JPH0360970A - Polishing surface plate - Google Patents

Polishing surface plate

Info

Publication number
JPH0360970A
JPH0360970A JP1192394A JP19239489A JPH0360970A JP H0360970 A JPH0360970 A JP H0360970A JP 1192394 A JP1192394 A JP 1192394A JP 19239489 A JP19239489 A JP 19239489A JP H0360970 A JPH0360970 A JP H0360970A
Authority
JP
Japan
Prior art keywords
polishing
surface plate
abrasive grains
copper
polishing surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1192394A
Other languages
Japanese (ja)
Other versions
JPH0673807B2 (en
Inventor
Kan Sato
佐藤 敢
Yoji Tomita
富田 洋司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP19239489A priority Critical patent/JPH0673807B2/en
Publication of JPH0360970A publication Critical patent/JPH0360970A/en
Publication of JPH0673807B2 publication Critical patent/JPH0673807B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

PURPOSE:To reduce incurring of a dispersion loss and the occurrence of a drop of diamond grinding grain during polishing and to perform high-efficient polishing of ceramics and a rigid metal by a method wherein micropowder of copper or tin is fixed in a dispersed state to a porous substance of thermosetting resin. CONSTITUTION:The working surface of a polishing surface plate forms a porous substance of thermosetting resin having a continuous pore having porosity of 30-70 volume %. Micropowder of copper or tin is fixed in a dispersed state to the porous substance to produce a desired polishing surface plate.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、セラミックス、超硬金属等の難研削性素材を
ダイヤモンド砥粒を用いて高精度且つ効率よく平面研磨
するために用いる研磨用定盤に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention is a polishing tool used for highly accurate and efficient surface polishing of difficult-to-grind materials such as ceramics and cemented carbide using diamond abrasive grains. Regarding the board.

(従来の技術) 従来、セラミックス、金属酸化物、あるいはフェライト
等の超硬材料は、極めて硬質であり、更にセラミックス
は脆い性質もあわせもつため、通常の炭化珪素、ガーネ
ット、アルミナ等の砥粒を用いた研磨方法による加工が
適用しに<<、高精度且つ効率的な表面加工が難しかっ
た。このため、一般にはダイヤモンドを工具の先端に固
定して旋盤のバイトとしたものや細い金属の先端にダイ
ヤモンド微粉を電着固定し切削工具としたもの、あるい
は金属や硬質バインダーをもってダイヤモンドを固定し
砥石としたもの等を使用している。しかしこれ等は、穿
孔加工0曲面加工あるいは局所加工等に適した方法であ
って、平面を精度よく加工するには好適t1方法ではな
い。
(Prior art) Conventionally, superhard materials such as ceramics, metal oxides, and ferrites are extremely hard, and ceramics also have brittle properties, so conventional abrasive grains such as silicon carbide, garnet, and alumina have been used. It was difficult to process the surface with high precision and efficiency due to the polishing method used. For this reason, in general, diamond is fixed to the tip of a tool to make a turning tool, diamond fine powder is electrodeposited to the tip of a thin metal to make a cutting tool, or a diamond is fixed to a metal or hard binder to make a grindstone. We use the following. However, these methods are suitable for drilling, zero-curved surface machining, local machining, etc., and are not suitable t1 methods for machining flat surfaces with high accuracy.

また超硬材料を研磨する方法として、ダイヤモンド砥石
を用いる方法があるが、一般に超硬材料においては研磨
を始めると急速に研磨抵抗が増大する傾向が見られる。
Further, as a method of polishing superhard materials, there is a method using a diamond grindstone, but in general, in superhard materials, there is a tendency for the polishing resistance to increase rapidly once polishing is started.

このため、ドレッシング直後はそれなりの研磨能力を有
するダイヤモンド砥石も、研磨を続けるに伴い、研磨抵
抗が増大し、発熱のため被研磨材又は砥石が焼け、つい
には砥石回転輪が止まることとなる。そのようになる前
に再ドレッシングを行って研削力を回復させ研磨を続け
る必要があるが、ダイヤモンド砥石のドレッシングは煩
雑で且つ多大の作業量を要するといった問題点がある。
For this reason, even though a diamond grindstone has a certain level of polishing ability immediately after dressing, as grinding continues, the grinding resistance increases, heat generation burns the material to be polished or the grindstone, and the wheel of the grindstone eventually stops. Before this happens, it is necessary to perform re-dressing to restore the grinding force and continue polishing, but there are problems in that dressing the diamond grindstone is complicated and requires a large amount of work.

一方、平面加工法としては例えば鋳鉄定盤上に被研磨体
を押圧し、研磨液とともに遊離砥粒を間欠的に供給し、
定盤を回転させ研磨する所謂ラッピング式研磨法が行な
われているが、この方式にダイヤモンド砥粒を使用する
のは、高価な砥粒粉末の損失が多く不経済であり、また
硬度の高い砥粒が被研磨体に押しあてられるため、被研
磨体に深い条痕を与えたり、更に定盤が研磨され、片減
りや寸法精度の狂いを生じ易いといった問題点があり、
セラミックス等の超硬材料を高精度且つ効率よく研磨す
る方法は、未だ満足すべきものがないのが現状である。
On the other hand, as a surface processing method, for example, the object to be polished is pressed onto a cast iron surface plate, and free abrasive grains are intermittently supplied together with the polishing liquid.
A so-called lapping polishing method is used in which polishing is performed by rotating a surface plate, but using diamond abrasive grains in this method is uneconomical because of the large loss of expensive abrasive grain powder, and the use of highly hard abrasive grains is uneconomical. Since the grains are pressed against the object to be polished, there are problems such as creating deep scratches on the object, and further polishing the surface plate, which tends to cause uneven wear and deviations in dimensional accuracy.
At present, there is still no satisfactory method for polishing superhard materials such as ceramics with high precision and efficiency.

