JPS61287274A - Manufacture of semicondutor memory device - Google Patents

Manufacture of semicondutor memory device

Info

Publication number
JPS61287274A
JPS61287274A JP60130145A JP13014585A JPS61287274A JP S61287274 A JPS61287274 A JP S61287274A JP 60130145 A JP60130145 A JP 60130145A JP 13014585 A JP13014585 A JP 13014585A JP S61287274 A JPS61287274 A JP S61287274A
Authority
JP
Japan
Prior art keywords
film
nitride film
forming
memory device
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60130145A
Other languages
Japanese (ja)
Inventor
Takeshi Fukutomi
福富 毅
Kazuo Sato
和夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP60130145A priority Critical patent/JPS61287274A/en
Publication of JPS61287274A publication Critical patent/JPS61287274A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates

Landscapes

  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To prevent a memory retaining characteristic from deteriorating by forming an Si oxide film on an Si nitride film, and then forming the second Si nitride film by a vapor-phase growing method based on a plasma exciting reaction of Si compound and ammonia. CONSTITUTION:Source and drain regions 2, 3 are formed on an N-type Si substrate 1, an Si dioxide film 4 is formed, and a hole is then opened. Then, an extremely thin Si dioxide film 5 of a gate insulating film is formed in the hole. Thereafter, after the first Si nitride film 6 is formed on the film 5, the film 6 is thermally oxidized to form an Si dioxide film 7. Subsequently, after a contacting hole is formed, a gate electrode 8 is formed. Thereafter, a plasma Si nitride film 9 is formed by a plasma vapor-phase growing method of silane gas and ammonia gas. Then, a protective film 10 is formed to manufacture a P-channel aluminum gate MONOS type semiconductor memory device. A semiconductor memory device of excellent memory retaining characteristic with less memory characteristic deterioration can be obtained by the above manufacturing method.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、MONO8(金属−酸化シリコン膜−窒化シ
リコン膜−酸化シリコン膜−半導体)型の電界効果トラ
ンジスタからなる半導体記憶装置における不揮発性能特
に記憶保持特性の優れた高性能の半導体記憶装置の製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to non-volatile performance, particularly memory retention, in a semiconductor memory device comprising a MONO8 (metal-silicon oxide film-silicon nitride film-silicon oxide film-semiconductor) type field effect transistor. The present invention relates to a method of manufacturing a high performance semiconductor memory device with excellent characteristics.

従来の技術 従来より半導体記憶装置の一つとして、薄い二酸化シリ
コン膜上に窒化シリコン膜を成長させ、その上に金属電
極を形成したMNOS(金属−窒化シリコン膜−酸化シ
リコン膜−半導体)構造の不揮発性記憶装置がよく知ら
れている。また、近年には、このMNO3型半導体記憶
装置のプログラム電圧の低電圧化を実現するために、ゲ
ート絶縁膜のうち窒化シリコン膜を薄膜化すると同時に
窒化シリコン膜上の熱酸化を行い、窒化シリコン膜上に
酸化シリコン膜を形成させたMONO8(金属−酸化シ
リコン膜−窒化シリコン膜−酸化シリコン膜−半導体)
構造の半導体記憶装置が実用化されている。
BACKGROUND OF THE INVENTION Conventionally, as a type of semiconductor memory device, a MNOS (metal-silicon nitride film-silicon oxide film-semiconductor) structure, in which a silicon nitride film is grown on a thin silicon dioxide film and a metal electrode is formed on top of the silicon nitride film, has been used. Non-volatile storage devices are well known. In recent years, in order to reduce the programming voltage of this MNO3 type semiconductor memory device, the silicon nitride film of the gate insulating film is thinned and at the same time thermal oxidation is performed on the silicon nitride film. MONO8 with a silicon oxide film formed on the film (metal - silicon oxide film - silicon nitride film - silicon oxide film - semiconductor)
A semiconductor memory device with this structure has been put into practical use.

