JPH05198821A - Method of manufacturing semiconductor nonvolatile storage device - Google Patents

Method of manufacturing semiconductor nonvolatile storage device

Info

Publication number
JPH05198821A
JPH05198821A JP854392A JP854392A JPH05198821A JP H05198821 A JPH05198821 A JP H05198821A JP 854392 A JP854392 A JP 854392A JP 854392 A JP854392 A JP 854392A JP H05198821 A JPH05198821 A JP H05198821A
Authority
JP
Japan
Prior art keywords
film
silicon nitride
nitride film
silicon oxide
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP854392A
Other languages
Japanese (ja)
Inventor
Takako Maezawa
知加子 前澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP854392A priority Critical patent/JPH05198821A/en
Publication of JPH05198821A publication Critical patent/JPH05198821A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To provide a method of manufacturing a semiconductor nonvolatile storage device, which makes a reduction in the thickness of a silicon nitride film possible and makes a reduction in the thickness of a gate insulating film achieve, by forming a silicon nitride film which is high in denseness and is superior in oxidation resistance. CONSTITUTION:A lower silicon oxide film 2 is formed on a semiconductor substrate 1 and thereafter, a silicon nitride film 3 is formed using nitrogen containing raw gas, then, the film 3 is thermally oxidized and after an upper silicon oxide film 4 is formed, a polycrystalline silicon film 5 is formed, a patterning is performed and a gate electrode 6 is formed on the substrate 1 via a gate insulating film 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体不揮発性記憶装
置の製造方法に係り、特に、MONOS(Metal
Oxide Nitride Oxide Semic
onductor)型の半導体不揮発性記憶装置の絶縁
膜の薄膜化を達成した半導体不揮発性記憶装置の製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor nonvolatile memory device, and more particularly to a MONOS (Metal).
Oxide Nitride Oxide Semi
The present invention relates to a method for manufacturing a semiconductor non-volatile memory device that achieves thinning of an insulating film of a non-volatile semiconductor non-volatile memory device.

【0002】[0002]

【従来の技術】従来から、半導体記憶装置のプログラム
電圧の低電圧化を実現することが可能な不揮発性半導体
記憶装置として、半導体基板のチャネル領域上に、当該
半導体基板側から順に、下層シリコン酸化膜(トンネル
酸化膜)、シリコン窒化膜及び上層シリコン酸化膜(ト
ップ酸化膜)からなる三層構造を有するゲート絶縁膜上
に、ゲート電極を形成したMONOS型の半導体不揮発
性記憶装置が紹介され、使用されている。
2. Description of the Related Art Conventionally, as a non-volatile semiconductor memory device capable of realizing a lower program voltage of a semiconductor memory device, a lower silicon oxide layer is formed on a channel region of a semiconductor substrate in order from the semiconductor substrate side. A MONOS type semiconductor nonvolatile memory device in which a gate electrode is formed on a gate insulating film having a three-layer structure composed of a film (tunnel oxide film), a silicon nitride film, and an upper silicon oxide film (top oxide film) is introduced. It is used.

【0003】この三層構造を有するゲート絶縁膜は、半
導体基板上に、膜厚が2nm程度の薄い下層シリコン酸
化膜を形成した後、原料ガスとしてアンモニアガス及び
ジクロールシランガスを用いて、膜厚が7〜12nm程
度のシリコン窒化膜を順に形成した後、当該シリコン窒
化膜を熱酸化して、上層シリコン酸化膜を形成してい
る。そして、前記シリコン窒化膜は、主に、SiN、S
iN2 及びSi3 4 からなる混晶体で構成されてい
る。
This gate insulating film having a three-layer structure is formed by forming a thin lower silicon oxide film having a film thickness of about 2 nm on a semiconductor substrate and then using ammonia gas and dichlorosilane gas as source gases. After sequentially forming a silicon nitride film having a thickness of about 7 to 12 nm, the silicon nitride film is thermally oxidized to form an upper silicon oxide film. The silicon nitride film is mainly composed of SiN, S
It is composed of a mixed crystal composed of iN 2 and Si 3 N 4 .

