains and the like that have fallen off are easily discharged from the system through these gaps, and even if they are captured, they are less likely to cause clogging. This effect can be sufficiently obtained within the range of average pore diameter of 10 to 100 μm; below this range, the pores become too dense and phenomena such as clogging tend to occur. Moreover, if it exceeds this, the structure is too rough and there is a problem in terms of uniformity of physical properties. Further, the porosity is preferably in the range of 60 to 85% by volume. If it is less than 60% by volume, independent pores will exist, and if it exceeds 85% by volume, the strength will be insufficient. The second point of the present invention is that a mixture of polyvinyl acetal resin, cured melamine resin, and other thermosetting resins is used as the matrix that binds the abrasive grains. It is in. As mentioned above, polyvinyl acetal resin mixed with a cured thermosetting resin for the purpose of imparting water resistance is known as a water-resistant synthetic whetstone. The object of the present invention is to select a polyvinyl acetal resin and use other thermosetting resins in combination so that the total ratio by weight is within the range of 40 to 150% by weight based on the polyvinyl acetal resin. It has been found that this method is suitable for polishing the surface of relatively soft metals such as aluminum disks. That is, by setting the binder at such a ratio and performing heat treatment in the manner described below, the hardness, sharpness (grinding force), and appropriateness necessary for surface polishing of soft metals, which is the purpose of the present invention, can be obtained. This makes it possible to create a grindstone with excellent elasticity. In particular, in order to meet the objectives of the present invention, it is necessary that the grinding wheel has low toughness (stickiness), and if the toughness is high, the sharpness deteriorates and clogging becomes more likely to occur. Polyvinyl acetal resin has excellent abrasive grain retention, binding strength, and hydrophilicity, but
Since it has a high degree of toughness, by using a cured melamine resin, its toughness is reduced and brittleness is imparted, and the lack of hardness is compensated for by using other thermosetting resins. Other thermosetting resins include phenolic resins, urea resins,
Examples include thermosetting urethane resins, epoxy resins, etc., but phenolic resins are particularly suitable for achieving the purpose of the present invention, and these thermosetting resins are superior to the melamine resins. , it is particularly suitable to use it in a proportion of 20 to 40% by weight. That is, in the present invention, the combined use of a polyvinyl acetal resin, a cured melamine resin, and other cured thermosetting resins as a matrix improves the abrasive retention, hydrophilicity, and elasticity of the polyvinyl acetal resin. Combined with other resin's excellent properties such as hardness, brittleness, and water resistance, it has sharpness and polishing power suitable for polishing soft metal surfaces, and is resistant to clogging, which means that the effect lasts for a long time. It can be used as a whetstone with excellent properties. A characteristic value that symbolizes the above-mentioned features is the surface hardness (H) of the grinding wheel measured using the Rockwell hardness tester Superphysical 15-Y scale.If this value satisfies the inequality shown in the formula below, the grinding wheel is It has physical properties suitable for flat surface polishing of soft metals, which is the object of the present invention. -230≦H+G/55≦-80 (G: Abrasive grain count classified according to JIS-R-6001) If it is below the lower limit of the above formula, it will be too brittle and the cutting quality will be poor, and the whetstone itself will wear out. On the other hand, if it exceeds the upper limit, the hardness and toughness will be too high and clogging will easily occur, making it difficult to exhibit the desired performance as a grindstone, which is the objective of the present invention. As is clear from the above formula, the lower the abrasive grain count, the
That is, it is preferable that the larger the diameter of the abrasive grains, the higher the hardness. The third point of the present invention is related to the coordination and distribution state of abrasive grains having polishing performance. In other words, in this type of synthetic whetstone, abrasive grain particles are distributed in a binder such as a resin matrix, and in the polishing action, the abrasive grains on which the polishing surface is present slide against the object to be polished due to friction. and fell off,
By repeating the phenomenon of being discharged out of the system, the whetstone reduces its own thickness and polishes the surface of the object to be polished. However, if the ratio of abrasive grains is small,
One abrasive grain exists independently, and after that abrasive grain falls off, from a microscopic point of view, only the binder rubs the surface. In other words, since the rubbing is performed in areas where there is no abrasive blade, the sharpness (grinding power) is inferior. Particularly when the purpose is to polish the surface of a soft metal such as an aluminum disk as in the present invention, such a phenomenon is undesirable and tends to lead to problems such as surface unevenness and polishing unevenness. In the present invention, in order to avoid such undesirable phenomena, individual abrasive grains do not exist independently in the matrix, but are interconnected with adjacent abrasive grains and are distributed in a substantially continuous state. are doing. Such a state of the abrasive grains is such that the matrix of the grinding wheel according to the present invention has a high porosity of 60 to 85% by volume, is uniformly connected three-dimensionally, and has an average pore diameter of 10.