(発明が解決しようとする課題) 本発明者等は上述の問題点に鑑み、鋭意研究を行った結
果、銅又は錫の金属微粉末を固着した研磨用定盤がダイ
ヤモンド砥粒(以下、「ダイヤ砥粒」と記す)に対する
親和性にすぐれ、ダイヤ砥粒を用いたラッピング研磨に
おいて超硬材料に対して極めて良好な研磨力を発揮する
ことを見出し、本発明を完成したものである。本発明の
目的とするところは、ラッピング研磨において研磨材と
してのダイヤ砥粒の保持力に優れ、寸法安定性が良好で
セラミックス等の超硬材料に対し好ましい研磨力を発揮
し、且つ平坦度、平面度等の形状精度の狂いを容易に修
正しうる研磨用定盤を提供するにある。
(Problems to be Solved by the Invention) In view of the above-mentioned problems, the present inventors conducted intensive research and found that a polishing surface plate fixed with fine metal powder of copper or tin has a diamond abrasive grain (hereinafter referred to as " The present invention was completed based on the discovery that it has an excellent affinity for diamond abrasives (hereinafter referred to as "diamond abrasive grains"), and exhibits extremely good polishing power on superhard materials in lapping polishing using diamond abrasive grains. The purpose of the present invention is to have excellent retention of diamond abrasive grains as an abrasive in lapping polishing, to have good dimensional stability, to exhibit preferable polishing power for ultra-hard materials such as ceramics, and to have good flatness and To provide a polishing surface plate capable of easily correcting deviations in shape accuracy such as flatness.

(発明が解決するための手段) 上述の目的は、砥粒によりラッピング研磨する研磨機の
研磨用定盤において、前記研磨用定盤の作用面が気孔率
30〜70容量%の連続気孔を有する熱硬化性樹脂の多
孔体であって、且つ銅又は錫の微粉末を分散固着してい
ることを特徴とする研磨用定盤により達成される。
(Means for Solving the Invention) The above-mentioned object is to provide a polishing surface plate of a polishing machine that performs lapping polishing with abrasive grains, in which the working surface of the polishing surface plate has continuous pores with a porosity of 30 to 70% by volume. This is achieved by a polishing surface plate which is a porous body of thermosetting resin and has fine copper or tin powder dispersed and fixed therein.

本発明に用いられる銅又は錫の金属微粉末は、好ましく
は純度99%以上の高純度のもので、これらを単独ある
いは混合して用いることができる。
The copper or tin metal fine powder used in the present invention preferably has a high purity of 99% or more, and these can be used alone or in combination.

上記微粉末の平均粒径は特に限定されるものではないが
粒径が小さ過ぎると多孔質体から脱落し易く、粒径が大
き過ぎるとダイヤ砥粒の保持力が小さくなる傾向にあり
、好ましくは200μm以下で、より好ましくは10〜
150μmで、更に好ましくは60〜100μm程度で
あり、粒径分布の幅の小さいものが好適である。また、
上記金属微粉末の形状は不定形の粒状のものより真球に
近い球状のものが研磨速度が大きく且つ面粗さに優れ好
適である。鉄分等の不純物が多いと、これらの不純物が
熱硬化性樹脂の硬化触媒である酸類等と反応して発泡し
、均質な構造体を成形するのが難かしくなる。
The average particle size of the above-mentioned fine powder is not particularly limited, but if the particle size is too small, it tends to fall off from the porous body, and if the particle size is too large, the holding power of the diamond abrasive grains tends to be small, so it is preferable. is 200 μm or less, more preferably 10 to
The particle size is preferably 150 μm, more preferably about 60 to 100 μm, and particles with a narrow particle size distribution are preferred. Also,
Regarding the shape of the metal fine powder, it is preferable to use a spherical shape close to a true sphere rather than an irregularly shaped granular one because it has a high polishing rate and excellent surface roughness. When there are many impurities such as iron, these impurities react with acids and the like that are curing catalysts for the thermosetting resin, causing foaming, making it difficult to mold a homogeneous structure.

尚、銅の微粉末に比べ錫の微粉末の方がより小さなダイ
ヤ砥粒の保持力に優れ、具体的には6〜10μm以下の
ダイヤ砥粒を用いたラッピング研磨の場合に好ましい研
磨効果をもたらす傾向にある。°また、本発明において
は上記の金属微粉末に鉛の微粉末を併用することも有効
である。
In addition, fine tin powder has better retention power for smaller diamond abrasive grains than fine copper powder, and specifically, it has a favorable polishing effect in lapping polishing using diamond abrasive grains of 6 to 10 μm or less. tend to bring about Further, in the present invention, it is also effective to use fine lead powder in combination with the above-mentioned fine metal powder.

本発明において熱硬化性樹脂の硬化体とは、熱硬化性樹
脂を熱あるいは反応触媒等の作用により、その前駆体が
硬化したものであり、水、有機溶剤等にほとんど溶解す
ることのない硬質の樹脂に変化し、熱に対する安定性も
優れたものである。ここで用いられる熱硬化性樹脂とし
ては、具体的にはフェノール系樹脂、メラミン系樹脂、
ウレタン系樹脂、エポキシ系樹脂、フェール系樹脂、フ
ラン系樹脂又は珪素系樹脂を選定する事が好ましく、就
中フェノール系樹脂及びメラミン系樹脂が特に好ましい
ものとして挙げられる。なお上述の合成樹脂は単独で用
いてもよいし併用しても良い。
In the present invention, the cured product of thermosetting resin refers to a thermosetting resin whose precursor is cured by heat or the action of a reaction catalyst, and is a hard material that hardly dissolves in water, organic solvents, etc. It changes into a resin with excellent thermal stability. Specifically, the thermosetting resins used here include phenolic resins, melamine resins,
It is preferable to select a urethane resin, an epoxy resin, a fer resin, a furan resin, or a silicon resin, with phenol resins and melamine resins being particularly preferred. Note that the above-mentioned synthetic resins may be used alone or in combination.

本発明に係る熱硬化性樹脂の性状については、樹脂その
ものあるいはその前駆体が液状を呈するか、あるいは水
、溶剤に溶解して液状を呈するものであれば好ましいが
、就中水溶液で粘度をある程度有するものが、特に好ま
しいものとして挙げられる。
Regarding the properties of the thermosetting resin according to the present invention, it is preferable that the resin itself or its precursor exhibits a liquid state, or that it exhibits a liquid state when dissolved in water or a solvent. Particularly preferred are those having the following.

本発明の研磨用定盤は、上記熱硬化性樹脂に前述の銅又
は錫の金属微粉末を結合せしめ、更に気孔率が30〜7
0容量%の連続気孔を有する多孔質体で、その気孔径は
好ましくは500μm以下である。上記気孔は、研磨時
において高価なダイヤ砥粒の散失を低減させるとともに
、研磨層による目詰まり防止や研磨熱の蓄熱による昇温
を効果的に低減するものである。気孔率がsO容量%よ
り小さい場合には、上記効果を十分に発揮できず、研磨
速度も小さくなり、研磨作用の安定性も不十分なものと
なる。また気孔率が70容量%より大きい場合には、多
孔質体が脆い構造物となり、上記限定範囲において好ま
しい研磨が確保される。
The polishing surface plate of the present invention has the above-mentioned thermosetting resin combined with the above-mentioned fine metal powder of copper or tin, and further has a porosity of 30 to 7.
A porous body having 0% by volume of continuous pores, the pore diameter of which is preferably 500 μm or less. The pores reduce the loss of expensive diamond abrasive grains during polishing, and also effectively prevent clogging of the polishing layer and reduce temperature rise due to accumulation of polishing heat. If the porosity is smaller than sO volume %, the above effects cannot be fully exhibited, the polishing rate will be low, and the stability of the polishing action will be insufficient. Further, when the porosity is greater than 70% by volume, the porous body becomes a brittle structure, and preferable polishing is ensured within the above-mentioned limited range.

上記金属微粉末の含有量は特に限定されるものではない
が、含有量が少な過ぎるとダイヤ砥粒の保持力が小さく
なる傾向にあり、多過ぎると脆い構造の多孔質体となり
易く、その含有量は好ましくは5〜25容量%で、より
好ましくは10〜20容量%程度である。又、上記金属
微粉末は多孔質体中から容易に脱落しないように結合せ
しめるのがよく、更に各微粉末がそれぞれ独立した分散
状態ではむく、微粉末同士が相連接し、実質的に連続状
態で存在していることが極めて好ましいものである。こ
の様にすることにより、熱、水、溶剤等に対する寸法安
定性が向上するとともに、ダイヤ砥粒の保持効果が増大
するものである。
The content of the metal fine powder is not particularly limited, but if the content is too low, the holding power of the diamond abrasive grains tends to decrease, and if the content is too high, it tends to become a porous body with a brittle structure. The amount is preferably about 5 to 25% by volume, more preferably about 10 to 20% by volume. In addition, it is preferable that the metal fine powders are bonded so that they do not easily fall out of the porous body, and each fine powder is not separated in an independent dispersed state, but is interconnected with each other and is in a substantially continuous state. It is extremely preferable that the By doing so, the dimensional stability against heat, water, solvents, etc. is improved, and the diamond abrasive grain retention effect is increased.

本発明に係る研磨用定盤は、例えば次のようにして製造
することができる。即ち、上述の熱硬化性樹脂の原液、
溶液またはエマルジ曽ン等の液状合成樹脂に上述の銅又
は錫の微粉末及び気孔形成材と必要に応じ該熱硬化性樹
脂の硬化触媒を配合して十分なる撹拌を行う。ここで得
られる混合体は液状合成樹脂の粘度が高い上、微細粉末
状金属を多量に含有するため、極めて粘稠なスラリーあ
るいはペースト状を呈する。従ってこれを均一、撹拌し
、均質なものを得るには高粘度用の撹拌装置、ニーダ−
等を使用するのが好適である。また、ここで粘稠なスラ
リーあるいはペースト状としない限り、加える金属の比
重が高いため沈降し、均質な製品を期すのが困難である
。即ち具体的にはその調整時の温度において少くとも8
000 cps程度以上の粘度を有するのが好ましい。
The polishing surface plate according to the present invention can be manufactured, for example, as follows. That is, the above-mentioned thermosetting resin stock solution,
A liquid synthetic resin such as a solution or an emulsion is mixed with the above-mentioned fine copper or tin powder, a pore-forming material, and, if necessary, a curing catalyst for the thermosetting resin, and sufficiently stirred. The mixture obtained here has a high viscosity as a liquid synthetic resin and also contains a large amount of fine powder metal, so it takes on the form of an extremely viscous slurry or paste. Therefore, in order to uniformly stir this and obtain a homogeneous product, a high viscosity stirring device and a kneader are required.
It is preferable to use . Furthermore, unless it is made into a viscous slurry or paste, the metal added has a high specific gravity and will settle, making it difficult to obtain a homogeneous product. That is, specifically, at least 8 at the temperature at the time of adjustment.
It is preferable to have a viscosity of approximately 000 cps or more.

ここで気孔形成材としては、例えば澱粉またはその誘導
体をはじめとする有機質微粉末が好適である。更に具体
的には、米、とうもろこし、馬鈴薯等から抽出された澱
粉、ないしこれらを加工したもの、あるいは分級したも
のが挙げられる。また熱硬化性樹脂に使用する触媒とし
ては、一般に無機酸類または有機酸類が用いられるが、
本発明の場合、銅又は錫の金属微粉末を原料として用い
るため、これらの酸類を加えると銅または錫との反応を
起こし、金属の酸化による発泡、更には溶解等の不都合
な現象を生起し、製造に多大の悪影響を与える。従って
これら酸類の使用量は極力少なくすることが好ましく、
更に好ましくは強酸と弱塩基よりなる塩類、即ち水溶液
中で酸性を呈する塩類、有機アミンの塩酸塩等を用いる
のがよい。
Here, as the pore-forming material, organic fine powder such as starch or its derivatives is suitable. More specifically, examples include starch extracted from rice, corn, potatoes, etc., or processed or classified starches thereof. In addition, inorganic acids or organic acids are generally used as catalysts for thermosetting resins, but
In the case of the present invention, fine metal powder of copper or tin is used as a raw material, so adding these acids will cause a reaction with the copper or tin, causing undesirable phenomena such as foaming due to oxidation of the metal, and even dissolution. , which has a significant negative impact on manufacturing. Therefore, it is preferable to use as little amount of these acids as possible.
More preferably, salts consisting of a strong acid and a weak base, ie, salts exhibiting acidity in an aqueous solution, hydrochlorides of organic amines, etc. are preferably used.

次に該粘稠物を所望の形状の型枠に注型した後、例えば
50〜100℃の雰囲気にて静置し加温する。この段階
において熱硬化性樹脂の緩和な初期縮合反応が開始し、
該粘稠物は徐々にゲル化し、次いで同化が始まるととも
に、気孔形成材により多孔構造が形成される。
Next, the viscous material is cast into a mold having a desired shape, and then left standing and heated in an atmosphere of, for example, 50 to 100°C. At this stage, a mild initial condensation reaction of the thermosetting resin begins,
The viscous material gradually gels, and then assimilation begins and a porous structure is formed by the pore-forming material.

加熱予備固化完了後、該予備固化物を型枠より取り出し
引き続いて例えば80〜100℃の温度に加熱し、介在
する水分又は溶剤を除去した後、更に例えば120〜2
00℃の温度まで徐々に昇温する。この段階では、樹脂
の架橋硬化が本格的に進み、硬い物性をもった所期の多
孔質構造体となる。上記熱硬化樹脂の熱硬化反応は、同
時に進む酸化反応を予防するため、窒素ガス等の不活性
ガス雰囲気中で行ってもよい。
After completion of heating and pre-solidification, the pre-solidified product is removed from the mold and subsequently heated to a temperature of, for example, 80 to 100°C to remove any intervening moisture or solvent, and then further heated to, for example, 120 to 200°C.
Gradually raise the temperature to 00°C. At this stage, crosslinking and curing of the resin progresses in earnest, resulting in the desired porous structure with hard physical properties. The thermosetting reaction of the thermosetting resin may be carried out in an atmosphere of an inert gas such as nitrogen gas in order to prevent the oxidation reaction from occurring at the same time.

この様にして得られた研磨用定盤は、連続気孔を有し、
外観的には金属に近いものであり、気孔が緻密な程その
傾向が強く、更に本発明の目的にも好適である。また、
製造された多孔質体は好ましくは板状を呈するものであ
る。
The polishing surface plate obtained in this way has continuous pores,
The appearance is similar to that of metal, and the denser the pores, the stronger this tendency, and it is also suitable for the purpose of the present invention. Also,
The produced porous body preferably has a plate shape.

上記研磨用定盤はゴ枚の素材で形成してもよいが、複数
の素材を組み合わせて形成することもできる。
The polishing surface plate may be formed from a single piece of material, but it may also be formed from a combination of a plurality of materials.

(発明の効果) 本発明の研磨用定盤を用い、ダイヤ砥粒を含んだスラリ
ーを研磨液としてラッピング研磨すると、ダイヤ砥粒が
咳研磨用定盤に含まれを銅又は錫の微粉末に半ば埋没さ
れたような形で固定化され、研磨時に於けるダイヤ砥粒
の散失や脱落を低減し、セラミックスや硬質金属等を効
率よく研磨することができる。研磨に伴なう熱は多孔質
体であるため、効果的に放散され、更に熱硬化性樹脂の
ため温度の変化に伴う変形、歪も少なく、また研磨によ
る研磨屑微粉末は気孔に捕捉され、急速な目詰り現象の
発現を防止でき、研磨効率を著しく向上できるものであ
る。かかる効果は多孔体であって、はじめて得られるも
のであって、たとえば樹脂と金属との混合体であっても
多孔体でないものは上記効果が不十分であり、むしろ樹
脂の加熱による劣化を伴ない、金属のものより劣る傾向
さえ認められるものである。更に、その面の寸法が狂っ
たり形状が狂ったりした場合は、金属単独のものと異な
り通常の工具で容易に修正を加える事が出来るという波
及効果をも併有するものである。
(Effect of the invention) When the polishing surface plate of the present invention is used for lapping and polishing using a slurry containing diamond abrasive grains as a polishing liquid, the diamond abrasive grains are contained in the polishing surface plate and are converted into fine powder of copper or tin. It is fixed in a half-buried form, reducing the scattering and falling off of diamond abrasive grains during polishing, and can efficiently polish ceramics, hard metals, etc. Because it is a porous material, the heat associated with polishing is effectively dissipated, and because it is a thermosetting resin, there is little deformation or distortion due to temperature changes, and fine particles of polishing debris are trapped in the pores. , rapid clogging phenomenon can be prevented, and polishing efficiency can be significantly improved. This effect can only be obtained with a porous material, and for example, even if it is a mixture of resin and metal, the above effect will be insufficient in a non-porous material, and rather the resin will deteriorate due to heating. No, there is even a tendency to be inferior to that of metals. Furthermore, if the dimension or shape of the surface becomes out of order, it also has the ripple effect of being able to be easily corrected using ordinary tools, unlike when it is made solely of metal.

尚、本発明の研磨用定盤を用いたラッピング研磨の主な
研磨作用は、従来行なわれているラッピング研磨のもの
とは若干具なるものである。即ち、従来行なわれている
ラッピング研磨は、回転する定盤と被研磨体との隙間に
多量の遊離砥粒を介在させ、この遊離砥粒が転がる事に
より被研磨体の表面を僅かずつ研磨していくものである
が、本発明の研磨用定盤を用いた場合は、研磨液に含有
する遊離砥粒としてのダイヤ砥粒が本発明の研磨用定盤
に食い込み、半分が該定盤に埋め込まれ、半分が鋭利な
先端を突き出した様な形態となり、該定盤表面がダイヤ
砥粒の単層で被覆された如き状態を形成し、主として上
記の定盤上に突出状態で固定化されたダイヤ砥粒の剪断
力によって被研磨体を研磨するものである。このため、
本発明の研磨用定盤を応用することにより、従来極めて
不経済なためほとんど行なわれていなかったダイヤ砥粒
スラリーを研磨液に使用したラッピング研磨が可能とな
り、極めて硬質なため加工性の悪かったセラミックス、
超硬金属、金属酸化物等の超硬材料に対し、効率的な平
面精密仕上げが可能となる。
The main polishing action of lapping using the polishing surface plate of the present invention is slightly different from that of conventional lapping. In other words, in conventional lapping polishing, a large amount of free abrasive grains are interposed in the gap between a rotating surface plate and the object to be polished, and as these loose abrasive grains roll, the surface of the object to be polished is polished little by little. However, when the polishing surface plate of the present invention is used, the diamond abrasive grains as free abrasive grains contained in the polishing liquid bite into the polishing surface plate of the present invention, and half of the diamond abrasive grains are absorbed into the polishing surface plate of the present invention. The diamond abrasive grains are embedded in the surface plate, with half of the diamond abrasive grains protruding from the surface, and the surface of the surface plate is coated with a single layer of diamond abrasive grains. The object to be polished is polished using the shearing force of the diamond abrasive grains. For this reason,
By applying the polishing surface plate of the present invention, it is now possible to perform lapping polishing using diamond abrasive slurry as the polishing liquid, which was rarely done because it was extremely uneconomical. ceramics,
Efficient flat precision finishing is possible for superhard materials such as cemented carbide metals and metal oxides.

更に、本発明の研磨用定盤はその表面形状の修正、所謂
ドレッシングが容易に行なえるものである。即ち、前述
の如き作用で研磨するので、定盤自体の磨耗は比較的少
ないが、それでも長時間使用すれば研磨力の低下や作用
面の平坦度、平面度の狂いが生じ、その修正が必要とな
る。この場合、本発明の定盤は熱硬化性樹脂の多孔質体
に金属徴用することができ、例えばメタルボンドダイヤ
砥石のペレットを複数個配設したドレッサーを定盤に圧
接し、該定盤を回転する事により該定盤の表面を修正す
るといった方法が挙げられる。従って、定盤を研磨機よ
り取り外して、旋盤等の工作機械を用いて修正加工する
といった煩雑な作業は必要とせず、本発明の定盤によれ
ば、修正作業は容易且つ効率的に行えるものである。
Furthermore, the polishing surface plate of the present invention allows for easy modification of its surface shape, so-called dressing. In other words, since polishing is performed using the action described above, there is relatively little wear on the surface plate itself, but if used for a long time, the polishing power will decrease and the flatness of the working surface will become uneven, which requires correction. becomes. In this case, the surface plate of the present invention can use metal for the porous body of thermosetting resin; for example, a dresser on which a plurality of pellets of metal bonded diamond grinding wheels are arranged is pressed against the surface plate, and the surface plate is An example of this method is to modify the surface of the surface plate by rotating it. Therefore, it is not necessary to remove the surface plate from the polishing machine and perform correction work using a machine tool such as a lathe, and according to the surface plate of the present invention, correction work can be performed easily and efficiently. It is.

本発明の研磨用定盤は、支持体に保持した被研磨体を回
転する定盤に押圧して研磨する所謂片面ラッピング方式
に用いられる他、遊星運動をするキャリヤーに被研磨体
を保持し、回転する上下両定盤で被研磨体を挾んで、被
研磨体の上下両面を同時に研磨する両面同時ラッピング
方式にも応用することができる。以下、実施例により本
発明を詳述する。尚、その前に本実施例における研磨試
験の方法について記述する。
The polishing surface plate of the present invention is used in a so-called single-sided lapping method in which an object to be polished held on a support is pressed against a rotating surface plate for polishing. It can also be applied to a double-sided simultaneous lapping method in which the object to be polished is held between two rotating upper and lower surface plates and both the upper and lower sides of the object to be polished are simultaneously polished. Hereinafter, the present invention will be explained in detail with reference to Examples. Before that, the method of the polishing test in this example will be described.

〈研磨試験法〉 被研磨体として一辺3 Cm の正方形をしたアルミナ
系超硬セラミックス薄板を用意した。これを支持体表面
にワックスを用いて貼付固定し、定盤上に押圧力400
 f/crntで圧接して、研磨液を供給しながら該定
盤が回転数a o rpm  で回転する片面ラッピン
グ式研磨機で被研磨体を研磨した。
<Polishing Test Method> An alumina-based cemented carbide ceramic thin plate having a square shape of 3 cm on a side was prepared as an object to be polished. This was pasted and fixed on the surface of the support using wax, and pressed onto the surface plate with a pressing force of 400.
The object to be polished was polished using a single-sided lapping type polishing machine in which the surface plate rotated at a rotational speed a o rpm while applying pressure at f/crnt and supplying a polishing liquid.

上記研磨液は、平均粒径10μm又は6μmのダイヤ砥
粒を5%含むスラリー状のもので、30分間に20 C
Cの割合で間欠的に供給した。1回の研磨時間は30分
間とし、これを5回繰り返し行って、研磨量及び表面最
大粗さ(Rmax )を測定した。
The above polishing liquid is a slurry containing 5% of diamond abrasive grains with an average particle size of 10 μm or 6 μm, and is heated at 20 C for 30 minutes.
It was supplied intermittently at a ratio of C. Each polishing time was 30 minutes, and this was repeated five times to measure the amount of polishing and the maximum surface roughness (Rmax).

(実施例1) 金属微粉末として、純分99.7%以上の純銅で平均粒
径100μmの球状をしたものを選定した=樹脂分とし
て水溶性レゾール樹脂(住友デュレス■社製スミテプク
スPR$ 61ム 固形分85%の水溶液)及び水溶性
メラミン樹脂(住友化学工業−社製 スミテックスM−
3)を選定し、更に咳合成樹脂の硬化触媒として硝酸亜
鉛及び塩化第■鉄を選定した。また気孔形成材として馬
鈴薯澱粉の精製品を用いた。
(Example 1) As the metal fine powder, pure copper with a purity content of 99.7% or more and a spherical shape with an average particle size of 100 μm was selected. = As the resin content, water-soluble resol resin (Sumito Pux PR $ 61 manufactured by Sumitomo Dures ■) was selected. Aqueous solution with solid content of 85%) and water-soluble melamine resin (Sumitex M- manufactured by Sumitomo Chemical Co., Ltd.)
3) was selected, and zinc nitrate and ferrous chloride were also selected as curing catalysts for the cough synthetic resin. In addition, a purified product of potato starch was used as a pore-forming material.

上述の水溶性レゾール樹脂65%水溶液570m1  
と水溶性メラミン樹脂60%水溶液180m#を配合し
、これを室温において撹拌しつつ触媒である硝酸亜鉛2
fと塩化第1鉄4gを各々粉末のまま投入した。これを
引つづき撹拌しつつ馬鈴薯澱粉I QOfを加え、均一
な状態になるまで十分なる撹拌を行なった。次に、銅微
粉末1000gを撹拌しながら少量ずつ投入し、更に撹
拌をつづけ、均質なスラリー状混合原液とした。これを
硬質塩化ビニル製の板状の型枠に注型し、60℃の温浴
に浸漬し、16時間放置した。得られた該予備固化物を
型枠より取り出し、そのまま80℃の通風乾燥機に投入
し5日間の乾燥を行い、ついでこれを熱処理機に入れ、
室温より140℃まで6時間かけて昇温し、そのままの
温度で4時間熱処理を行った。得られた製品は銅を容量
比において約ttS%含有し、気孔率約4t%の多孔構
造体であった。また、外観は銅特有の色調と金属光沢と
を有するものであり、極めて軽量のものであった。更に
検鏡の結果、気孔はほぼ連続気孔をなし、また銅粉同士
は相連接するような状態で均一に分布していた。
570ml of the above water-soluble resol resin 65% aqueous solution
and 180 m# of a 60% water-soluble melamine resin aqueous solution, and while stirring this at room temperature, zinc nitrate, which is a catalyst,
f and 4 g of ferrous chloride were each added as powders. While continuing to stir this, potato starch IQOf was added, and sufficient stirring was performed until a uniform state was obtained. Next, 1000 g of fine copper powder was added little by little while stirring, and stirring was continued to form a homogeneous slurry-like mixed stock solution. This was cast into a plate-shaped mold made of hard vinyl chloride, immersed in a 60°C hot bath, and left for 16 hours. The obtained pre-solidified product was taken out of the mold, put into a ventilation dryer at 80°C and dried for 5 days, and then put into a heat treatment machine.
The temperature was raised from room temperature to 140° C. over 6 hours, and heat treatment was performed at that temperature for 4 hours. The obtained product contained copper at a volume ratio of about ttS% and had a porous structure with a porosity of about 4t%. Moreover, the appearance had a color tone and metallic luster peculiar to copper, and it was extremely lightweight. Furthermore, microscopic examination revealed that the pores were almost continuous, and the copper powders were evenly distributed in a manner that they were connected to each other.

上記の方法で得られた多孔質構造体を成形して研磨用定
盤の素材となし、これを3枚放射状に組み合わせて配設
し、全体として外径ff1g5mff1゜内径t t 
o mmのドーナツ盤状に形成して、更にその表面に幅
4 mm 、深さ5 mmの同心円状の溝をll mm
間隔に刻して研磨用定盤とした。これを片面ラッピング
式研磨機の定盤として搭載し、前述の研磨試験を行って
性能の評価をした。
The porous structure obtained by the above method is molded and used as a material for a polishing surface plate, and three of these are arranged in a radial combination, with an outer diameter of ff1g5mff1° and an inner diameter of tt as a whole.
It was formed into a donut disk shape with a diameter of 1.0 mm, and concentric grooves of a width of 4 mm and a depth of 5 mm were formed on its surface.
It was carved into intervals and used as a polishing surface plate. This was installed as a surface plate in a single-sided lapping polisher, and the polishing test described above was conducted to evaluate its performance.

研磨試験の結果は第1表に示す通りであり、研磨量は大
きく、最大面粗さ(Rmax)は小さく、優れた研磨性
能を示し、更に研磨を繰り返してもかかる性能は持続し
た。
The results of the polishing test are shown in Table 1, and the amount of polishing was large and the maximum surface roughness (Rmax) was small, indicating excellent polishing performance, and this performance continued even after repeated polishing.

(実施例2) 馬鈴薯澱粉の配合量を75Fとする他は実施例1と同様
の方法で研磨用定盤を作成した。このものの気孔率は約
51%で連通気孔と独立気孔が混在するものであった。
(Example 2) A polishing surface plate was prepared in the same manner as in Example 1 except that the amount of potato starch was 75F. The porosity of this material was about 51%, with a mixture of continuous pores and independent pores.

研磨試験の結果は第1表に示す通りであり、3回程度の
繰り返し研磨では優れた研磨量、最大面粗さを持続した
The results of the polishing test are shown in Table 1, and excellent polishing amount and maximum surface roughness were maintained after repeated polishing about three times.

(実施例3) 金属微粉末として純分99.7%以上の純銅で、平均粒
径100μmの球状ではない粒状の銅粉を用いる他は実
施例1と同様の方法で研磨用定盤を作成した。このもの
の気孔率は約41%で、気孔はほとんどが連続気孔であ
った。
(Example 3) A polishing surface plate was created in the same manner as in Example 1, except that non-spherical granular copper powder with an average particle size of 100 μm, made of pure copper with a purity of 99.7% or more, was used as the fine metal powder. did. The porosity of this material was about 41%, and most of the pores were continuous.

研磨試験の結果は第1表の通りである。研磨量及び仕上
り向粗さの持続性は良好であったが、研磨量及び面粗さ
は球状銅粉を用いた場合の方がより優れたものであった
The results of the polishing test are shown in Table 1. The polishing amount and the durability of the finished roughness were good, but the polishing amount and surface roughness were better when spherical copper powder was used.

(実施例4) 金属微粉末として純分99.5%以上で、平均粒径70
μmの粒状をした錫粉を用いる他は実施例1と同様の方
法で研磨用定盤を作成した。このものの気孔率は約45
%で、気孔はほとんどが連続気孔であった。尚、研磨試
験は、ダイヤ砥粒の平均粒径が約6μmのもので行なっ
た。
(Example 4) Fine metal powder with a purity of 99.5% or more and an average particle size of 70
A polishing surface plate was prepared in the same manner as in Example 1, except that tin powder in the form of micrometer particles was used. The porosity of this material is approximately 45
%, most of the pores were continuous. The polishing test was conducted using diamond abrasive grains having an average particle size of about 6 μm.

研磨試験の結果は第1表の通りである。研磨量は若干中
ないが、面粗さは小さく優れており、且つその持続性は
良好であった。これは、錫粉を用いた本発明の研磨用定
盤が、より微細なダイヤ砥粒に対し十分効果を発揮する
ことを示すものであった。
The results of the polishing test are shown in Table 1. Although the amount of polishing was moderate, the surface roughness was small and excellent, and its durability was good. This indicates that the polishing plate of the present invention using tin powder is sufficiently effective on finer diamond abrasive grains.

(比較例1) 馬鈴薯澱粉の配合量を501とする他は実施例1と同様
の方法で研磨用定盤を作成した。このものの気孔率は約
22%で気孔はほとんどが独立気孔であった。
(Comparative Example 1) A polishing surface plate was prepared in the same manner as in Example 1 except that the amount of potato starch was 501. The porosity of this material was about 22%, and most of the pores were independent pores.

研磨試験の結果は第1表の通りである。研磨回数を重ね
るに従って研磨量が低下し、最大面粗さも大きくなる傾
向にあり、目詰り現象が現われていることを示していた
The results of the polishing test are shown in Table 1. As the number of times of polishing increased, the amount of polishing decreased and the maximum surface roughness also tended to increase, indicating that a clogging phenomenon was occurring.