【0004】前記MONOS型の半導体不揮発性記憶装
置は、ゲート絶縁膜を構成しているシリコン窒化膜と上
層シリコン酸化膜との界面に、電荷を蓄積させた時のし
きい値電圧が、電荷を蓄積させていない時のしきい値電
圧よりも高くなることを利用して情報を記憶している。
即ち、書き込み時は、ゲート電極に高電圧を印加する
が、この高電圧の印加により、膜厚が極めて薄い下層シ
リコン酸化膜を電子が直接トンネリングして、前記シリ
コン窒化膜中に注入され、当該シリコン窒化膜中、及び
該シリコン窒化膜と上層シリコン酸化膜との界面に存在
する捕獲準位に捕獲される。この捕獲により、トランジ
スタのしきい値電圧が変化し、通常、デプレッション型
からエンハンスメント型に特性が変化する。一方、消去
時は、ゲート電極に負電圧を印加するが、この負電圧の
印加により、前記捕獲準位に捕獲されていた電子が解放
され、トランジスタのしきい値電圧は、書き込み前の値
に戻り、エンハンスメント型から再びデプレッション型
に戻る。
In the MONOS type semiconductor nonvolatile memory device, the threshold voltage when electric charge is accumulated at the interface between the silicon nitride film forming the gate insulating film and the upper silicon oxide film Information is stored by utilizing the fact that it becomes higher than the threshold voltage when not being stored.
That is, at the time of writing, a high voltage is applied to the gate electrode, but by applying this high voltage, electrons are directly tunneled through the lower silicon oxide film having an extremely thin film thickness and injected into the silicon nitride film. It is trapped in the trap level existing in the silicon nitride film and at the interface between the silicon nitride film and the upper silicon oxide film. Due to this capture, the threshold voltage of the transistor changes, and the characteristics normally change from the depletion type to the enhancement type. On the other hand, at the time of erasing, a negative voltage is applied to the gate electrode. By applying this negative voltage, the electrons trapped in the trap level are released, and the threshold voltage of the transistor returns to the value before writing. Return to the depletion type from the enhancement type.

【0005】このように、書き込み時及び消去時の電荷
の移動は、前記下層シリコン酸化膜を通して行われ、前
記上層シリコン酸化膜は、ゲート電極から余分な正孔が
注入されることを阻止している。
As described above, charges are transferred during writing and erasing through the lower silicon oxide film, and the upper silicon oxide film blocks injection of extra holes from the gate electrode. There is.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前記上
層シリコン酸化膜は、シリコン窒化膜を熱酸化して形成
するため、当該シリコン窒化膜の膜厚は、当該上層シリ
コン酸化膜の形成に対応して減少する。このシリコン窒
化膜の膜厚の減少は、当該シリコン窒化膜の膜厚が厚い
場合は問題ないが、膜厚が、例えば、膜厚が4nm未満
のように薄い場合は、当該シリコン窒化膜を熱酸化して
上層シリコン窒化膜を形成する際に、下層シリコン酸化
膜に存在している酸素原子が、シリコン窒化膜を通過
(トンネリング)して、当該シリコン窒化膜の酸化が急
激に進み、下層シリコン酸化膜と上層シリコン酸化膜が
つながってしまうという問題があった。また、シリコン
窒化膜の耐酸化性が低下し、半導体基板が酸化され易く
なるという問題があった。このため、上層シリコン酸化
膜が形成された後のシリコン窒化膜の膜厚を、4nm以
上とする必要があった。従って、ゲート絶縁膜の薄膜化
に限界が生じ、プログラム電圧の低電圧化、プログラム
時間の高速化にも限界が生じるという問題があった。
However, since the upper silicon oxide film is formed by thermally oxidizing the silicon nitride film, the film thickness of the silicon nitride film corresponds to the formation of the upper silicon oxide film. Decrease. This reduction in the film thickness of the silicon nitride film is not a problem when the film thickness of the silicon nitride film is large, but when the film thickness is thin, for example, less than 4 nm, the silicon nitride film is not heated. When the upper silicon nitride film is oxidized to form the upper silicon nitride film, oxygen atoms existing in the lower silicon oxide film pass (tunnel) through the silicon nitride film, and the oxidation of the silicon nitride film rapidly progresses. There is a problem that the oxide film and the upper silicon oxide film are connected to each other. Further, there is a problem that the oxidation resistance of the silicon nitride film is lowered and the semiconductor substrate is easily oxidized. Therefore, the film thickness of the silicon nitride film after the upper layer silicon oxide film is formed needs to be 4 nm or more. Therefore, there has been a problem that the thinning of the gate insulating film has a limit, and the lowering of the program voltage and the shortening of the programming time also have a limit.