It has a continuous pore structure of ~100μm, and in the microskeleton of such a matrix, a sufficient amount of abrasive particles of appropriate size are arranged and uniformly distributed. It comes from this. In order to ensure such coordination and distribution, the preferred abrasive grain count is at least 800, and the content is at least 25% by weight, more preferably at least 40% by weight of the weight of the mixture. The grindstone according to the present invention is manufactured by the following method. That is, polyvinyl alcohol or a derivative thereof having an average degree of polymerization of 300 to 2000 and a degree of saponification of 80 mol% or more,
One or more modified products are mixed to form an aqueous solution, and an aqueous solution, non-aqueous solvent solution, emulsion, etc. of a precursor made of monomers, oligomers, or polymers of melamine resin and other thermoplastic resins is added to the mixture to form a homogeneous solution. Then, abrasive grains, aldehydes as a crosslinking agent, acids as a catalyst,
and starch as a pore-forming agent to prepare a uniformly viscous slurry, which is poured into a predetermined mold. After that, uniform day and night at a temperature of 40 to 100℃.
After reaction solidification in a hot water bath or other bath, take out and wash with water to remove excess aldehydes, acids,
Remove pore formers. Although the thus obtained intermediate has the shape of a grindstone, the resin has not undergone a curing reaction and its performance is insufficient. Therefore, by heating this intermediate at a temperature of about 100℃,
After removing moisture by evaporation and drying, heat treatment (curing) must be performed to cure the resin, but the temperature and time required for curing are as follows:
It differs slightly depending on the type and amount of resin used. Generally 20 to 250℃ at 100 to 250℃
After curing for 100 hours, the curing reaction is almost completed. If the curing is insufficient, the toughness will be high, and if the curing conditions are harsh and the curing progresses too much, thermal decomposition will occur at the same time, which is likely to cause undesirable phenomena, so the conditions must be carefully specified. In order to avoid rapid temperature rise in the secure ring, it is also effective to raise the temperature in stages or to perform it in an inert gas atmosphere. As mentioned above, resins other than polyvinyl alcohol may be mixed (premixed) at the stage of the reaction stock solution, but they may also be cured after impregnating the intermediate with the liquid precursor after the completion of the reaction. A method of premixing a resin and post-treating another resin may be used, and the method is not particularly limited. Furthermore, it is also effective to use a catalyst to promote thermal curing. The liquid resin can be an aqueous solution, a solution dissolved in an organic solvent, an emulsion, or a resin stock solution, but in terms of workability and ease of controlling the mixing ratio, it is most preferable to use an aqueous solution. It is. In addition, the abrasive fine particles referred to in the present invention are made by grinding either a compound or a single abrasive material having grinding power such as diamond, boron nitride, silicon carbide, fused alumina, garnet, emery, cerium oxide, chromium oxide, etc. , JIS standard by appropriate method
This refers to those classified to the particle size specified in R6001, but in order to achieve the purpose of the present invention, at least one of the cemented carbide ceramic abrasive grains consisting of carbon silicon, fused alumina, chromium oxide, and cerium oxide must be used. It is preferable to select one type. <Function> After the grindstone obtained as described above is molded into a desired shape, it is used for surface polishing of soft metals, especially for surface polishing of annular disks made of special aluminum alloys such as aluminum disks. When used for extremely precise applications, the thickness before and after polishing, that is, the amount of cutting, is determined with high precision, and variations in flatness and thickness are extremely suppressed, making it difficult to use general polishing equipment. Therefore, it is preferable to use it by attaching it to extremely precise equipment, such as a double-sided wrapping type polishing machine. The double-sided wrapping type polishing machine referred to here is equipped with circular or ring-shaped metal surface plates on the upper and lower surfaces, and one or more objects to be polished are sandwiched and crimped between them, and the upper and lower surface plates are rotated in opposite directions. Alternatively, in the case of the same direction, it refers to a device that performs polishing by rotating at different speeds and sliding and rubbing the surface of the object to be polished.When applying the grindstone of the present invention, the grindstone forms a uniform plane. This is used by attaching it to both surface plates so that it can be used. During operation, polishing is performed by pouring an appropriate amount of a polishing aid liquid to wet the polishing surface. Solvents, etc. Thus, when the grinding wheel of the present invention is installed in a double-sided lapping type grinding machine to polish, for example, an aluminum disk, the grinding wheel is uniformly and densely filled into the matrix resin, which has excellent water resistance and abrasive grain retention.