発明が解決しようとする問題点 上記MONO9構増の半導体記憶装置の製造方法におい
て、窒化シリコン膜を熱酸化して酸化シリコンを形成す
る際に、通常、900℃以上の高温を必要とする。その
ため窒化シリコン膜の膜質変化が起り、メモリ特性、特
に記憶保持特性の悪化をまねくといった問題点を有して
いた。
Problems to be Solved by the Invention In the manufacturing method of the MONO9 semiconductor memory device described above, a high temperature of 900° C. or higher is usually required when thermally oxidizing a silicon nitride film to form silicon oxide. This causes a change in the film quality of the silicon nitride film, resulting in a problem of deterioration of memory characteristics, particularly memory retention characteristics.

N0NO8型の半導体記憶装置は、従来のMNOS型の
半導体記憶装置と同様、窒化シリコン膜と極薄の酸化シ
リコン膜の界面、または窒化シリコン膜バルク中に分布
するトラップに半導体側から極薄の酸化シリコン膜を介
して行われる電荷のトンネリング注入と、その蓄積によ
り、トランジスタのしきい値電圧(vth)を変化させ
、情報を記憶させるものである。従って、その記憶保持
特性の確保が最大の課題であり、窒化シリコン膜上を熱
酸化する場合の記憶保持特性の悪化は実用上の最大の問
題となっている。
N0NO8 type semiconductor memory devices are similar to conventional MNOS type semiconductor memory devices in that ultra-thin oxide film is applied from the semiconductor side to traps distributed at the interface between a silicon nitride film and an ultra-thin silicon oxide film, or in the bulk of the silicon nitride film. The tunneling injection of charge through the silicon film and its accumulation change the threshold voltage (vth) of the transistor, thereby storing information. Therefore, ensuring the memory retention characteristics is the biggest challenge, and the deterioration of the memory retention characteristics when thermally oxidizing the silicon nitride film is the biggest practical problem.

本発明の目的は、かかる問題に鑑みてなされたもので、
MONO3型電界効果トランジスタからなる半導体記憶
装置における不揮発性能、特に記憶保持特性の優れた高
性能の半導体記憶装置を実現するだめの製造方法を提供
するものである。
The purpose of the present invention was made in view of such problems, and
The present invention provides a manufacturing method for realizing a high-performance semiconductor memory device comprising MONO3 type field effect transistors, which has excellent non-volatile performance, particularly excellent memory retention characteristics.

問題点を解決するための手段 上記目的を達成するために、本発明は窒化シリコン膜上
に第2の酸化シリコン膜を形成した後に、シランなどの
シリコン化合物とアンモニアとのプラズマ励起反応に基
づく気相成長法により第2の窒化シリコン膜を形成する
ことを特徴とするものである。
Means for Solving the Problems In order to achieve the above object, the present invention provides a method of forming a second silicon oxide film on a silicon nitride film, and then forming a gas based on a plasma-excited reaction between a silicon compound such as silane and ammonia. This method is characterized in that the second silicon nitride film is formed by a phase growth method.

作  用 実験によりゲート絶縁膜である窒化シリコン膜形成後の
高温熱処理による記憶保持特性の悪化は、窒化シリコン
膜の形成条件に強く依存し、窒化シリコン膜形成後の高
温熱処理が、窒化シリコン膜成長温度以上の熱処理にな
ると記憶保持特性の悪化がおこることが明らかとなった
Functional experiments have shown that the deterioration of memory retention characteristics caused by high-temperature heat treatment after forming a silicon nitride film, which is a gate insulating film, strongly depends on the formation conditions of the silicon nitride film. It has become clear that memory retention characteristics deteriorate when heat treatment is performed at a temperature higher than that temperature.

また、ゲート絶縁膜である第2の酸化シリコン膜形成後
に、シランガスなどのシリコン化合物とアンモニアガス
とのプラズマ励起反応に基づく気相成長法により第2の
窒化シリコン膜を形成することによりメモリ特性の悪化
の少ない優れた記憶保持特性を得ることができることを
見い出し、さらに、第2の窒化シリコン膜を形成した後
に、形成温度以上の温度で熱処理を行うことにより、さ
らに効果のあることも見い出された。
In addition, after forming the second silicon oxide film, which is the gate insulating film, a second silicon nitride film is formed using a vapor phase growth method based on a plasma-excited reaction between a silicon compound such as silane gas and ammonia gas, thereby improving memory characteristics. It was discovered that excellent memory retention characteristics with little deterioration could be obtained, and furthermore, it was discovered that further effects can be obtained by performing heat treatment at a temperature higher than the formation temperature after forming the second silicon nitride film. .

