JPS6060770A - Semiconductor memory device - Google Patents

Semiconductor memory device

Info

Publication number
JPS6060770A
JPS6060770A JP16965983A JP16965983A JPS6060770A JP S6060770 A JPS6060770 A JP S6060770A JP 16965983 A JP16965983 A JP 16965983A JP 16965983 A JP16965983 A JP 16965983A JP S6060770 A JPS6060770 A JP S6060770A
Authority
JP
Japan
Prior art keywords
silicon nitride
film
silicon oxide
nitride film
semiconductor memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16965983A
Other languages
Japanese (ja)
Other versions
JPH0259632B2 (en
Inventor
Kazuo Sato
和夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electronics Corp
Priority to JP16965983A priority Critical patent/JPS6060770A/en
Publication of JPS6060770A publication Critical patent/JPS6060770A/en
Publication of JPH0259632B2 publication Critical patent/JPH0259632B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To improve memory holding characteristics by constituting an insulating film for a gate by two or more of silicon nitride films having different hydrogen contents in an MONOS type FET. CONSTITUTION:A source region 2 and a drain region 3 are formed to a substrate 1, and a silicon oxide film 4 is shaped through thermal oxidation in an oxygen atmosphere. The silicon oxide film 4 at a position where a gate electrode is formed is shaped thinly at that time, and functions as a tunnelling medium. A first silicon nitride film 5 having many Si-H bonds is formed on the film 4 at a comparatively low temperature (700-900 deg.C), and a second silicon nitride film 6 having few Si-H bonds is laminated and shaped at a comparatively high temperature (900-1,000 deg.C). A silicon oxide film 7 is formed, and the gate electrode 8 is formed by evaporating aluminum under a vaccum.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はMONO3(金属−酸化シリコン膜−窒化シリ
コン膜−酸化シリコン膜−半導体)型の電界効果トラン
ジスタからなる半導体記憶装置における不揮発性能、特
に記憶保持特性のすぐれた高性能の半導体記憶装置の構
造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to non-volatile performance, particularly memory retention, in a semiconductor memory device comprising a MONO3 (metal-silicon oxide film-silicon nitride film-silicon oxide film-semiconductor) type field effect transistor. The present invention relates to the structure of a high-performance semiconductor memory device with excellent characteristics.

従来例の構成とその問題点 従来、半導体記憶装置の1つとしてトンネリング媒体と
なりうる薄い酸化シリコン膜上に他の絶縁膜、たとえば
窒化シリコン膜を成長させ、その上に金属電極を形成し
たMNOS構造の電界効果型半導体記憶装置が知られて
いる。近年、このMNO3型半導体記憶装置のプログラ
ム電圧の低電圧化を実現するために、窒化シリコン膜−
酸化シリコン脱より力るゲート絶縁膜のうち窒化シリコ
ン膜を薄膜化すると同時に、この窒化シリコン膜の表面
を熱酸化して薄い酸化シリコン膜を形成したもの、すな
わち、前記窒化シリコン膜上にも酸化シリコン膜を有す
るMONO3(金属−酸化シ1ノコン膜−窒化シリコン
膜−酸化シリコン膜−半導体)構造の半導体4記憶装置
が知られている。
Conventional Structure and Problems Conventionally, as a semiconductor memory device, an MNOS structure has been developed in which another insulating film, such as a silicon nitride film, is grown on a thin silicon oxide film that can be used as a tunneling medium, and a metal electrode is formed on top of the thin silicon oxide film. A field-effect semiconductor memory device is known. In recent years, silicon nitride films have been developed to reduce the programming voltage of MNO3 semiconductor memory devices.
The silicon nitride film of the gate insulating film to be removed from silicon oxide is thinned, and at the same time, the surface of this silicon nitride film is thermally oxidized to form a thin silicon oxide film, that is, the silicon nitride film is also oxidized. A semiconductor memory device having a MONO3 (metal-silicon oxide film-silicon nitride film-silicon oxide film-semiconductor) structure having a silicon film is known.

しかしながら、MONO3構造においては、窒化7リコ
ン膜を熱酸化する際に、通常900’C以上の高温を必
要とするので、この過程で窒化シリコンの膜質の変化が
起こり、メモリ特性、特に記憶保持特性の悪化をまねく
問題点を有していた。
However, in the MONO3 structure, when thermally oxidizing the silicon nitride film, a high temperature of 900'C or higher is usually required, so the quality of the silicon nitride film changes during this process, resulting in poor memory properties, especially memory retention properties. There were problems that led to deterioration of the situation.

MONO3型の半導体記憶装置は、従来のMNOS型の
半導体記憶装置と同様、窒化シリコン膜と半導体側の極
薄の酸化シリコン膜の界面、又は窒化/リコン膜バルク
中に分布するトラップに、半導体側から極薄の酸化シリ
コン膜を介して行なわれる電荷のトンネリング注入と、
その蓄積によりトランジスタのしきい値電圧(vt h
 )を変化させ、情報を記憶させるものであり、その記
憶保持特性の確保が最大の課題であり、窒化シリコン膜
上を熱酸化する場合の記憶保持特性の悪化は、実用上の
最大の問題となっていた。
MONO3 type semiconductor memory devices, like conventional MNOS type semiconductor memory devices, have traps distributed on the semiconductor side at the interface between a silicon nitride film and an ultra-thin silicon oxide film on the semiconductor side, or in the bulk of the nitride/licon film. tunneling injection of charge through an ultrathin silicon oxide film from
Due to its accumulation, the threshold voltage of the transistor (vt h
) to store information, and ensuring the memory retention properties is the biggest challenge, and the deterioration of the memory retention properties when thermally oxidizing a silicon nitride film is the biggest practical problem. It had become.

発明の目的 本発明の目的は、かかる問題に鑑み、MONO3型電界
トランジスタからなる半導体記憶装置における不揮発性
能、特に記憶保持特性のすぐれた高性能の半導体記憶装
置を提供することにある。
OBJECTS OF THE INVENTION In view of the above-mentioned problems, an object of the present invention is to provide a high-performance semiconductor memory device comprising MONO3 field transistors that has excellent non-volatile performance, particularly excellent memory retention characteristics.

発明の構成 上記目的を達成するために、本発明はゲート絶縁膜が、
化学組成比あるいは化学組成の異なる積層もしくは化学
組成変化の連続的な絶縁膜から構成されるMOIO8構
造の電界効果型半導体装置であり、これにより、記憶保
持特性の変化がほとんどなくなる。
Structure of the Invention In order to achieve the above object, the present invention provides that the gate insulating film is
This is a field-effect semiconductor device having a MOIO8 structure, which is composed of a continuous insulating film having a different chemical composition ratio or a laminated layer having a different chemical composition, or a continuous insulating film having a chemical composition change, thereby almost eliminating changes in memory retention characteristics.

実施例の説明 絶縁膜として、窒化シリコン膜を用いる場合、同窒化シ
リコン膜の熱酸化による記憶保持特性の悪化は、窒化シ
リコン膜中に含まれる水素、特に5i−H結合の含有量
に関係があり、5t−H結合の多い窒化シリコン膜は、
900’C以上の温度で熱酸化を行なうことによぢ、5
t−H結合が少なくなり不安定なトラップが附加増大さ
れ、記憶保持特性の悪化が起こる。他方、S i−H結
合の少ない窒化シリコン膜は、9oO°C以上の温度で
熱酸化を行なっても、前記不安定なトラップの生成がほ
とんどないので、記憶保持特性の変化が少ガい0さらへ
、検討によれば、窒化シリコン膜中の水素含有量は、7
ランとアンモニアを用いる気相成長の際の温度に強く依
存し、次のようなことが見い出された。
Description of Examples When a silicon nitride film is used as an insulating film, deterioration of memory retention characteristics due to thermal oxidation of the silicon nitride film is related to hydrogen contained in the silicon nitride film, particularly the content of 5i-H bonds. Yes, silicon nitride film with many 5t-H bonds is
By performing thermal oxidation at a temperature of 900'C or higher, 5
As the number of t-H bonds decreases, unstable traps are added and increased, resulting in deterioration of memory retention characteristics. On the other hand, even if a silicon nitride film with few Si-H bonds is thermally oxidized at a temperature of 90°C or higher, there is almost no generation of the unstable traps, so there is little change in memory retention characteristics. Furthermore, according to studies, the hydrogen content in the silicon nitride film is 7.
The following was found to be strongly dependent on the temperature during vapor phase growth using orchid and ammonia.

(1)成長温度が高いほど全水素含有量、および5t−
H結合が少なくなる傾向にある。
(1) The higher the growth temperature, the higher the total hydrogen content and 5t-
H-bonds tend to decrease.

(′;4 成長温度が900″C以上になると、5i−
H結合は、はとんど存在しなくなる。
(';4 When the growth temperature is 900''C or higher, 5i-
H-bonds almost never exist.

本発明は、上記の事実に基づきなされたもので薄い酸化
シリコン膜上に、比較的低温(700〜900″C)で
5i−H結合の多い第1層窒化シリコン膜を形成させ、
次いでこの第1層窒化シリコン膜上に高温(900〜1
000″C)で5i−H結合の少ない第2層窒化シリコ
ン膜を積層させた構成であり、これにより、第2層目の
成長時に、第1層目の窒化シリコン膜が高処理され、有
効なトラップを生じさせることができる。
The present invention was made based on the above fact, and includes forming a first layer silicon nitride film with many 5i-H bonds on a thin silicon oxide film at a relatively low temperature (700 to 900''C),
Next, a high temperature (900 to 1
It has a structure in which a second layer silicon nitride film with few 5i-H bonds is laminated at 000"C). As a result, during the growth of the second layer, the first layer silicon nitride film is highly processed, making it effective. can create a trap.

寸だ、かかる本発明のような構造にすることにより、M
ONO3の記憶特性として必要なしきい値電圧の窓の大
きさくΔvth )を適当に大きくとることができると
同時に、窒化シリコン膜形成後、窒化シリコン膜上を熱
酸化しても、記憶保持特性はほとんど悪化しないことが
見い出された。
By creating the structure of the present invention, M
The size of the threshold voltage window (Δvth) required for ONO3 memory characteristics can be made appropriately large, and at the same time, even if the silicon nitride film is thermally oxidized after the silicon nitride film is formed, the memory retention characteristics are almost unchanged. It was found that there was no deterioration.

次に本発明の具体的な実施例を図面を用いて説明する。Next, specific embodiments of the present invention will be described using the drawings.

第1図は本発明の一実施例であるMONO3型半導体記
憶装置の断面構造を示す図である6、図において1は半
導体基板、2および3はソース、ドレイン領域、4はト
ンネリング媒体となりうる薄い酸化・シリコン膜、5は
5i−H結合の多い窒化シリコン膜、6は5i−H結合
の少ない窒化シリコン膜、7は窒化シリコン膜6を酸化
して形成した酸化シリコン膜、8はゲート電極である。
FIG. 1 is a diagram showing a cross-sectional structure of a MONO3 type semiconductor memory device which is an embodiment of the present invention.6 In the figure, 1 is a semiconductor substrate, 2 and 3 are source and drain regions, and 4 is a thin film that can be used as a tunneling medium. Oxide/silicon film, 5 is a silicon nitride film with many 5i-H bonds, 6 is a silicon nitride film with few 5i-H bonds, 7 is a silicon oxide film formed by oxidizing the silicon nitride film 6, 8 is a gate electrode. be.

第1図において、トンネリング媒体となりうる酸化シリ
コン膜4は、公知のシリコン基板の酸素雰囲気中での熱
酸化により形成した○トンネリング効果を有効に利用す
るには、酸化シリコン膜4の厚さは10〜30人にする
必要がある。
In FIG. 1, a silicon oxide film 4, which can serve as a tunneling medium, is formed by thermal oxidation of a silicon substrate in an oxygen atmosphere as is known in the art. It is necessary to have ~30 people.

酸化シリコン膜4上に、5i−H結合の多い窒化シリコ
ン膜6と、5i−H結合の少ない窒化シリコン膜6を積
層させる方法として、例えば窒化シリコン膜を気相成長
法によって形成する際の成長温度を変えて作製する。本
実施例では、酸化シリコン膜4」二に7ラン(S I 
H4) とアンモニア(NH3)の化学反応に基づく気
相成長法により、NH3/5IH4−10o175o′
Cの条件で窒化シリコン膜5を約50人形成させる。さ
らに引き続き窒化シリ−y7膜5」二に、NH3/S 
i H4=1000 、950°Cの条件下の気相成長
法により窒化シリコン膜6を約200人形成させた。
As a method for laminating a silicon nitride film 6 with many 5i-H bonds and a silicon nitride film 6 with few 5i-H bonds on the silicon oxide film 4, for example, a growth method when a silicon nitride film is formed by vapor phase growth method is used. Manufactured by changing the temperature. In this example, a silicon oxide film 4'' second run (S I
NH3/5IH4-10o175o' by a vapor phase growth method based on the chemical reaction between H4) and ammonia (NH3).
About 50 people formed the silicon nitride film 5 under the conditions of C. Furthermore, the silicon nitride-y7 film 5'2, NH3/S
About 200 people formed the silicon nitride film 6 by vapor phase growth under conditions of i H4 = 1000 and 950°C.

次いで、窒化シリコン膜6を酸化する方法として、本実
施例では9o○°C1水蒸気雰囲気中で約60分熱酸化
し、約26人の酸化シリコン膜γを形成した。
Next, as a method of oxidizing the silicon nitride film 6, in this example, thermal oxidation was performed for about 60 minutes in a 9°C1 steam atmosphere to form about 26 silicon oxide films γ.

ゲート電極8としては、アルミニウム電極を通常の真空
蒸着法により1μm程度被着させ形成した。
The gate electrode 8 was formed by depositing an aluminum electrode to a thickness of about 1 μm using a normal vacuum evaporation method.

以上の如くして得られたMONO8型半導体記憶装置の
記憶保持特性の一例を第2図に示す。横軸は書き込み消
去直後のしきい値電圧、縦軸は蓄積された電荷の減衰率
(δVth/f?logt;Vth: Lきい値電圧、
t:時間)を示している。この図の直線の傾きが小さい
ほど記憶保持特性が優れていることを示している。第2
図に示すように、本発明の半導体記憶装置の記憶保持特
性(直線10)は、従来のAIゲートMNO3型半導体
記憶装置のうち最も良い記憶保持特性(直線11)と比
較しても、直線の傾きにほとんど差がなく、同程度の記
憶能力をもつものを作製することができた。¥t:た、
本発明の他の実施例として、厚さ方向で水素含有量を連
続的に変え、基板シリコン側で5t−H結合が多く、ゲ
ート電極側で5L−H結合の少ない窒化シリコノ膜を用
いたものでも同様の結果が得られる。
FIG. 2 shows an example of the memory retention characteristics of the MONO8 type semiconductor memory device obtained as described above. The horizontal axis is the threshold voltage immediately after writing and erasing, and the vertical axis is the decay rate of the accumulated charge (δVth/f?logt; Vth: L threshold voltage,
t: time). The smaller the slope of the straight line in this figure, the better the memory retention characteristics are. Second
As shown in the figure, the memory retention characteristic (straight line 10) of the semiconductor memory device of the present invention is even compared with the best memory retention characteristic (straight line 11) of the conventional AI gate MNO3 type semiconductor memory device. We were able to create a device with almost no difference in slope and the same level of memory ability. ¥t: Ta,
As another embodiment of the present invention, a silicon nitride film is used in which the hydrogen content is continuously changed in the thickness direction, and there are many 5t-H bonds on the silicon substrate side and few 5L-H bonds on the gate electrode side. But you can get similar results.

本実施例では、ゲート電極としてアルミニウム電極を用
いたAlゲート型のMONO3型半導体記憶装置を形成
する場合について説明を行なってきたが、ゲート電極と
して、ポリシリコン等の高融点電極材料を用いてよいこ
とは言うまでもない。
In this embodiment, a case has been described in which an Al gate type MONO3 semiconductor memory device is formed using an aluminum electrode as the gate electrode, but a high melting point electrode material such as polysilicon may be used as the gate electrode. Needless to say.

発明の効果 以上のように、本発明はMONO3型の電界トランジス
タからなる半導体記憶装置において、ゲートの絶縁膜を
水素含有量の異なる2以上の窒化シリコン膜により構成
させることにより、記憶保持特性の悪化のない優れた半
導体記憶装置を作製することができ、MONO3型半導
体記憶装置の高性能化に大きく寄与するものである。
Effects of the Invention As described above, the present invention solves the problem of deterioration of memory retention characteristics by configuring the gate insulating film of two or more silicon nitride films with different hydrogen contents in a semiconductor memory device consisting of a MONO3 type field transistor. This makes it possible to manufacture an excellent semiconductor memory device free of defects, and greatly contributes to improving the performance of MONO3 type semiconductor memory devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の一実施例を説明するための断面図
、第2図は本発明の詳細な説明するだめの特性図である
。 1・・・・・シリコン基板、2,3・・・山ソースおよ
びドレイン領域、4・・・・・・酸化シリコン膜、5.
6・・・・・窒化シリコン膜、7・・・・・・酸化シリ
コン膜、8・・・・・・ゲート電極。 代理人の氏名 弁理士 中 尾 敏 男 はが1名第 
1 図
FIG. 1 is a sectional view for explaining one embodiment of the device of the present invention, and FIG. 2 is a characteristic diagram for explaining the present invention in detail. 1... Silicon substrate, 2, 3... Mountain source and drain region, 4... Silicon oxide film, 5.
6... Silicon nitride film, 7... Silicon oxide film, 8... Gate electrode. Name of agent: Patent attorney Toshio Nakao Haga 1st person
1 figure

Claims (1)

【特許請求の範囲】 (1) MOIO3(金属−酸化シリコン−絶縁物−酸
化シリコン−半導体)構造の電界効果型半導体装置にお
いて、前記絶縁膜が化学組成比あるいは化学組成の異な
る積層もしくは化学組成変化の連続的な絶縁膜から構成
されることを特徴とする半導体記憶装置。 (勢 絶縁膜が水素含有量の異なる窒化シリコン膜から
構成されることを特徴とする特許請余鈍囲第1項記載の
半導体記憶装置〇 (3)絶縁膜が5i−H結合を含有する窒化シリコン膜
と、Si〜H結合をほとんど含有しない窒化シリコン膜
とから構成されることを特徴とする特許請gk囲第1項
記載の半導体記憶装置。
[Claims] (1) In a field effect semiconductor device having a MOIO3 (metal-silicon oxide-insulator-silicon oxide-semiconductor) structure, the insulating film has a chemical composition ratio, a stack of layers with different chemical compositions, or a chemical composition change. A semiconductor memory device comprising a continuous insulating film. (3) The semiconductor memory device according to claim 1, wherein the insulating film is composed of silicon nitride films having different hydrogen contents. The semiconductor memory device according to claim 1, characterized in that it is composed of a silicon film and a silicon nitride film containing almost no Si--H bonds.
JP16965983A 1983-09-14 1983-09-14 Semiconductor memory device Granted JPS6060770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16965983A JPS6060770A (en) 1983-09-14 1983-09-14 Semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16965983A JPS6060770A (en) 1983-09-14 1983-09-14 Semiconductor memory device

Publications (2)

Publication Number Publication Date
JPS6060770A true JPS6060770A (en) 1985-04-08
JPH0259632B2 JPH0259632B2 (en) 1990-12-13

Family

ID=15890551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16965983A Granted JPS6060770A (en) 1983-09-14 1983-09-14 Semiconductor memory device

Country Status (1)

Country Link
JP (1) JPS6060770A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6214474A (en) * 1985-07-12 1987-01-23 Agency Of Ind Science & Technol Semiconductor nonvolatile storage device
JPH069155U (en) * 1992-11-09 1994-02-04 工業技術院長 Semiconductor non-volatile memory device
WO2002035610A1 (en) * 2000-10-26 2002-05-02 Sony Corporation Nonvolatile semiconductor storage and method for manufacturing the same
US7372113B2 (en) 2002-05-29 2008-05-13 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
US7851296B2 (en) 2007-03-23 2010-12-14 Semiconductor Energy Laboratory Co., Ltd. Nonvolatile semiconductor memory device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6214474A (en) * 1985-07-12 1987-01-23 Agency Of Ind Science & Technol Semiconductor nonvolatile storage device
JPH069155U (en) * 1992-11-09 1994-02-04 工業技術院長 Semiconductor non-volatile memory device
WO2002035610A1 (en) * 2000-10-26 2002-05-02 Sony Corporation Nonvolatile semiconductor storage and method for manufacturing the same
US6906390B2 (en) 2000-10-26 2005-06-14 Sony Corporation Nonvolatile semiconductor storage and method for manufacturing the same
US7259433B2 (en) * 2000-10-26 2007-08-21 Sony Corporation Non-volatile semiconductor memory device and method for producing same
US7372113B2 (en) 2002-05-29 2008-05-13 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
US7851296B2 (en) 2007-03-23 2010-12-14 Semiconductor Energy Laboratory Co., Ltd. Nonvolatile semiconductor memory device
US8350313B2 (en) 2007-03-23 2013-01-08 Semiconductor Energy Laboratory Co., Ltd. Nonvolatile memory transistor

Also Published As

Publication number Publication date
JPH0259632B2 (en) 1990-12-13

Similar Documents

Publication Publication Date Title
US20220093773A1 (en) Oxide-Nitride-Oxide Stack Having Multiple Oxynitride Layers
US7709909B2 (en) Method for making a semiconductor device having a high-k gate dielectric
US8614124B2 (en) SONOS ONO stack scaling
US7479425B2 (en) Method for forming high-K charge storage device
TWI581432B (en) Memory device comprising sonos stack with split nitride memory layer and related manufacturing process
JP2005531136A5 (en)
JPH07326681A (en) Semiconductor storage device and its manufacture
US6653683B2 (en) Method and structure for an oxide layer overlying an oxidation-resistant layer
US6991990B1 (en) Method for forming a field effect transistor having a high-k gate dielectric
JPS6060770A (en) Semiconductor memory device
JPS5834978A (en) Semiconductor memory unit
JP2005294564A (en) Semiconductor device and method for manufacturing the same
JPH0259631B2 (en)
JPS61288471A (en) Manufacture of semiconductor memory device
JPH0422031B2 (en)
JPS6136976A (en) Manufacture of semiconductor memory device
JPH0334672B2 (en)
JPH05198821A (en) Method of manufacturing semiconductor nonvolatile storage device
JP2718931B2 (en) Method for manufacturing semiconductor memory device
US20060138501A1 (en) Semi-conductor dielectric component with a praseodymium oxide dielectric
JPS63205965A (en) Manufacture of nonvolatile storage device
JPS61290771A (en) Manufacture of semiconductor memory device
JPS61287274A (en) Manufacture of semicondutor memory device
JPH0195562A (en) Manufacture of nonvolatile storage device
JPH04176172A (en) Manufacture of non-volatile semiconductor memory device