【0007】本発明は、このような問題を解決すること
を課題とするものであり、緻密性が高く耐酸化性に優れ
たシリコン窒化膜を形成することで、当該シリコン窒化
膜の薄膜化を可能にし、ゲート絶縁膜の薄膜化を達成し
た半導体不揮発性記憶装置の製造方法を提供することを
目的とする。
An object of the present invention is to solve such a problem, and it is possible to reduce the thickness of the silicon nitride film by forming a silicon nitride film having high density and excellent oxidation resistance. It is an object of the present invention to provide a method for manufacturing a semiconductor nonvolatile memory device which enables the thinning of a gate insulating film.

【0008】[0008]

【課題を解決するための手段】この目的を達成するため
に、本発明は、半導体基板上に、下層シリコン酸化膜、
シリコン窒化膜、上層シリコン酸化膜からなる三層構造
を有する絶縁膜を介してゲート電極を形成した半導体不
揮発性記憶装置の製造方法において、前記シリコン窒化
膜の形成は、窒素ガスを含む原料ガスを用いて行うこと
を特徴とする半導体不揮発性記憶装置の製造方法を提供
するものである。
To achieve this object, the present invention provides a lower silicon oxide film on a semiconductor substrate,
In the method of manufacturing a semiconductor nonvolatile memory device in which a gate electrode is formed through an insulating film having a three-layer structure composed of a silicon nitride film and an upper silicon oxide film, the silicon nitride film is formed by using a source gas containing nitrogen gas. The present invention provides a method for manufacturing a semiconductor nonvolatile memory device, which is characterized by being used.

【0009】[0009]

【作用】本発明によれば、窒素ガスを含む原料ガスを用
いてシリコン窒化膜を形成することで、緻密性が高く耐
酸化性に優れたシリコン窒化膜を得ることができる。こ
こで、下層シリコン酸化膜上に形成されるシリコン窒化
膜は、主に、SiN、SiN2 及びSi3 4 からなる
混晶体で構成されているが、SiN及びSiN2 は、S
iとNとの結合力が弱いため、 2SiN→2Si+N2 SiN2 →Si+N2 のように分解(解離)し易く、分解したSiが酸素と結
合して、シリコン窒化膜を酸化する。
According to the present invention, by forming a silicon nitride film using a source gas containing nitrogen gas, it is possible to obtain a silicon nitride film having high density and excellent oxidation resistance. Here, the silicon nitride film formed on the lower silicon oxide film is mainly composed of a mixed crystal of SiN, SiN 2 and Si 3 N 4, but SiN and SiN 2 are
Since the bonding force between i and N is weak, it easily decomposes (dissociates) like 2SiN → 2Si + N 2 SiN 2 → Si + N 2 , and the decomposed Si bonds with oxygen to oxidize the silicon nitride film.

【0010】一方、Si3 4 は、緻密性が高いと共
に、SiとN2 に分解しにくいため、Si3 4 を構成
するSiが酸素と結合しにくい。従って、Si3
4 は、耐酸化性に優れている。前記下層シリコン酸化膜
上にシリコン窒化膜を形成する際に、窒素ガスを導入す
ると、当該シリコン窒化膜の大部分を、緻密性が高く耐
酸化性に優れたSi3 4 により構成することができ
る。従って、前記シリコン窒化膜を薄膜化しても、従来
のように当該シリコン窒化膜が急激に酸化するのを抑制
でき、且つ、当該シリコン窒化膜に十分な耐酸化性能を
付与することができるため、当該シリコン窒化膜の膜厚
を従来より薄くすることが可能となる。
On the other hand, Si 3 N 4 has a high density and is hard to decompose into Si and N 2 , so that Si constituting Si 3 N 4 does not easily bond with oxygen. Therefore, Si 3 N
4 has excellent oxidation resistance. When nitrogen gas is introduced during the formation of the silicon nitride film on the lower silicon oxide film, most of the silicon nitride film can be made of Si 3 N 4 having high density and excellent oxidation resistance. it can. Therefore, even if the silicon nitride film is thinned, it is possible to suppress rapid oxidation of the silicon nitride film as in the conventional case, and since it is possible to impart sufficient oxidation resistance performance to the silicon nitride film, The silicon nitride film can be made thinner than before.

【0011】[0011]

【実施例】次に、本発明に係る実施例について、図面を
参照して説明する。図1ないし図4は、本発明の実施例
に係る半導体不揮発性記憶装置の製造工程を示す一部断
面図である。図1に示す工程では、半導体基板1上に、
酸化雰囲気で、膜厚が2nm程度の下層シリコン酸化膜
2を形成する。次に、650℃で、原料ガスとして、ア
ンモニア(NH3 )ガス=875cc/min、ジクロ
ールシラン(SiH2 12)ガス=175cc/mi
n、窒素(N2 )ガス=1050cc/minを用いた
LPCVD(Low Pressure Chemic
al Vapor Deposition)法により、
膜厚が4.3〜8nm程度のシリコン窒化膜3を形成す
る。このように、窒素ガスを含む原料ガスを用いてシリ
コン窒化膜3を形成することで、シリコン窒化膜3の大
部分を、緻密性が高く耐酸化性に優れたSi3 4 によ
り構成することができる。このため、後の工程で、当該
シリコン窒化膜3上に、上層シリコン酸化膜4を形成す
る際に、シリコン窒化膜3が急激に酸化することを抑制
できると共に、シリコン窒化膜3に、十分な耐酸化性能
を付与することができる。従って、シリコン窒化膜3の
膜厚を従来より薄くすることが可能となる。
Embodiments of the present invention will now be described with reference to the drawings. 1 to 4 are partial cross-sectional views showing a manufacturing process of a semiconductor nonvolatile memory device according to an embodiment of the present invention. In the process shown in FIG. 1, on the semiconductor substrate 1,
The lower silicon oxide film 2 having a thickness of about 2 nm is formed in an oxidizing atmosphere. Next, at 650 ° C., as raw material gases, ammonia (NH 3 ) gas = 875 cc / min, dichlorosilane (SiH 2 C 12 ) gas = 175 cc / mi
LPCVD (Low Pressure Chemical) using n and nitrogen (N 2 ) gas = 1050 cc / min
al Vapor Deposition) method,
A silicon nitride film 3 having a film thickness of about 4.3 to 8 nm is formed. As described above, by forming the silicon nitride film 3 by using the source gas containing nitrogen gas, most of the silicon nitride film 3 is made of Si 3 N 4 having high density and excellent oxidation resistance. You can Therefore, when the upper silicon oxide film 4 is formed on the silicon nitride film 3 in a later step, the silicon nitride film 3 can be prevented from being rapidly oxidized, and the silicon nitride film 3 can be sufficiently formed. Oxidation resistance can be imparted. Therefore, the film thickness of the silicon nitride film 3 can be made thinner than before.

【0012】次に、図2に示す工程では、図1に示す工
程で得たシリコン窒化膜3を、酸素(O2 )=3l/m
in、水素(H2 )=4l/min、900〜950℃
のウエット雰囲気中で熱酸化し、シリコン窒化膜3上
に、膜厚が2〜8nm程度の上層シリコン酸化膜4を形
成する。この時、シリコン窒化膜3の膜厚は、1.3〜
5nm減少し、上層シリコン酸化膜4形成後のシリコン
窒化膜3の膜厚は、3nmとなる。
Next, in the step shown in FIG. 2, the silicon nitride film 3 obtained in the step shown in FIG. 1 is treated with oxygen (O 2 ) = 3 l / m.
in, hydrogen (H 2 ) = 4 l / min, 900 to 950 ° C.
In the wet atmosphere, thermal oxidation is performed to form an upper silicon oxide film 4 having a film thickness of about 2 to 8 nm on the silicon nitride film 3. At this time, the thickness of the silicon nitride film 3 is 1.3 to
The thickness is reduced by 5 nm, and the film thickness of the silicon nitride film 3 after the formation of the upper silicon oxide film 4 becomes 3 nm.

【0013】次いで、図3に示す工程では、図2に示す
工程で得た上層シリコン酸化膜4上に、膜厚が300〜
400nm程度の多結晶シリコン膜5を形成する。次
に、図4に示す工程では、図3に示す工程で得た多結晶
シリコン膜5上に、フォトレジスト膜を形成し、これを
パターニングし、多結晶シリコン膜5、上層シリコン酸
化膜4、シリコン窒化膜3及び下層シリコン酸化膜2を
選択的に除去し、半導体基板1上に、下層シリコン酸化
膜2、シリコン窒化膜3及び上層シリコン酸化膜4から
なるゲート絶縁膜7を介して、多結晶シリコン膜5から
なるゲート電極6を形成した後、ソース8、ドレイン9
を形成する。
Next, in the step shown in FIG. 3, a film thickness of 300 to 300 is formed on the upper silicon oxide film 4 obtained in the step shown in FIG.
A polycrystalline silicon film 5 having a thickness of about 400 nm is formed. Next, in the step shown in FIG. 4, a photoresist film is formed on the polycrystalline silicon film 5 obtained in the step shown in FIG. 3 and is patterned, so that the polycrystalline silicon film 5, the upper silicon oxide film 4, The silicon nitride film 3 and the lower silicon oxide film 2 are selectively removed, and the multi-layer structure is formed on the semiconductor substrate 1 through the gate insulating film 7 including the lower silicon oxide film 2, the silicon nitride film 3 and the upper silicon oxide film 4. After forming the gate electrode 6 made of the crystalline silicon film 5, the source 8 and the drain 9 are formed.
To form.

【0014】その後、図4に示す工程で得た半導体基板
1に、所望の工程を行い、半導体不揮発性記憶装置(発
明品)を完成する。次に、比較として、以下に示す従来
法により、半導体不揮発性記憶装置を形成した。先ず、
半導体基板上に、前記実施例と同条件で、下層シリコン
酸化膜を形成した後、650℃で、原料ガスとして、ア
ンモニア(NH3 )ガス=875cc/min、ジクロ
ールシラン(SiH2 12)ガス=175cc/min
を用いたLPCVD法により、シリコン窒化膜を形成し
た後、前記実施例と同様の工程を行い、シリコン窒化膜
の膜厚が4nmの半導体不揮発性記憶装置(従来品)を
完成する。
Thereafter, the semiconductor substrate 1 obtained in the step shown in FIG. 4 is subjected to desired steps to complete a semiconductor nonvolatile memory device (invention product). Next, for comparison, a semiconductor nonvolatile memory device was formed by the conventional method shown below. First,
After forming a lower silicon oxide film on a semiconductor substrate under the same conditions as in the above embodiment, ammonia (NH 3 ) gas = 875 cc / min and dichlorosilane (SiH 2 C 12 ) as source gas at 650 ° C. Gas = 175 cc / min
After forming a silicon nitride film by the LPCVD method using, the semiconductor nonvolatile memory device (conventional product) with the silicon nitride film having a film thickness of 4 nm is completed by performing the same steps as in the above-mentioned embodiment.

【0015】次に、発明品のシリコン窒化膜(窒素ガス
を含む原料ガスを用いて形成)と、従来品のシリコン窒
化膜を同条件(図2に示す条件)で熱酸化した際の、シ
リコン窒化膜の膜減り状態を調査した。この結果を図5
に示す。図5から、発明品のシリコン窒化膜は、従来品
のシリコン窒化膜に比べ、熱酸化温度が900℃及び9
50℃共に、膜の減少が少ないことが確認された。これ
より、発明品のシリコン窒化膜は、従来品に比べ、緻密
性に優れていることが立証された。従って、発明品のシ
リコン窒化膜の膜厚を、従来品のシリコン窒化膜の膜厚
より薄くしても、十分な耐酸化性能が保持できる。
Next, the silicon nitride film of the invention (formed using a source gas containing nitrogen gas) and the silicon nitride film of the conventional product were thermally oxidized under the same conditions (conditions shown in FIG. 2). The film loss state of the nitride film was investigated. This result is shown in FIG.
Shown in. As shown in FIG. 5, the silicon nitride film of the invention has a thermal oxidation temperature of 900 ° C. and 9 ° C as compared with the silicon nitride film of the conventional product.
It was confirmed that the decrease of the film was small at both 50 ° C. From this, it was proved that the silicon nitride film of the invention product is superior in denseness to the conventional product. Therefore, even if the film thickness of the silicon nitride film of the invention product is smaller than the film thickness of the silicon nitride film of the conventional product, sufficient oxidation resistance can be maintained.

【0016】次に、発明品と従来品について、ゲート電
圧(Vg )としきい値電圧(Vth)との関係を調査し
た。発明品のゲート電圧(Vg )としきい値電圧
(Vth)との関係を図6に、従来品のゲート電圧
(Vg )としきい値電圧(Vth)との関係を図7に示
す。図6及び図7から、発明品は、従来品に比べ、同じ
ゲート電圧(Vg )で、より大きなしきい値電圧
(Vth)が得られることが確認された。これより、低電
圧で広いメモリウィンドウ幅を得ることができ、低電圧
化が達成できることが立証された。
Next, the relationship between the gate voltage (V g ) and the threshold voltage (V th ) of the invention product and the conventional product was investigated. Inventions gate voltage (V g) the relationship between the threshold voltage (V th) in FIG. 6 shows the gate voltage of the conventional products and (V g) the relationship between the threshold voltage (V th) in FIG. 7 . From FIGS. 6 and 7, it was confirmed that the invention product can obtain a larger threshold voltage (V th ) at the same gate voltage (V g ) as compared with the conventional product. From this, it was proved that a wide memory window width can be obtained at a low voltage, and a low voltage can be achieved.

【0017】次に、発明品と従来品の書き込み及び消去
に必要な時間を調査した。この結果を図8に示す。図8
より、発明品は、従来品に比べ、書き込み、消去共に、
短時間で行えることが確認された。これより、発明品
は、従来品に比べ、高速化が達成できることが立証され
た。
Next, the time required for writing and erasing the invention product and the conventional product was investigated. The result is shown in FIG. Figure 8
Therefore, compared to the conventional product, the invented product is
It was confirmed that it could be done in a short time. From this, it was proved that the invention product can achieve higher speed than the conventional product.

【0018】[0018]

【発明の効果】以上説明したように、本発明によれば、
窒素ガスを含む原料ガスを用いてシリコン窒化膜を形成
することで、当該シリコン窒化膜の大部分を、緻密性が
高く耐酸化性に優れたSi3 4 により構成することが
できる。従って、前記シリコン窒化膜を従来より薄膜化
しても、当該シリコン窒化膜が急激に酸化することを抑
制できる。また、前記シリコン窒化膜に十分な耐酸化性
能を付与することができる。これより、当該シリコン窒
化膜の膜厚を従来より薄くすることが可能となる結果、
半導体不揮発性記憶装置の書き込み及び消去の低電圧
化、高速化を達成することができる。
As described above, according to the present invention,
By forming a silicon nitride film using a source gas containing nitrogen gas, most of the silicon nitride film can be made of Si 3 N 4 having high density and excellent oxidation resistance. Therefore, even if the silicon nitride film is made thinner than before, it is possible to prevent the silicon nitride film from being rapidly oxidized. Moreover, sufficient oxidation resistance can be imparted to the silicon nitride film. As a result, the silicon nitride film can be made thinner than before,
It is possible to achieve lower voltage and higher speed of writing and erasing of the semiconductor nonvolatile memory device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る半導体不揮発性記憶装置
の製造工程を示す一部断面図である。
FIG. 1 is a partial cross-sectional view showing a manufacturing process of a semiconductor nonvolatile memory device according to an example of the present invention.

【図2】本発明の実施例に係る半導体不揮発性記憶装置
の製造工程を示す一部断面図である。
FIG. 2 is a partial cross-sectional view showing the manufacturing process of the semiconductor nonvolatile memory device according to the example of the invention.

【図3】本発明の実施例に係る半導体不揮発性記憶装置
の製造工程を示す一部断面図である。
FIG. 3 is a partial cross-sectional view showing the manufacturing process of the semiconductor nonvolatile memory device according to the example of the invention.

【図4】本発明の実施例に係る半導体不揮発性記憶装置
の製造工程を示す一部断面図である。
FIG. 4 is a partial cross-sectional view showing the manufacturing process of the semiconductor nonvolatile memory device according to the example of the invention.

【図5】発明品のシリコン窒化膜と従来品のシリコン窒
化膜を熱酸化した際の、シリコン窒化膜の膜減り状態を
示す図である。
FIG. 5 is a diagram showing a state in which the silicon nitride film of the invention product and the silicon nitride film of the conventional product are thermally oxidized and the film thickness of the silicon nitride film is reduced.

【図6】発明品のゲート電圧としきい値電圧との関係を
示す図である。
FIG. 6 is a diagram showing a relationship between a gate voltage and a threshold voltage of the invention product.

【図7】従来品のゲート電圧としきい値電圧との関係を
示す図である。
FIG. 7 is a diagram showing a relationship between a gate voltage and a threshold voltage of a conventional product.

【図8】発明品と従来品の書き込み時間及び消去時間を
示す図である。
FIG. 8 is a diagram showing writing time and erasing time of an invention product and a conventional product.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 下層シリコン酸化膜 3 シリコン窒化膜 4 上層シリコン酸化膜 5 多結晶シリコン膜 6 ゲート電極 7 ゲート絶縁膜 8 ソース 9 ドレイン 1 semiconductor substrate 2 lower silicon oxide film 3 silicon nitride film 4 upper silicon oxide film 5 polycrystalline silicon film 6 gate electrode 7 gate insulating film 8 source 9 drain

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/318 B 8518−4M ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01L 21/318 B 8518-4M