実施例 以下、具体的な実施例を図面を用いて説明する。Example Hereinafter, specific examples will be described using the drawings.

第1図a−Cは、本発明の製造方法の一実施例を工程順
に半導体装置の断面構造で示す図である。
FIGS. 1A to 1C are diagrams showing a cross-sectional structure of a semiconductor device in order of steps in an embodiment of the manufacturing method of the present invention.

第1図dにおいて、N型シリコン基板1上に、熱酸化技
術及び不純物選択拡散技術を用いてソース領域2、ドレ
イン領域3を形成し、熱酸化技術を用い、二酸化シリコ
ン膜4を形成した後、所定の部分をリングラフィ技術及
びエツチング技術を用い開孔する。次いで、この開孔部
分にゲート絶縁膜である極薄の二酸化シリコン膜5を形
成する。
In FIG. 1d, a source region 2 and a drain region 3 are formed on an N-type silicon substrate 1 using a thermal oxidation technique and an impurity selective diffusion technique, and a silicon dioxide film 4 is formed using a thermal oxidation technique. , holes are formed in predetermined portions using phosphorography and etching techniques. Next, an extremely thin silicon dioxide film 5 serving as a gate insulating film is formed in this opening.

本実施例では、トンネリング媒体となる極薄の二酸化シ
リコン膜厚を20人程度とした。
In this example, the thickness of the extremely thin silicon dioxide film serving as the tunneling medium was set to about 20 people.

次いで第1図すに示すように、前記二酸化シリコン膜6
上に気相成長技術を用いて第1の窒化シリコン膜6を形
成した後、同窒化シリコン膜6を熱酸化し、二酸化シリ
コン膜7を形成する。本実施例では、窒化シリコン膜6
の形成をシラン(SiH)  ガスとアンモニア(NH
3)ガスを化学反応を利用した減圧気相成長法により、
SOO℃NH3/51H4=10の条件下で施し、膜厚
を約250人としだ。
Next, as shown in FIG. 1, the silicon dioxide film 6 is
After a first silicon nitride film 6 is formed thereon using a vapor growth technique, the silicon nitride film 6 is thermally oxidized to form a silicon dioxide film 7. In this embodiment, the silicon nitride film 6
The formation of silane (SiH) gas and ammonia (NH
3) Using a low-pressure vapor phase growth method that utilizes chemical reactions with gas,
It was applied under the conditions of SOO℃NH3/51H4=10, and the film thickness was about 250 mm.

二酸化シリコン膜7は、900C、水蒸気雰囲気中で酸
化し、膜厚を約20人とした。
The silicon dioxide film 7 was oxidized at 900C in a water vapor atmosphere and had a thickness of about 20 layers.

次いでリソグラフィ技術を用い、コンタクト孔を形成し
た後、第1図Cに示すように、金属電極であるアルミニ
ウム膜を通常のスパッタリング法により被着させ、リン
グラフィ技術を用いてゲート電極8を形成する。その後
、シランガスとアンモニアガスのプラズマ励起反応に基
づくプラズマ気相成長法により、プラズマ窒化シリコン
膜9を形成する。本実施例では、プラズマ窒化シリコン
膜9の形成は、RF出力100W、ガス圧力0.5To
rr、温度30o℃、ガス流量比NH3/5iH4=2
の条件下で約1000人形成した。
Next, after forming a contact hole using lithography technology, as shown in FIG. . Thereafter, a plasma silicon nitride film 9 is formed by plasma vapor phase epitaxy based on a plasma-excited reaction between silane gas and ammonia gas. In this example, the plasma silicon nitride film 9 was formed using an RF output of 100 W and a gas pressure of 0.5 To.
rr, temperature 30oC, gas flow ratio NH3/5iH4=2
Approximately 1,000 people were formed under these conditions.

次いで保護膜10を形成することで第1図Cに示に示す
PチャネルA2ゲートMONO8型半導体記憶装置を作
製することができる。
Next, by forming the protective film 10, the P channel A2 gate MONO8 type semiconductor memory device shown in FIG. 1C can be manufactured.

以上の方法で得られた半導体装置の構造での記憶保持特
性の一例を第2図に示す。横軸は書き込み消去直後のし
きい値電圧、縦軸はその時に蓄積された電極の減衰率(
aVth/& log t ;vth; Lきい値電圧
、t:時間)を示している。この図の直線の傾きが小さ
いほど記憶保持特性が優れていることを示している。本
発明の製造方法により作製された半導体記憶装置の記憶
保持特性(直線11)は、プラズマ窒化シリコン膜を成
長しない場合つまり、従来例特性(直線12)に比べて
傾きが小さく、優れた記憶保持特性を有していることが
わかる。
FIG. 2 shows an example of the memory retention characteristics of the semiconductor device structure obtained by the above method. The horizontal axis is the threshold voltage immediately after writing and erasing, and the vertical axis is the electrode attenuation rate accumulated at that time (
aVth/&log t;vth; L threshold voltage, t: time). The smaller the slope of the straight line in this figure, the better the memory retention characteristics are. The memory retention characteristics (straight line 11) of the semiconductor memory device manufactured by the manufacturing method of the present invention have a smaller slope than the conventional characteristics (straight line 12) when the plasma silicon nitride film is not grown, and exhibit excellent memory retention. It can be seen that it has certain characteristics.

また、第3図に第2の窒化シリコン膜を成長した後の熱
処理温度の効果を示す。第3図に示すよって、熱処理温
度が第2の窒化シリコン膜成長温度(本実施例の場合3
00℃)以上であるとさらに効果のあることが判明した
Further, FIG. 3 shows the effect of the heat treatment temperature after growing the second silicon nitride film. As shown in FIG. 3, the heat treatment temperature is the second silicon nitride film growth temperature (3 in this example).
00°C) or higher was found to be even more effective.

本実施例では、N型シリコン基板を用い、Pチャネル型
半導体記憶装置を作製する場合について説明したが、N
チャネル型MONOSでも使用でき、またゲート電極と
して多結晶シリコン膜等の高融点金属を用いた場合にも
使用できることは言うまでもない。また、第2の窒化シ
リコン膜を保護膜として使用することも可能である。
In this example, the case where a P channel type semiconductor memory device was manufactured using an N type silicon substrate was explained.
Needless to say, it can be used in a channel type MONOS, and it can also be used in a case where a high melting point metal such as a polycrystalline silicon film is used as the gate electrode. It is also possible to use the second silicon nitride film as a protective film.

発明の効果 以上のように、本発明によると、MONO3型半導体記
憶装置の製造方法において、窒化シリコン膜上に二酸化
シリコン膜を形成する際に実施した熱処理に対し、シラ
ンとアンモニアによるプラズマ励起反応に基づく気相成
長によ9第2の窒化シリコン膜を施し、さらに、その成
長温度以上の温度で熱処理を行うことで、記憶保持特性
の悪化の少ない非常に優れた半導体記憶装置を作製する
ことができ、MONO3型半導体記憶装置の高性能化に
大きく寄与するものである。
Effects of the Invention As described above, according to the present invention, in the manufacturing method of a MONO3 type semiconductor memory device, the heat treatment performed when forming a silicon dioxide film on a silicon nitride film is caused by a plasma excitation reaction caused by silane and ammonia. By applying the 9 second silicon nitride film by vapor phase growth based on the method, and further performing heat treatment at a temperature higher than the growth temperature, it is possible to fabricate an extremely excellent semiconductor memory device with little deterioration in memory retention characteristics. This greatly contributes to improving the performance of MONO3 type semiconductor memory devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の工程順断面図、第2図及び
第3図は本発明の実施例で得られた装置および従来装置
の特性図である。 1・・・・・・シリコン基板、2,3・・・・・・ソー
ス、トレイン領域、4,5,7・・・・・・酸化シリコ
ン膜、6゜9・・・・・・窒化シリコン膜、8・・・・
・・アルミニウム電極、10・・・・・・保護膜。
FIG. 1 is a step-by-step sectional view of an embodiment of the present invention, and FIGS. 2 and 3 are characteristic diagrams of a device obtained in the embodiment of the present invention and a conventional device. 1...Silicon substrate, 2,3...Source, train region, 4,5,7...Silicon oxide film, 6゜9...Silicon nitride Membrane, 8...
...Aluminum electrode, 10...Protective film.