The interconnected fine abrasive particles, combined with the appropriate hardness, elasticity, and brittleness of the matrix, exhibit sharp cutting power, or grinding power, and even if the abrasive particles fall off one after another due to the abrasive abrasive action, there is no backing. New abrasive grains connected to the abrasive grains appear on the surface and the abrasive surface is immediately renewed and regenerated. Grinding debris and fallen abrasive grains are easily discharged from the continuous fine pores, which prevents clogging and maintains high polishing power for a long time. maintained throughout. Also,
The above-mentioned special coordination and
Due to the distribution state, during polishing work, the abrasive particles come in contact with and rub over the entire surface of the flat object, without causing any rubbing phenomenon caused only by the matrix resin.
Uniform polishing action is always performed. Therefore, the grindstone of the present invention efficiently provides a soft metal plate having a flat surface with high smoothness and excellent finished surface accuracy without polishing unevenness. <Examples> Embodiments of the present invention will be described below with reference to Examples. The devices and instruments used in this example are as follows. ●Polishing equipment...Double-sided polishing machine manufactured by Speedhuam Co., Ltd. (Model: SFDL 9B-5SSG) ●Surface roughness meter...Surface roughness meter made by Tokyo Seimitsu Co., Ltd. (Model: Surfcom 553A) ●Degree of bonding...Okoshi type grindstone bonding Hardness tester (manufactured by Tokyo Koki Co., Ltd.) ●Hardness tester: Matsuzawa Seiki Rotsuwell hardness meter (model SF-15Y) ●Material to be polished: An annular plate made of aluminum alloy.
A JIS standard AA5086 alloy was used. Further, the polishing conditions and the measurement conditions for surface accuracy, hardness, and degree of bonding are as follows. ●Polishing conditions (SFDL-9B-5SSG) ●Pressure 100gr/cm 2 ●Polishing time...3 minutes/1 batch ●Upper surface plate rotation speed...20R/M (counterclockwise) ●Lower surface plate rotation speed...60R /M (clockwise) ●Carrier surface plate rotation speed...20R/M (clockwise) ●Water supply rate...5/min ●Surface accuracy measurement conditions ( Ra Rnax ) (Surfcom 553A) ●Surface accuracy measurement conditions (W) CM ) ●Cut-off value...0.8mm or more ●Measurement length...2.5mm ●Cut-off value...0.8mm or less ●Measurement length...80mm Regarding Ra, Rmax, W CM mentioned here,
Ra is a parameter expressed by the following formula...Center line average roughness Ra=1/L∫ L O |f(x)|dx Rmax...Maximum height Rmax=Pmax−Vmin W CM ...Maximum undulation of 3 waves W CM = Pmax - Vmin Ra Calculated from roughness curve Rmax Calculated from cross-sectional curve W CM Calculated from 3-wave waviness curve ◎Surface hardness measurement conditions Rotsuwell Super Financial 15-Y scale working load 15Kg Gauge head 1/2 inch steel ball ◎Degree of bond Measurement example using a method compliant with JIS R-6240 method using a load of 10 kg 1 The abrasive grains were No. 2000 C abrasive grains (silicon carbide, average particle size)
7.1-8.9 micron meter) was used. Completely saponified polyvinyl alcohol with a degree of polymerization of 1700 was used to make an aqueous solution, and to this was added PR-96IA manufactured by Sumitomo Durez Co., Ltd. as a water-soluble phenol resin and SM- manufactured by Showa Kobunshi Co., Ltd. as a water-soluble melami resin.
700 in predetermined amounts, and further added sulfuric acid as a catalyst, formaldehyde as a crosslinking agent, and corn starch as a pore-forming agent.
A uniform slurry liquid was prepared by mixing with the abrasive grains described above. This slurry liquid was poured into a specified mold and heated to 60°C.
An intermediate was obtained by solidifying the reaction for one day in a water bath, and then washed with water to remove excess acid, formaldehyde,
After removing corn starch etc. and drying,
The desired grindstone was obtained by heat treatment at a temperature of 130°C for about 50 hours. The composition of the grindstone used in this example is shown in Table 1.
The grindstone thus obtained was cut and formed into a substantially fan-shaped shape 1 as shown in FIG. 1, bonded to a metal mounting plate 2, and mounted with bolts to the upper and lower lapping machines 3 of a polishing device SFDL-9B5SSG. The material to be polished was fixed using a carrier and polished under predetermined conditions of the polishing device. Water was used as the polishing liquid (coolant), and after polishing for a predetermined period of time, the surface shape of the polished material was inspected. In addition, in order to confirm the clogging condition of the grinding wheel surface, 15 batches of continuous polishing were performed without dressing the grinding wheel, and the condition of the grinding surface and the polishing condition were inspected. The results are shown in Table 1.

