JPH01264268A - Manufacture of nonvolatile memory device - Google Patents

Manufacture of nonvolatile memory device

Info

Publication number
JPH01264268A
JPH01264268A JP63092598A JP9259888A JPH01264268A JP H01264268 A JPH01264268 A JP H01264268A JP 63092598 A JP63092598 A JP 63092598A JP 9259888 A JP9259888 A JP 9259888A JP H01264268 A JPH01264268 A JP H01264268A
Authority
JP
Japan
Prior art keywords
silicon nitride
nitride film
film
gate electrode
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63092598A
Other languages
Japanese (ja)
Inventor
Takeshi Fukutomi
福富 毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP63092598A priority Critical patent/JPH01264268A/en
Publication of JPH01264268A publication Critical patent/JPH01264268A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To prevent an unstable trap from being increased and to obtain an excellent memory retention characteristic by a method wherein a silicon dioxide film, a silicon nitride film and a gate electrode are formed one after another on a substrate face, a silicon nitride film is formed, fluorine ions are implanted and a heat treatment is executed. CONSTITUTION:A protective oxide film 2 and a silicon nitride film 3 are formed on a substrate 1; after that, a prescribed part is removed by using a lithographic technique and an etching technique. Then, a selective oxidation treatment is executed by making use of the silicon nitride film 3 as a mask; a field oxide film 4 is formed. Then, the silicon nitride film 3 and the protective oxide film 2 are etched, an extremely thin silicon dioxide film 5, a silicon nitride film 6 and a gate electrode layer 7 are grown; a part other than a part to be used as a gate out of these is removed by using the lithographic technique and the etching technique. Then, an interlayer insulating film 10 is formed by making use of the gate electrode layer 7 and the field oxide film 4 as a mask; a source region 8 and a drain region 9 are formed by a high-temperature heat treatment; after that, fluorine ions are implanted; this assembly is heat-treated in an atmosphere of nitrogen.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、MNOS (金属−窒化シリコン膜−二酸化
シリコン膜−半導体)型の電界トランジスタからなる不
揮発性記憶装置、特に記憶保持特性の優れた高性能の不
揮発性記憶装置の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a non-volatile memory device comprising an MNOS (metal-silicon nitride film-silicon dioxide film-semiconductor) field transistor, particularly a high-performance non-volatile memory device with excellent memory retention characteristics. The present invention relates to a method of manufacturing a nonvolatile memory device.

従来の技術 従来、MNO3型不揮発性記憶装置では、半導体表面上
に第1層のゲート電極として、電荷がトンネル現象で通
過し得る@薄め二酸化シリコン膜を、さらに第2層のゲ
ート電極として窒化シリコン膜を設け、この上にゲート
電極として、アルミニウム!@を形成した構造が採られ
ている。
Conventional technology Conventionally, in an MNO3 type nonvolatile memory device, a thin silicon dioxide film is used as a first layer gate electrode on a semiconductor surface through which charges can pass through by tunneling, and a silicon nitride film is further used as a second layer gate electrode. A film is provided, and a gate electrode is formed on this film using aluminum! The structure that forms @ is adopted.

なお、MO3型集積回路技術の進歩に伴い、寸法の微細
化、高集積化および高速化が進んでいる。
In addition, with the progress of MO3 type integrated circuit technology, miniaturization of dimensions, higher integration, and higher speed are progressing.

この取り組みの中ではゲート!極材料として、多結晶シ
リコンなどの高融点金属を用いたセルファライン技術が
広く採用されている。
Gate! Selfaline technology, which uses high-melting point metals such as polycrystalline silicon as the electrode material, is widely used.

MNO3型不揮発性記憶装置においても、高集積化を実
現するために、ゲート電極材料として多結晶シリコンな
どの高融点金属を用い、セルフアライメント拡散技術を
駆使することがある。ところで、この方法ではゲート電
極形成後に、ソース領域および、ドレイン領域を形成す
る拡散処理が施され、しかも、この拡散処理温度が窒化
シリコン膜形成温度以上の高温(900〜1000℃)
であるために、MNO3型記憶素子の記憶保持特性が悪
化する。
Even in MNO3 type nonvolatile memory devices, in order to achieve high integration, a high melting point metal such as polycrystalline silicon is used as the gate electrode material, and self-alignment diffusion technology is sometimes used. By the way, in this method, after the gate electrode is formed, a diffusion process is performed to form a source region and a drain region, and the temperature of this diffusion process is a high temperature (900 to 1000°C) higher than the silicon nitride film formation temperature.
Therefore, the memory retention characteristics of the MNO3 type memory element deteriorate.

発明が解決しようとする課題 MNO3型不揮発性記憶装置は、窒化シリコン膜と極薄
の二酸化シリコン膜の界面、または窒化シリコン膜のバ
ルク中に分布するトラップへ半導体側から[!薄の二酸
化シリコン膜を介して行われる電荷のトンネリング注入
とその蓄積によってトランジスタのしきい値電圧(V 
th)を変化させ、情報を記憶させるものであり、その
記憶保持特性の確保がMNO3型不揮発性記憶装置の最
大の課題である。したがって、ゲート電極材料として多
結晶シリコンなどの高融点金属を用いた場合の記憶保持
特性の悪化は、実用上の最大の問題となっていた。
Problems to be Solved by the Invention In an MNO3 type nonvolatile memory device, [! The threshold voltage of the transistor (V
th) to store information, and ensuring the memory retention characteristics is the biggest challenge for MNO3 type nonvolatile storage devices. Therefore, deterioration in memory retention characteristics when a high melting point metal such as polycrystalline silicon is used as a gate electrode material has become the biggest practical problem.

本発明は上記問題を解決するもので、ゲート電極材料と
して高融点金属を用いるものの、良好な記憶保持特性を
維持することができ、したがって高集積化においても飛
躍的な向上をはかることのできる半導体記憶装置の製造
方法を提供することを目的とするものである。
The present invention solves the above problems, and although a high-melting point metal is used as the gate electrode material, it is possible to maintain good memory retention characteristics, and therefore, it is possible to create a semiconductor that can be dramatically improved in terms of high integration. An object of the present invention is to provide a method for manufacturing a storage device.

課題を解決するための手段 上記問題を解決するために本発明は、一導電型の半導体
基板面に、電子または正孔のトンネリング媒体となる極
薄の二酸化シリコン膜を形成する工程と、前記極薄の二
酸化シリコン膜上に窒化シリコン膜を形成する工程と、
前記窒化シリコン膜上にゲート電極を形成する工程を少
なくとも有し、さらに、上記窒化シリコン膜を形成した
後に、フッ素イオンを注入する工程と、フッ素イオン注
入後に熱処理を施す工程を含むことを特徴とするもので
ある。
Means for Solving the Problems In order to solve the above problems, the present invention includes a step of forming an ultra-thin silicon dioxide film, which serves as a tunneling medium for electrons or holes, on the surface of a semiconductor substrate of one conductivity type; forming a silicon nitride film on a thin silicon dioxide film;
The present invention is characterized by comprising at least a step of forming a gate electrode on the silicon nitride film, and further comprising a step of implanting fluorine ions after forming the silicon nitride film, and a step of performing heat treatment after implanting the fluorine ions. It is something to do.

作用 本発明者の研究によれば、MNOSメモリのゲート電極
である窒化シリコン膜形成後の高温熱処理による記憶保
持特性の悪化は、窒化シリコン膜中に含まれる水素、特
にSi −H結合の含有量に関係があり、Si −H結
合の多い窒化シリコン膜では900℃以上の温度で熱処
理を行うことにより5i−H結合が減少し、Si原子の
未結合手(dangling bond )が増大する
ことから不安定なトラップが附加増大し、記憶保持特性
が悪化することが明らかとなった。すなわち、窒化シリ
コン膜形成後の熱処理による記憶保持特性の悪化は、窒
化シリコン膜中の不安定なSi原子の未結合手の含有量
に大きく依存している。
According to the research conducted by the present inventors, the deterioration of memory retention characteristics due to high temperature heat treatment after forming the silicon nitride film, which is the gate electrode of the MNOS memory, is due to the hydrogen contained in the silicon nitride film, especially the content of Si-H bonds. In a silicon nitride film with many Si-H bonds, heat treatment at a temperature of 900°C or higher reduces the number of 5i-H bonds and increases the number of dangling bonds between Si atoms. It became clear that the number of stable traps increased and the memory retention properties deteriorated. That is, deterioration in memory retention characteristics due to heat treatment after forming a silicon nitride film largely depends on the content of unstable dangling bonds of Si atoms in the silicon nitride film.

ところで、Si原子の未結合手をH(水素)で終端した
5i−H結合にくらべてF(フッ素)で終端しなSi 
−F結合は分解しにくいことがよく知られている。これ
は、Si −H結合エネルギ(71,4Kcal/no
t )よりもSi −F結合エネルギ(116にcal
 /nol )が大きいためである。
By the way, compared to the 5i-H bond in which the dangling bond of the Si atom is terminated with H (hydrogen), the Si atom which does not terminate with F (fluorine)
It is well known that the -F bond is difficult to decompose. This is the Si-H bond energy (71,4Kcal/no
t ) than the Si-F bond energy (116 cal
/nol) is large.

本発明は、上記の事実に基づき、トンネリング媒体とな
る1Ffl薄の二酸化シリコン膜上に窒化シリコン膜、
ゲート電極を形成した後、水素よりも安定なフッ素イオ
ンを注入し、さらにフッ素イオンの活性化を目的としな
熱処理(アニール)を行うことによりSi原子の未結合
手を減少させて、不安定なトラップの増大を防ぎ優れた
記憶保持特性を得たものである。
Based on the above facts, the present invention provides a silicon nitride film on a 1 Ffl thin silicon dioxide film serving as a tunneling medium.
After forming the gate electrode, fluorine ions, which are more stable than hydrogen, are implanted, and heat treatment (annealing) is performed to activate the fluorine ions, thereby reducing the dangling bonds of Si atoms and making them unstable. This prevents the increase of traps and provides excellent memory retention properties.

実施例 以下、本発明の一実施例を図面を用いて説明する。Example An embodiment of the present invention will be described below with reference to the drawings.

第1図[a)〜(d)は本発明の製造方法の一実施例を
工程順に示す半導体記憶装置の断面楕遣図である0本発
明の製造方法では、先ず、第1図(a)で示すように、
P型シリコン基板1上に、保護酸化WA2を、さらに窒
化シリコン膜3を形成した後、トランジスタ活性領域形
成のためにリソグラフィ技術およびエツチング技術を用
いて所定の部分を除去する0次いで、窒化シリコン膜3
をマスクとして用いた選択酸化(L、0CO3)処理を
緒して素子分離用のフィールド酸化M4を形成する0本
実施例では、保護酸化膜2を500A、窒化シリコンM
3を1200人程度ヒレ、フィールド酸化膜厚を800
0人程度上巳な。
FIGS. 1(a) to 1(d) are cross-sectional elliptical views of a semiconductor memory device showing an embodiment of the manufacturing method of the present invention in the order of steps. In the manufacturing method of the present invention, first, FIG. 1(a) As shown in
After forming a protective oxide WA2 and a silicon nitride film 3 on a P-type silicon substrate 1, predetermined portions are removed using lithography and etching techniques to form a transistor active region.Next, the silicon nitride film is removed. 3
In this example, the protective oxide film 2 is made of silicon nitride M4 of 500A and silicon nitride M4.
3 to about 1200 fins, field oxide film thickness to 800
About 0 people.

次いで、窒化シリコン膜3および保護酸化膜2をエツチ
ングにより除去した後、第1図(b)で示すようにMN
O3型不揮発性メモリトランジスタのゲート電極である
極薄の二酸化シリコン膜5、窒化シリコン膜6さらに、
ゲート電極層7を成長する。この極薄の二酸化シリコン
膜は電子または正孔のトンネリング媒体となりうるちの
である。
Next, after removing the silicon nitride film 3 and the protective oxide film 2 by etching, the MN is etched as shown in FIG. 1(b).
Ultra-thin silicon dioxide film 5 and silicon nitride film 6, which are gate electrodes of the O3 type nonvolatile memory transistor;
A gate electrode layer 7 is grown. This ultra-thin silicon dioxide film can serve as a tunneling medium for electrons or holes.

その後リソグラフィ技術およびエツチング技術を用いて
、ゲートとなる部分以外のゲート電極層7、さらに窒化
シリコン1lU6、二酸化シリコン膜5を除去する0本
実施例では、トンネリング媒体となる極薄の二酸化シリ
コン膜5の厚みを20人程度、窒化シリコン膜6の厚み
を500 A程度とし、ゲート電極層7を4000八程
度の厚さの多結晶シリコン層とした。なお、窒化シリコ
ン膜6の形成は、ジクロルシラン(SiH2C12)ガ
スとアンモニア(NH3)ガスの化学反応を利用した減
圧気相成長法により、成長温度800℃、ガス流量比N
H3/S i H2C12=10の条件下で行った。
Thereafter, using lithography technology and etching technology, the gate electrode layer 7 other than the portion that will become the gate, as well as the silicon nitride layer 11U6 and the silicon dioxide film 5 are removed. The thickness of the silicon nitride film 6 was about 500 A, and the gate electrode layer 7 was a polycrystalline silicon layer about 4,000 A thick. The silicon nitride film 6 was formed by a low-pressure vapor phase growth method using a chemical reaction between dichlorosilane (SiH2C12) gas and ammonia (NH3) gas at a growth temperature of 800°C and a gas flow rate ratio of N.
The test was carried out under the condition of H3/S i H2C12=10.

次いで、第1図(C)に示すように、ゲート電極層7と
フィールド酸化膜4をマスクとするセルファライン技術
を用いたn型不純物のイオン注入、気相成長技術を用い
た眉間電極10の形成およびアニールと注入した不純物
イオンの押し込みのための窒化シリコン膜の成長温度以
上の高温熱処理を施してソース領域8とドレイン領域9
を形成した後、フッ素イオン(F”、F”+など)の注
入を施し、さらに窒素雰囲気中において熱処理(アニー
ル)を施す。
Next, as shown in FIG. 1C, n-type impurity ions are implanted using self-line technology using the gate electrode layer 7 and field oxide film 4 as masks, and glabellar electrodes 10 are formed using vapor phase growth technology. The source region 8 and the drain region 9 are formed by performing high-temperature heat treatment at a temperature higher than the growth temperature of the silicon nitride film for forming, annealing, and pushing in the implanted impurity ions.
After forming, fluorine ions (F", F"+, etc.) are implanted, and further heat treatment (annealing) is performed in a nitrogen atmosphere.

以上のような製造方法で得られた半導体記憶装置の記憶
保持特性の一例を第2図に示す、横軸は書き込み−、消
去直後のしきい値電圧、縦軸はそのときに蓄積された電
荷の減衰率(a Vth/ a fogt ;Vth:
Lきい値電圧、t:時間)を示している。
An example of the memory retention characteristics of a semiconductor memory device obtained by the above manufacturing method is shown in Figure 2, where the horizontal axis represents the threshold voltage immediately after writing and erasing, and the vertical axis represents the charge accumulated at that time. Attenuation rate (a Vth/ a fogt ; Vth:
L threshold voltage, t: time).

第2図の直線の傾きが小さいほど、記憶保持特性が優れ
ていることを示している。A直線は本実施例の製造方法
により作製された不揮発性記憶装置の記憶保持特性を示
し、B直線のフッ素イオン注入を施さない場合に比べて
傾きが小さく、優れた記憶保持特性を有していることが
わかる。
The smaller the slope of the straight line in FIG. 2, the better the memory retention characteristics are. The A straight line indicates the memory retention characteristics of the nonvolatile memory device manufactured by the manufacturing method of this example, and the slope is smaller than that of the nonvolatile memory device manufactured by the manufacturing method of this example, and the slope is smaller than that of the nonvolatile memory device manufactured by the manufacturing method of this example, and it has excellent memory retention characteristics. I know that there is.

本実施例では、ソース領域8とドレイン領域9を形成す
るn型不純物イオンとしてヒ素(As”)イオンを用い
、眉間電極10としてリンガラス膜(PSGIIg)を
用い、膜厚を9500人とした。また、アニールと注入
した不純物イオン、ソース、トレインの押し込みに、窒
素雰囲気中で1000℃程度の熱処理を施した。
In this example, arsenic (As'') ions were used as n-type impurity ions forming the source region 8 and drain region 9, and a phosphorous glass film (PSGIIg) was used as the glabella electrode 10, with a film thickness of 9,500. Further, heat treatment at about 1000° C. in a nitrogen atmosphere was performed for annealing and pushing in the implanted impurity ions, sources, and trains.

さらにフッ素イオン注入条件を、フッ素イオン(F”)
、加速電圧150KeV、注入量8.OxloJ】−2
に設定し、このイオン注入後のアニール条件を、窒素雰
囲気中でsoo”c程度の加熱処理とした。
Furthermore, the fluorine ion implantation conditions were changed to fluorine ion (F”).
, acceleration voltage 150 KeV, implantation amount 8. OxloJ】-2
The annealing conditions after this ion implantation were a heat treatment of about soo''c in a nitrogen atmosphere.

次いで第1図(d)に示すように、リソグラフの技術、
エツチング技術、および気相成長技術を用いて、コンタ
クト孔11、金属(アルミニウム)配置112、および
保護膜13の形成を行うことにより、NチャネルMNO
3型不揮発性記憶装置の作製が完了する。
Next, as shown in FIG. 1(d), lithographic technology,
By forming contact holes 11, metal (aluminum) arrangement 112, and protective film 13 using etching technology and vapor phase growth technology, N-channel MNO
The fabrication of the type 3 nonvolatile memory device is completed.

本実施例では、P型シリコン基板を用いNチャネル型不
揮発性記憶装置を作製する場合について説明したが、P
チャネル型不揮発性記憶装置の製作にも本発明を使用で
きることはもちろんである。
In this example, a case was explained in which an N-channel type nonvolatile memory device was manufactured using a P-type silicon substrate.
Of course, the present invention can also be used to fabricate a channel type non-volatile memory device.

またゲート電極として多結晶シリコン膜以外の高融点金
属膜を用いてもよい、さらに、ゲート電極である窒化シ
リコン膜を酸化したゲート構造のMONO3型不揮発性
記憶装置についても同様の効果がある。
Further, a high-melting point metal film other than a polycrystalline silicon film may be used as the gate electrode. Furthermore, a MONO3 type nonvolatile memory device having a gate structure in which the silicon nitride film serving as the gate electrode is oxidized has the same effect.

発明の効果 以上のように、本発明によれば、記憶保持特性の非常に
優れた高性能の不揮発性記憶装置を作製することができ
る。また、多結晶シリコンなどの高融点金属膜をゲート
電極として用いる構造の下で良好な記憶保持特性を維持
できるため、高集積化にも大きく寄与するものである。
Effects of the Invention As described above, according to the present invention, a high-performance nonvolatile memory device with extremely excellent memory retention characteristics can be manufactured. Furthermore, since good memory retention characteristics can be maintained in a structure using a high-melting point metal film such as polycrystalline silicon as the gate electrode, it greatly contributes to higher integration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を説明するための工程順断面
図、第2図は本発明の詳細な説明するための特性図であ
る。 1・・・P型シリコン基板、2・・・保護酸化膜、3・
・・窒化シリコン膜、4・・・フィールド酸化膜、5・
・・二酸化シリコン膜、6・・・窒化シリコン膜、7・
・・ゲート電極層、8・・・ソース(拡散IW)、9・
・・ドレイン(拡散N)、10・・・層間電極、11・
・・コンタクト孔、12・・・金属配線、13・・・保
護膜。 代理人   森  本  義  弘 第1図)Ff)2 g    56   り   ’?     t   
 //第 l 図 ¥のf 1:”  F”  F”  F’  F”  r’  
p”  F″4        ′ g567’/f 第2図
FIG. 1 is a step-by-step sectional view for explaining an embodiment of the present invention, and FIG. 2 is a characteristic diagram for explaining the present invention in detail. 1...P-type silicon substrate, 2...protective oxide film, 3.
...Silicon nitride film, 4...Field oxide film, 5.
...Silicon dioxide film, 6...Silicon nitride film, 7.
...Gate electrode layer, 8...Source (diffused IW), 9.
...Drain (diffused N), 10...Interlayer electrode, 11.
...Contact hole, 12...Metal wiring, 13...Protective film. Agent Yoshihiro MorimotoFigure 1) Ff) 2 g 56 ri'? t
//Figure l f1 of ¥:” F” F” F' F” r'
p"F"4'g567'/f Fig. 2

Claims (1)

【特許請求の範囲】 1、一導電型の半導体基板面に、電子または正孔のトン
ネリング媒体となる極薄の二酸化シリコン膜を形成する
工程と、前記二酸化シリコン膜上に窒化シリコン膜を形
成する工程と、前記窒化シリコン膜上にゲート電極を形
成する工程と、前記窒化シリコン膜を形成した後に、フ
ッ素イオン注入を施す工程と、フッ素イオンを活性化す
る熱処理工程を含む不揮発性記憶装置の製造方法。 2、フッ素イオン注入を施す工程は、窒化シリコン膜の
成長温度以上の熱処理工程が終了した後に行われること
を特徴とする請求項1記載の不揮発性記憶装置の製造方
法。
[Claims] 1. A step of forming an extremely thin silicon dioxide film to serve as a tunneling medium for electrons or holes on the surface of a semiconductor substrate of one conductivity type, and forming a silicon nitride film on the silicon dioxide film. a step of forming a gate electrode on the silicon nitride film; a step of implanting fluorine ions after forming the silicon nitride film; and a heat treatment step of activating the fluorine ions. Method. 2. The method of manufacturing a nonvolatile memory device according to claim 1, wherein the step of implanting fluorine ions is performed after a heat treatment step at a temperature equal to or higher than the growth temperature of the silicon nitride film is completed.
JP63092598A 1988-04-14 1988-04-14 Manufacture of nonvolatile memory device Pending JPH01264268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63092598A JPH01264268A (en) 1988-04-14 1988-04-14 Manufacture of nonvolatile memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63092598A JPH01264268A (en) 1988-04-14 1988-04-14 Manufacture of nonvolatile memory device

Publications (1)

Publication Number Publication Date
JPH01264268A true JPH01264268A (en) 1989-10-20

Family

ID=14058887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63092598A Pending JPH01264268A (en) 1988-04-14 1988-04-14 Manufacture of nonvolatile memory device

Country Status (1)

Country Link
JP (1) JPH01264268A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521748A (en) * 1991-07-17 1993-01-29 Sharp Corp Manufacture of insulation film for semiconductor device
US6445030B1 (en) 2001-01-30 2002-09-03 Advanced Micro Devices, Inc. Flash memory erase speed by fluorine implant or fluorination
US6806532B2 (en) * 2000-12-21 2004-10-19 Renesas Technology Corp. Nonvolatile semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521748A (en) * 1991-07-17 1993-01-29 Sharp Corp Manufacture of insulation film for semiconductor device
US6806532B2 (en) * 2000-12-21 2004-10-19 Renesas Technology Corp. Nonvolatile semiconductor device
US6445030B1 (en) 2001-01-30 2002-09-03 Advanced Micro Devices, Inc. Flash memory erase speed by fluorine implant or fluorination

Similar Documents

Publication Publication Date Title
US5436481A (en) MOS-type semiconductor device and method of making the same
EP0690487B1 (en) Methods for forming oxide films
US20050272198A1 (en) Method of manufacturing nonvolatile semiconductor memory device
CN104769724B (en) Memory transistor with multiple charge storage layers
KR100791007B1 (en) Nonvolatile memory device having metal silicide nanocrystal, method of forming the metal silicide nanocrystal and method of fabricating the nonvolatile memory device
JPH06151833A (en) Semiconductor device and its manufacture
JP3998403B2 (en) Semiconductor device and manufacturing method thereof
JP2000340682A (en) Manufacture of semiconductor device
JPH01264268A (en) Manufacture of nonvolatile memory device
JP2691385B2 (en) Semiconductor memory device
JPS603159A (en) Manufacture of nonvolatile memory device
US6828201B1 (en) Method of manufacturing a top insulating layer for a sonos-type device
JP2007081211A (en) Insulated gate semiconductor device and method of manufacturing same
JPH0888286A (en) Manufacture of semiconductor memory device
JPH02103965A (en) Manufacture of semiconductor memory device
JPH02103966A (en) Manufacture of semiconductor memory device
JPH0422031B2 (en)
JPS6170763A (en) Manufacture of semiconductor memory storage
JPH02277269A (en) Manufacture of nonvolatile memory
JPS61290771A (en) Manufacture of semiconductor memory device
JPS58212180A (en) Nonvolatile memory device and manufacture thereof
JP2719642B2 (en) Semiconductor device and manufacturing method thereof
JP3141520B2 (en) Method for manufacturing nonvolatile memory element
JPS6136976A (en) Manufacture of semiconductor memory device
JPH0341775A (en) Manufacture of semiconductor memory