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に、下層シリコン酸化膜、
シリコン窒化膜、上層シリコン酸化膜からなる三層構造
を有する絶縁膜を介してゲート電極を形成した半導体不
揮発性記憶装置の製造方法において、 前記シリコン窒化膜の形成は、窒素ガスを含む原料ガス
を用いて行うことを特徴とする半導体不揮発性記憶装置
の製造方法。
1. A lower silicon oxide film on a semiconductor substrate,
In the method for manufacturing a semiconductor nonvolatile memory device in which a gate electrode is formed through an insulating film having a three-layer structure composed of a silicon nitride film and an upper silicon oxide film, the silicon nitride film is formed by using a source gas containing nitrogen gas. A method for manufacturing a semiconductor nonvolatile memory device, which is performed using the method.
JP854392A 1992-01-21 1992-01-21 Method of manufacturing semiconductor nonvolatile storage device Pending JPH05198821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP854392A JPH05198821A (en) 1992-01-21 1992-01-21 Method of manufacturing semiconductor nonvolatile storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP854392A JPH05198821A (en) 1992-01-21 1992-01-21 Method of manufacturing semiconductor nonvolatile storage device

Publications (1)

Publication Number Publication Date
JPH05198821A true JPH05198821A (en) 1993-08-06

Family

ID=11696062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP854392A Pending JPH05198821A (en) 1992-01-21 1992-01-21 Method of manufacturing semiconductor nonvolatile storage device

Country Status (1)

Country Link
JP (1) JPH05198821A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100415094B1 (en) * 1996-11-27 2004-03-30 주식회사 하이닉스반도체 Method for manufacturing semiconductor device
JP2008227535A (en) * 2001-03-17 2008-09-25 Samsung Electronics Co Ltd Sonos flash memory device and its manufacturing method
US7855117B2 (en) 2006-09-07 2010-12-21 Samsung Electronics Co., Ltd. Method of forming a thin layer and method of manufacturing a semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100415094B1 (en) * 1996-11-27 2004-03-30 주식회사 하이닉스반도체 Method for manufacturing semiconductor device
JP2008227535A (en) * 2001-03-17 2008-09-25 Samsung Electronics Co Ltd Sonos flash memory device and its manufacturing method
US7855117B2 (en) 2006-09-07 2010-12-21 Samsung Electronics Co., Ltd. Method of forming a thin layer and method of manufacturing a semiconductor device

Similar Documents

Publication Publication Date Title
US7060594B2 (en) Memory device and method of manufacturing including deuterated oxynitride charge trapping structure
US7115469B1 (en) Integrated ONO processing for semiconductor devices using in-situ steam generation (ISSG) process
JP2551595B2 (en) Semiconductor non-volatile memory device
JP3312102B2 (en) Manufacturing method of nonvolatile semiconductor memory device
US6653683B2 (en) Method and structure for an oxide layer overlying an oxidation-resistant layer
TW201349505A (en) SONOS stack with split nitride memory layer
JP2002261175A (en) Nonvolatile semiconductor memory and its manufacturing method
JPH05145078A (en) Semiconductor nonvolatile storage element and manufacture thereof
JPH05198821A (en) Method of manufacturing semiconductor nonvolatile storage device
JPH05129630A (en) Production of nonvolatile semiconductor storage device
JPH10209305A (en) Nonvolatile semiconductor storage device
JPH07193059A (en) Manufacture of semiconductor device
JP3272007B2 (en) Method for manufacturing charge trapping film
JPS603159A (en) Manufacture of nonvolatile memory device
JPH05343694A (en) Manufacture of nonvolatile semiconductor storage element
JPH09213820A (en) Manufacture of non-volatile semiconductor memory device
JPS6060770A (en) Semiconductor memory device
KR20080010514A (en) Method of forming a dielectric layer structure and method of forming a non-volatile memory device using the same
JPH06296029A (en) Semiconductor nonvolatile storage element and manufacture thereof
JP2718931B2 (en) Method for manufacturing semiconductor memory device
JPH0422031B2 (en)
JP3239823B2 (en) Thin film formation method
JPH0259631B2 (en)
JPS61288471A (en) Manufacture of semiconductor memory device
JPH0665232B2 (en) Method of manufacturing semiconductor memory device