【表】【table】

【表】 第1表より明らかな如く、硬度範囲が所定の範
囲内にあるものは、仕上り面精度も良好でかつ15
バツチ経過後の研磨性能の低下もそれ程著しくな
い。 メラミン系樹脂とフエノール系樹脂の和のポリ
ビニルアセタール系樹脂に対する比が150%を超
越えるもの(試験No.1)は、硬度が高く仕上り面
精度やゝ悪い。継続テストを行なうと、Rmaxの
値が上昇し、条痕の発生が多くなる事を示してい
る。またその比が40%を下回るもの(試験No.5)
は、研削力が低く目詰まりし易く、特にWCMの値
が高く、平坦度が出ない傾向が認められる。 砥粒含有量が少なく、連続して存在しないもの
(試験No.6)は、全く研削力がなく、不適である。 更に、熱硬化性樹脂がメラミン系樹脂のみで構
成されてあるもの(試験No.7)は、脆すぎて砥石
の磨耗が激しく、特に部分的な磨耗がある為にこ
れも不適である。 実施例 2 粒砥番手を種々に変化せしめた砥石を前記実施
例1に述べたと同様の手順と作製し、同様の研磨
作業を行なつた上、検査した結果を第2表に示
す。
[Table] As is clear from Table 1, those with hardness within the specified range have good surface finish accuracy and 15
The deterioration in polishing performance after batching is not so significant. Those in which the ratio of the sum of melamine resin and phenol resin to polyvinyl acetal resin exceeds 150% (Test No. 1) have high hardness and poor surface finish accuracy. When a continuous test is performed, the value of Rmax increases, indicating that the occurrence of striations increases. Also, the ratio is less than 40% (Test No. 5)
The grinding force is low and clogging occurs easily, and the value of W CM is especially high, and the flatness tends to be poor. The one with a low abrasive grain content and no continuous abrasive grains (Test No. 6) has no grinding power at all and is unsuitable. Furthermore, the one in which the thermosetting resin is composed only of melamine resin (Test No. 7) is also unsuitable because it is too brittle and the grinding wheel is subject to severe abrasion, especially local abrasion. Example 2 Grindstones with various grain sizes were prepared in the same manner as described in Example 1, and the same polishing operations were carried out and the results of inspection are shown in Table 2.