Claims (1)

【特許請求の範囲】[Claims] 一導電型半導体基板面に、電子又は正孔のトンネリング
媒体となりうる極薄の第1の二酸化シリコン膜を形成す
る工程と、前記二酸化シリコン膜上に第1の窒化シリコ
ン膜を形成する工程と、前記第1の窒化シリコン膜上に
第2の酸化シリコン膜を形成する工程と、前記第2の酸
化シリコン膜上にゲート電極を被着する工程とを少なく
とも有する半導体記憶装置の製造方法において、上記第
2の酸化シリコン膜を形成した後にシランなどのシリコ
ン化合物とアンモニアとのプラズマ励起反応に基づく気
相成長法により第2の窒化シリコン膜を形成する工程を
含むことを特徴とする半導体記憶装置の製造方法。
a step of forming an ultrathin first silicon dioxide film that can serve as a tunneling medium for electrons or holes on the surface of a semiconductor substrate of one conductivity type; a step of forming a first silicon nitride film on the silicon dioxide film; In the method of manufacturing a semiconductor memory device, the method includes at least the steps of forming a second silicon oxide film on the first silicon nitride film and depositing a gate electrode on the second silicon oxide film. A semiconductor memory device comprising the step of forming a second silicon nitride film by a vapor phase growth method based on a plasma-excited reaction between a silicon compound such as silane and ammonia after forming a second silicon oxide film. Production method.
JP60130145A 1985-06-14 1985-06-14 Manufacture of semicondutor memory device Pending JPS61287274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60130145A JPS61287274A (en) 1985-06-14 1985-06-14 Manufacture of semicondutor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60130145A JPS61287274A (en) 1985-06-14 1985-06-14 Manufacture of semicondutor memory device

Publications (1)

Publication Number Publication Date
JPS61287274A true JPS61287274A (en) 1986-12-17

Family

ID=15027045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60130145A Pending JPS61287274A (en) 1985-06-14 1985-06-14 Manufacture of semicondutor memory device

Country Status (1)

Country Link
JP (1) JPS61287274A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6442866A (en) * 1987-08-10 1989-02-15 Nippon Denso Co Manufacture of nonvolatile semiconductor storage device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6442866A (en) * 1987-08-10 1989-02-15 Nippon Denso Co Manufacture of nonvolatile semiconductor storage device

Similar Documents

Publication Publication Date Title
US11784243B2 (en) Oxide-nitride-oxide stack having multiple oxynitride layers
US12009401B2 (en) Memory transistor with multiple charge storing layers and a high work function gate electrode
CN111180525B (en) Oxide nitride oxide stack with multiple oxynitride layers
US6727142B1 (en) Orientation independent oxidation of nitrided silicon
JPS61287274A (en) Manufacture of semicondutor memory device
JPS603159A (en) Manufacture of nonvolatile memory device
JPH0888286A (en) Manufacture of semiconductor memory device
JPS61290771A (en) Manufacture of semiconductor memory device
JPS61288471A (en) Manufacture of semiconductor memory device
JP2718931B2 (en) Method for manufacturing semiconductor memory device
JPH0341775A (en) Manufacture of semiconductor memory
JPH0422031B2 (en)
JPS6136976A (en) Manufacture of semiconductor memory device
JPH0259631B2 (en)
JPH01264268A (en) Manufacture of nonvolatile memory device
JPS61263281A (en) Manufacture of nonvolatile memory
JPH0590602A (en) Semiconductor memory cell and manufacture thereof
JPS6224673A (en) Manufacture of semiconductor memory device
JPS58212180A (en) Nonvolatile memory device and manufacture thereof
JPH02103966A (en) Manufacture of semiconductor memory device
JPH02103965A (en) Manufacture of semiconductor memory device
JPS5898976A (en) Manufacture of non-volatile memory
JPH0982819A (en) Non-volatile semiconductor memory and its manufacturing method
JPS61287275A (en) Manufacture of semiconductor memory device