(比較例り 実施例1で用いた研磨用定盤にかえて、同じ形状を有す
る全体が銅板で出来た定盤を用いて研磨試験を行った。
(Comparative Example) In place of the polishing surface plate used in Example 1, a polishing test was conducted using a surface plate having the same shape and made entirely of a copper plate.

Claims (1)

【特許請求の範囲】[Claims]  砥粒によりラッピング研磨する研磨機の研磨用定盤に
おいて、前記研磨用定盤の作用面が気孔率30〜70容
量%の連続気孔を有する熱硬化性樹脂の多孔体であって
、且つ銅又は錫の微粉末を分散固着していることを特徴
とする研磨用定盤。
In a polishing surface plate of a polishing machine that performs lapping and polishing with abrasive grains, the working surface of the polishing surface plate is a porous body of thermosetting resin having continuous pores with a porosity of 30 to 70% by volume, and is made of copper or A polishing surface plate characterized by dispersing and fixing fine tin powder.
JP19239489A 1989-07-25 1989-07-25 Polishing surface plate Expired - Lifetime JPH0673807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19239489A JPH0673807B2 (en) 1989-07-25 1989-07-25 Polishing surface plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19239489A JPH0673807B2 (en) 1989-07-25 1989-07-25 Polishing surface plate

Publications (2)

Publication Number Publication Date
JPH0360970A true JPH0360970A (en) 1991-03-15
JPH0673807B2 JPH0673807B2 (en) 1994-09-21

Family

ID=16290577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19239489A Expired - Lifetime JPH0673807B2 (en) 1989-07-25 1989-07-25 Polishing surface plate

Country Status (1)

Country Link
JP (1) JPH0673807B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001328055A (en) * 2000-05-22 2001-11-27 Ricoh Co Ltd Wire tool and its manufacturing method
JP2004358616A (en) * 2003-06-05 2004-12-24 Yasuhiro Tani Polishing tool, polishing device and method
JP2010070401A (en) * 2008-09-16 2010-04-02 Covalent Materials Corp Yag polycrystalline substrate and method for polishing the same
JP2015134402A (en) * 2013-12-17 2015-07-27 富士紡ホールディングス株式会社 Resin surface plate for wrapping, and wrapping method using the same
WO2017033280A1 (en) * 2015-08-25 2017-03-02 株式会社クリスタル光学 Grinding tool and grinding tool manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61209880A (en) * 1985-03-12 1986-09-18 Kanebo Ltd Precise polishing of hard metal surface
JPS63212464A (en) * 1987-02-26 1988-09-05 Nikko Rika Kk Polishing board

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61209880A (en) * 1985-03-12 1986-09-18 Kanebo Ltd Precise polishing of hard metal surface
JPS63212464A (en) * 1987-02-26 1988-09-05 Nikko Rika Kk Polishing board

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001328055A (en) * 2000-05-22 2001-11-27 Ricoh Co Ltd Wire tool and its manufacturing method
JP2004358616A (en) * 2003-06-05 2004-12-24 Yasuhiro Tani Polishing tool, polishing device and method
JP2010070401A (en) * 2008-09-16 2010-04-02 Covalent Materials Corp Yag polycrystalline substrate and method for polishing the same
JP2015134402A (en) * 2013-12-17 2015-07-27 富士紡ホールディングス株式会社 Resin surface plate for wrapping, and wrapping method using the same
WO2017033280A1 (en) * 2015-08-25 2017-03-02 株式会社クリスタル光学 Grinding tool and grinding tool manufacturing method

Also Published As

Publication number Publication date
JPH0673807B2 (en) 1994-09-21

Similar Documents

Publication Publication Date Title
AU764547B2 (en) Abrasive tools for grinding electronic components
JPS61192480A (en) Synthetic grinding stone for soft metal
JP2643401B2 (en) Combination type polishing tool
JPH0360970A (en) Polishing surface plate
CN112917400A (en) High-performance composite material precision polishing and grinding abrasive cloth and preparation method thereof
JP2002355763A (en) Synthetic grinding wheel
JP2694705B2 (en) Synthetic grindstone for high-purity aluminum substrate polishing
JP2889124B2 (en) Polishing surface plate of lapping polishing device
JP2000024934A (en) Super abrasive grain grinding wheel for mirror finished surface
JPH0857768A (en) Vitrified bond grinding wheel for heavy grinding
JP2687241B2 (en) Diamond grindstone manufacturing method
JPS62246474A (en) Manufacture of super abrasive grain grindstone for mirror-like surface finishing
JP2593829B2 (en) Synthetic whetstone
JPS61182774A (en) Soft metal polishing wheel
JPH02185374A (en) Synthetic grindstone
WO2020012977A1 (en) Granular polishing material, polishing tool, and polishing method
JPH0360978A (en) Diamond grinding stone and manufacture thereof
JPS6354488A (en) Granulated abrasive for cutting wheel and grinding wheel, its manufacture, and grindstone made by using same
JPH0332575A (en) Grinding wheel with blow hole and manufacture thereof
JPS63185580A (en) Buffing material
JP2602073B2 (en) Grinding wheel with ultra-thin superabrasive layer and its manufacturing method
JP2018126813A (en) Surface plate for polishing
JP2002294221A (en) Method for coating abrasive grain
JPS646903B2 (en)
JPH02202525A (en) Synthetic grinding stone