【表】【table】

【表】 第2表から明らかな通り、番手の低い程、すな
わち砥粒が粗い程研削力があり、まな砥石の磨耗
も激しいが、これは研磨の性格上当然のことであ
り、特に支障はない。 総合的な見方をすれば、本発明になる砥石は、
アルミデイスク等、軟質金属の研磨に十分適用可
能であり、稼動に際しては10〜12バツチに1度程
度の頻度でドレツシング(表面更新)作業を行な
つてやれば、研磨力の変化も少なく、十分に使用
に耐えうるものである。 <発明の効果> 本発明により、従来既存の砥石では到底実現し
得なかつた、優れた平坦度と高い面精度とを同時
に備えた、軟質金属板、例えばアルミデイスクを
効率良く取得することが可能となつたため、電子
工業、事務機器産業等の発達に伴なう情報蓄積媒
体としての高精度仕上アルミデイスク等の急速な
需要増に充分対処することが出来ると共に、研磨
作業効率の上昇は生産加工コストの低減を可能と
するなど、産業界への寄与は頗る大である。
[Table] As is clear from Table 2, the lower the grit, that is, the coarser the abrasive grains, the greater the grinding power, and the greater the wear of the grindstone, but this is natural due to the nature of polishing, and there are no particular problems. do not have. From a comprehensive perspective, the grindstone of the present invention is
It is fully applicable to polishing soft metals such as aluminum disks, and if you perform dressing (surface renewal) work approximately once every 10 to 12 batches during operation, there will be little change in polishing power, and it will be sufficient. It can be used for many years. <Effects of the Invention> According to the present invention, it is possible to efficiently obtain a soft metal plate, for example, an aluminum disk, which simultaneously has excellent flatness and high surface precision, which could never be achieved with existing grindstones. As a result, it is possible to fully meet the rapid increase in demand for high-precision finished aluminum disks as information storage media due to the development of the electronics industry, office equipment industry, etc., and the increase in polishing work efficiency is due to production processing. The contribution to industry is significant, such as by making it possible to reduce costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明砥石の使用状況を説明するため
のラツピング式研磨機のラツピング盤の斜視図で
ある。 1……砥石、2……取付板、3……ラツピング
盤。
FIG. 1 is a perspective view of a lapping machine of a lapping type polishing machine for explaining how the grindstone of the present invention is used. 1... Grinding wheel, 2... Mounting plate, 3... Wrapping board.

Claims (1)

【特許請求の範囲】 1 平均気孔径が10〜100μmかつ気孔率が60〜
85容量%である連続微細気孔を具えた三次元網状
組織をなす構造体であつて、該組織がポリビニル
アセタール系樹脂、メラニン系樹脂の硬化体およ
びその他の熱硬化性樹脂の硬化体よりなり、ポリ
ビニルアセタール系樹脂に対するメラミン系樹脂
の硬化体およびその他の熱硬化性樹脂の硬化体の
和の比率が、重量比において40〜150重量%であ
るマトリツクスと、該マトリツクス中において相
連接し実質的に連続状態をなして存在する低粒微
細粒子との混合体からなると共に、表面硬度(H)と
砥粒番手(G)とが式、 −230≦H+G/55≦−80 但し H: ロツクウエル硬度計、スーパーフイシヤル
15−yスケールで測定した値。 G:JIS−R−6001により分級された砥粒番手。 を満足する関係にあることを特徴とする軟質金属
用合成砥石。 2 その他の熱硬化性樹脂がフエノール系樹脂、
あるいはその誘導体であり、メラミン系樹脂に対
する20〜40重量%用いられる前記特許請求の範囲
第1項記載の軟質金属用研磨砥石。 3 砥粒微細粒子が、炭化珪素、溶融アルミナ、
酸化セリウムおよび酸化クロムよりなる群から選
ばれた少なくとも一つの超硬セラミツクよりなる
前記特許請求の範囲第1項記載の軟質金属用研磨
砥石。 4 砥粒番手(G)が少なくとも800番である前記特
許請求の範囲第1項記載の軟質金属用研磨砥石。 5 砥粒微細粒子が混合体の重量に対して少なく
とも25重量%含有されている前記特許請求の範囲
第1項軟質金属用研磨砥石。 6 砥粒微細粒子の含有量が少なくとも40重量%
である前記特許請求の範囲第1項記載の軟質金属
用研磨砥石。
[Claims] 1. Average pore diameter is 10-100 μm and porosity is 60-100 μm.
A structure having a three-dimensional network structure with continuous fine pores of 85% by volume, the structure consisting of a cured product of a polyvinyl acetal resin, a cured product of a melanin resin, and a cured product of other thermosetting resins, A matrix in which the ratio of the sum of the cured product of melamine resin and the cured product of other thermosetting resin to polyvinyl acetal resin is 40 to 150% by weight; It is composed of a mixture of low grain and fine particles that exist in a continuous state, and the surface hardness (H) and abrasive grain count (G) are expressed by the formula: −230≦H+G/55≦−80, where H: Rockwell hardness tester , super ficial
Values measured on a 15-y scale. G: Abrasive grain count classified according to JIS-R-6001. A synthetic whetstone for soft metals characterized by a relationship that satisfies the following. 2 Other thermosetting resins include phenolic resins,
or a derivative thereof, which is used in an amount of 20 to 40% by weight based on the melamine resin. 3 The abrasive fine particles are made of silicon carbide, fused alumina,
The polishing wheel for soft metals according to claim 1, which is made of at least one cemented carbide ceramic selected from the group consisting of cerium oxide and chromium oxide. 4. The polishing wheel for soft metals according to claim 1, wherein the abrasive grain count (G) is at least No. 800. 5. A polishing wheel for soft metals as claimed in claim 1, wherein the abrasive fine particles are contained in an amount of at least 25% by weight based on the weight of the mixture. 6 The content of abrasive fine particles is at least 40% by weight
A polishing wheel for soft metals according to claim 1.
JP2280085A 1985-02-09 1985-02-09 Soft metal polishing wheel Granted JPS61182774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2280085A JPS61182774A (en) 1985-02-09 1985-02-09 Soft metal polishing wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2280085A JPS61182774A (en) 1985-02-09 1985-02-09 Soft metal polishing wheel

Publications (2)

Publication Number Publication Date
JPS61182774A JPS61182774A (en) 1986-08-15
JPH05188B2 true JPH05188B2 (en) 1993-01-05

Family

ID=12092757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2280085A Granted JPS61182774A (en) 1985-02-09 1985-02-09 Soft metal polishing wheel

Country Status (1)

Country Link
JP (1) JPS61182774A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6464766A (en) * 1987-09-01 1989-03-10 Tadatomo Suga Machining method for specular surface of hard and brittle material and grinding wheel member used therefor
JP2520474B2 (en) * 1989-04-07 1996-07-31 信濃電気製錬株式会社 Porous grindstone for magnetic disk substrate
JP2696776B2 (en) * 1990-02-28 1998-01-14 鐘紡株式会社 Synthetic whetstone and method of manufacturing the same
JPH061967A (en) * 1992-06-17 1994-01-11 Kanebo Ltd Grinding wheel and its production

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54551A (en) * 1977-06-03 1979-01-05 Hitachi Metals Ltd Lumped constant circulator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54551A (en) * 1977-06-03 1979-01-05 Hitachi Metals Ltd Lumped constant circulator

Also Published As

Publication number Publication date
JPS61182774A (en) 1986-08-15

Similar Documents

Publication Publication Date Title
JPS61192480A (en) Synthetic grinding stone for soft metal
US4255164A (en) Fining sheet and method of making and using the same
EP1183134B1 (en) Abrasive tools for grinding electronic components
JP2006346857A (en) Polishing tool
EP1319470A1 (en) Ultra abrasive grain wheel for mirror finish
JP2694705B2 (en) Synthetic grindstone for high-purity aluminum substrate polishing
CN102066055A (en) Self-bonded foamed abrasive articles and machining with such articles
JPH05188B2 (en)
JP7264663B2 (en) Whetstone and method for manufacturing whetstone
JP2002355763A (en) Synthetic grinding wheel
JP2593829B2 (en) Synthetic whetstone
JPH0671708B2 (en) Semiconductor wafer-Whetstone for polishing
CA1122017A (en) Glass fining sheet and method of making and using the same
JP2684607B2 (en) Synthetic whetstone
JPH0629401B2 (en) Abrasive grain coated with super hard material
JPS61209880A (en) Precise polishing of hard metal surface
JPH02185374A (en) Synthetic grindstone
JP2555000B2 (en) Polishing method for hard and brittle materials
JPH02185373A (en) Synthetic grindstone
JP2000084856A (en) Super abrasive grinding wheel for mirror finishing provided with super abrasive layer through elastic body
JPH0360970A (en) Polishing surface plate
JPS61197164A (en) Synthetic grindstone and its production method
JP2520474B2 (en) Porous grindstone for magnetic disk substrate
Jain et al. Lapping
JP2019034372A (en) Grindstone and grinder

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees